Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Pak J Biol Sci ; 27(5): 256-267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38840466

ABSTRACT

<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.


Subject(s)
Ganoderma , Rhizosphere , Ganoderma/metabolism , Ganoderma/growth & development , Biological Control Agents , Bioprospecting/methods , Soil Microbiology , Bacteria/metabolism , Bacteria/growth & development , Bacteria/genetics , Bacteria/isolation & purification , Arecaceae/microbiology , Plant Development , Palm Oil/metabolism , Antifungal Agents/metabolism , Antifungal Agents/pharmacology
2.
Int J Biol Macromol ; 259(Pt 2): 129291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211909

ABSTRACT

KRAS mutations are tightly associated with lung cancer progression. Despite the unprecedented clinical success of KRASG12C inhibitors, recurrent mechanisms of resistance and other KRAS mutations require further therapeutic approaches. GMI, a protein from the medicinal mushroom Ganoderma microsporum, possesses antitumor activity; whereas, the biological function of GMI on regulating KRAS mutant lung cancer cells remains unknown. Herein, RNA-sequencing and bioinformatics showed that GMI may regulate KRAS-modulated MAPK and PI3K-AKT pathways in A549 (KRASG12S) cells. Further experiments demonstrated that GMI inhibited KRAS activation and suppressed ERK1/2 and AKT signaling in A549 cells. Intriguingly, GMI inhibited AKT signaling but increased phosphorylation of ERK in H358 (KRASG12C) cells. GMI significantly suppressed tumor growth in LLC1 cells-allograft and H358 cells-xenograft mice. GMI showed a synergistic effect with KRASG12C inhibitors in inhibiting cell growth, KRAS activation and KRAS-mediated downstream signaling, leading to apoptosis in H358 cells. Combination of GMI and KRASG12C inhibitor, AMG 510, resulted in more durable inhibition of tumor growth and KRAS activity in H358 cells-xenograft mice. This study highlights the potential of GMI, a dietary fungal protein, as a viable therapeutic avenue for KRAS-mutant lung cancer in combination with KRASG12C inhibitors.


Subject(s)
Ganoderma , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Ganoderma/metabolism , Mutation
3.
Molecules ; 28(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050035

ABSTRACT

The aim of this study was to evaluate the application potential of a recombinant fungal immunomodulatory protein from Ganoderma lucidum (rFIP-glu). First, a recombinant plasmid pPIC9K::FIP-glu-His was transferred into Pichia pastoris for the production of protein. The protein was then to assess its free radical scavenging abilities and the effect on the viability of both human immortalized keratinocytes (HaCaT cells) and mouse B16-F10 melanoma cells (B16 cells) in vitro, followed by the effect on the melanin synthesis of B16 cells. The results of SDS-PAGE and western blot showed that rFIP-glu was successfully expressed. Furtherly, a bioactivity assay in vitro indicated that the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals reached 84.5% at 6.0 mg/mL (p ≤ 0.0001) of rFIP-glu, showing strong antioxidant activity. Subsequently, a safety evaluation demonstrated that rFIP-glu promoted the proliferation of HaCaT cells, with the cell viability reaching 124.3% at 48 µg/mL (p ≤ 0.01), regarding the cell viability of B16 cells after exposure to rFIP-glu (48 µg/mL) significantly inhibited, to 80.7% (p ≤ 0.01). Besides, rFIP-glu inhibited the melanin synthesis of B16 cells in a dose-dependent manner from 100-1000 µg/mL, and rFIP-glu at 500 µg/mL (p ≤ 0.01) exhibited the highest intracellular melanin amount reduction of 16.8%. Furthermore, a mechanism analysis showed that rFIP-glu inhibited tyrosinase (TYR) activity by up-regulating the expression of the microphthalmia-associated transcription factor (MITF) and down-regulating the gene expression of TYR and tyrosinase-related protein-1 (TYRP-1), thus inhibiting melanin synthesis. The data implied that rFIP-glu had significant antioxidant activity and whitening potency. It should be used as raw materials for cosmeceutical applications.


Subject(s)
Ganoderma , Melanoma, Experimental , Reishi , Animals , Mice , Humans , Ganoderma/metabolism , Melanins/metabolism , Antioxidants/metabolism , Recombinant Proteins/metabolism , Reishi/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Melanoma, Experimental/drug therapy , Cell Line, Tumor
4.
Am J Chin Med ; 51(4): 859-882, 2023.
Article in English | MEDLINE | ID: mdl-36999543

ABSTRACT

The Ganoderma genus is known for its diverse use as a functional food and therapeutic agent. This fungus has over 428 species, with Ganoderma lucidum being the most studied. The Ganoderma species produce several secondary metabolites and bioactive compounds like polysaccharides, phenols, and triterpenes, which are largely responsible for their therapeutic properties. Throughout this review, several extracts obtained from Ganoderma species have been studied to delve into their therapeutic characteristics and mechanisms. Such properties like immunomodulation, antiaging, antimicrobial, and anticancer activities have been demonstrated by several Ganoderma species and are supported by a large body of evidence. Although its phytochemicals play a vital role in its therapeutic properties, identifying the therapeutic potentials of fungal-secreted metabolites for human health-promoting benefits is a challenging task. Identification of novel compounds with distinct chemical scaffolds and their mechanism of action could help suppress the spread of rising pathogens. Thus, this review provides an updated and comprehensive overview of the bioactive components in different Ganoderma species and the underlying physiological mechanisms.


Subject(s)
Anti-Infective Agents , Ganoderma , Triterpenes , Humans , Ganoderma/chemistry , Ganoderma/metabolism , Triterpenes/pharmacology , Polysaccharides/pharmacology , Phenols
5.
Environ Sci Pollut Res Int ; 30(20): 58436-58449, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36991205

ABSTRACT

Ganoderma lucidum is widely cultivated and used as traditional medicine in China and other Asian countries. As a member of macrofungi, Ganoderma lucidum is also prone to bioaccumulation of cadmium and other heavy metals in a polluted environment, which affects the growth and production of Ganoderma lucidum, as well as human health. N-Acetyl-L-cysteine (NAC) is considered a general antioxidant and free radical scavenger that is involved in the regulation of various stress responses in plants and animals. However, whether NAC could regulate cadmium stress responses in macrofungi, particularly edible fungi, is still unknown. In this work, we found that the exogenous NAC could alleviate Cd-induced growth inhibition and reduce the cadmium accumulation in Ganoderma lucidum. The application of the NAC cloud also inhibit cadmium-induced H2O2 production in the mycelia. By using transcriptome analysis, 2920 and 1046 differentially expressed unigenes were identified in "Cd100 vs CK" and "NAC_Cd100 vs Cd100," respectively. These differential unigenes were classified into a set of functional categories and pathways, which indicated that various biological pathways may play critical roles in the protective effect of NAC against Cd­induced toxicity in Ganoderma lucidum. Furthermore, it suggested that the ATP-binding cassette transporter, ZIP transporter, heat shock protein, glutathione transferases, and Cytochrome P450 genes contributed to the increased tolerance to cadmium stress after NAC application in Ganoderma lucidum. These results provide new insight into the physiological and molecular response of Ganoderma lucidum to cadmium stress and the protective role of NAC against cadmium toxicity.


Subject(s)
Ganoderma , Polyporaceae , Polyporales , Reishi , Humans , Animals , Reishi/genetics , Reishi/metabolism , Acetylcysteine/pharmacology , Cadmium/metabolism , Polyporaceae/genetics , Polyporaceae/metabolism , Polyporales/genetics , Polyporales/metabolism , Hydrogen Peroxide/metabolism , Gene Expression Profiling , Ganoderma/metabolism
6.
Commun Biol ; 6(1): 1, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36596887

ABSTRACT

Ganoderic acids (GAs) are well recognized as important pharmacological components of the medicinal species belonging to the basidiomycete genus Ganoderma. However, transcription factors directly regulating the expression of GA biosynthesis genes remain poorly understood. Here, the genome of Ganoderma lingzhi is de novo sequenced. Using DNA affinity purification sequencing, we identify putative targets of the transcription factor sterol regulatory element-binding protein (SREBP), including the genes of triterpenoid synthesis and lipid metabolism. Interactions between SREBP and the targets are verified by electrophoretic mobility gel shift assay. RNA-seq shows that SREBP targets, mevalonate kinase and 3-hydroxy-3-methylglutaryl coenzyme A synthetase in mevalonate pathway, sterol isomerase and lanosterol 14-demethylase in ergosterol biosynthesis, are significantly upregulated in the SREBP overexpression (OE::SREBP) strain. In addition, 3 targets involved in glycerophospholipid/glycerolipid metabolism are upregulated. Then, the contents of mevalonic acid, lanosterol, ergosterol and 13 different GAs as well as a variety of lipids are significantly increased in this strain. Furthermore, the effects of SREBP overexpression on triterpenoid and lipid metabolisms are recovered when OE::SREBP strain are treated with exogenous fatostatin, a specific inhibitor of SREBP. Taken together, our genome-wide study clarify the role of SREBP in triterpenoid and lipid metabolisms of G. lingzhi.


Subject(s)
Ganoderma , Triterpenes , Lanosterol/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Lipid Metabolism , Genome-Wide Association Study , Triterpenes/pharmacology , Triterpenes/metabolism , Ganoderma/genetics , Ganoderma/chemistry , Ganoderma/metabolism , Sterols/metabolism , Ergosterol/metabolism
7.
Molecules ; 27(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35807510

ABSTRACT

The use of substances or conditions as elicitors can significantly increase the production of secondary metabolites. In this research, the effects of different elicitors on the production of antioxidant secondary metabolites were evaluated in a strain of Ganoderma sp. The elicitors tested were pH changes in different growth phases of the fungus (pH 3, 5.5 and 8), different concentrations of peptone as a nitrogen source (1 g/L and 10 g/L), and the addition of chemical agents to the culture medium (ethanol, growth regulators, and salts). The alkaline pH during the stationary phase and the high availability of nitrogen were effective elicitors, producing cultures with higher antioxidant activity (37.87 g/L and 43.13 g/L dry biomass) although there were no significant differences with other treatments.


Subject(s)
Antioxidants , Ganoderma , Antioxidants/metabolism , Antioxidants/pharmacology , Costa Rica , Ganoderma/metabolism , Nitrogen
8.
Mol Cell Neurosci ; 120: 103735, 2022 05.
Article in English | MEDLINE | ID: mdl-35562037

ABSTRACT

A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Ganoderma , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Fungal Proteins/metabolism , Fungal Proteins/pharmacology , Ganoderma/metabolism , Glutamates/metabolism , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Memory Disorders , Oxidative Stress
9.
PLoS One ; 17(4): e0266331, 2022.
Article in English | MEDLINE | ID: mdl-35390035

ABSTRACT

Lingzhi has long been regarded as having life-prolonging effects. Research in recent years has also reported that Lingzhi possesses anti-tumor, anti-inflammatory, immunomodulatory, hepatoprotective, and anti-lipogenic effects. The D-galactose (D-gal, 100 mg/kg/day)-induced aging Long-Evans rats were simultaneously orally administered a DMSO extract of Ganoderma tsugae (GTDE, 200 µg/kg/day) for 25 weeks to investigate the effects of GTDE on oxidative stress and memory deficits in the D-galactose-induced aging rats. We found that GTDE significantly improved the locomotion and spatial memory and learning in the aging rats. GTDE alleviated the aging-induced reduction of dendritic branching in neurons of the hippocampus and cerebral cortex. Immunoblotting revealed a significant increase in the protein expression levels of the superoxide dismutase-1 (SOD-1) and catalase, and the brain-derived neurotrophic factor (BDNF) in rats that received GTDE. D-gal-induced increase in the lipid peroxidation product 4-hydroxynonenal (4-HNE) was significantly attenuated after the administration of GTDE, and pyrin domain-containing 3 protein (NLRP3) revealed a significant decrease in NLRP3 expression after GTDE administration. Lastly, GTDE significantly reduced the advanced glycosylation end products (AGEs). In conclusion, GTDE increases antioxidant capacity and BDNF expression of the brain, protects the dendritic structure of neurons, and reduces aging-induced neuronal damage, thereby attenuating cognitive impairment caused by aging.


Subject(s)
Cognitive Dysfunction , Ganoderma , Aging/metabolism , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Galactose/metabolism , Galactose/toxicity , Ganoderma/metabolism , Maze Learning , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Rats , Rats, Long-Evans
10.
Appl Microbiol Biotechnol ; 106(7): 2367-2380, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35348851

ABSTRACT

Fungal immunomodulatory protein (FIP) is a novel functional protein family with specific immunomodulatory activity identified from several macro-fungi. A variety of biological activities of FIPs have been reported, such as anti-allergy, anti-tumor, mitogenic activity, and immunomodulation. Among all known FIPs, the firstly discovered FIP was isolated from Ganoderma lucidum, and most FIP members were from Ganoderma genus. Compared with other FIPs, Ganoderma FIPs possess some advantageous bioactivities, like stronger anti-tumor activity. Therein, gene sequences, protein structural features, biofunctions, and recombinant expression of Ganoderma FIPs were summarized and addressed, focusing on elucidating their anti-tumor activity and molecular mechanisms. Combined with current advances, development potential and application of Ganoderma FIPs were also prospected. KEY POINTS: • More than a dozen of reported FIPs are identified from Ganoderma species. • Ganoderma immunomodulatory proteins have superior anti-tumor activity with promising prospects and application. • Current review comprehensively addresses characterization, biofunctions, and anti-tumor mechanisms of Ganoderma FIPs.


Subject(s)
Agaricales , Ganoderma , Agaricales/metabolism , Fungal Proteins/metabolism , Ganoderma/metabolism , Immunologic Factors/genetics , Immunologic Factors/pharmacology , Immunomodulation , Recombinant Proteins/genetics
11.
PLoS One ; 16(12): e0262029, 2021.
Article in English | MEDLINE | ID: mdl-34972183

ABSTRACT

Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.


Subject(s)
Arecaceae/microbiology , Ganoderma/metabolism , Salicylic Acid/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Carbohydrates/chemistry , Carbon/chemistry , Chromatography, Liquid , Cluster Analysis , Coumarins/chemistry , Culture Media , In Vitro Techniques , Ions , Lipids/chemistry , Mass Spectrometry , Melanins/chemistry , Phenols/pharmacology , Phenylalanine/chemistry , Plant Diseases/microbiology , Plant Roots/metabolism , Salicylic Acid/chemistry , Tryptophan/chemistry
12.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681911

ABSTRACT

Ganoderma formosanum (GF) is a medicinal mushroom endemic to Taiwan. Previous research established the optimal culture conditions to produce exopolysaccharide rich in ß-glucan (GF-EPS) from submerged fermentation of GF. The present study investigated the antitumor effects of GF-EPS in a Lewis lung carcinoma cell (LLC1) tumor-bearing mice model. In the preventive model, GF-EPS was orally administered to mice before LLC1 injection. In the therapeutic model, GF-EPS oral administration was initiated five days after tumor cell injection. The tumor size and body weight of the mice were recorded. After sacrifice, the lymphocyte subpopulation was analyzed using flow cytometry. Spleen tissues were used to analyze cytokine mRNA expression. The results showed that GF-EPS (80 mg/kg) effectively suppressed LLC1 tumor growth in both the preventive and therapeutic models. GF-EPS administration increased the proportion of natural killer cells in the spleen and activated gene expression of several cytokines. Our results provide evidence that GF-EPS promotes tumor inhibition through immunomodulation in tumor-bearing mice.


Subject(s)
Carcinoma, Lewis Lung/drug therapy , Cytokines/genetics , Fungal Polysaccharides/administration & dosage , Ganoderma/growth & development , Killer Cells, Natural/metabolism , Administration, Oral , Animals , Body Weight/drug effects , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Fermentation , Fungal Polysaccharides/immunology , Fungal Polysaccharides/pharmacology , Ganoderma/immunology , Ganoderma/metabolism , Gene Expression Regulation, Neoplastic , Immunomodulation , Killer Cells, Natural/drug effects , Mice , Spleen/immunology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
J Environ Manage ; 299: 113619, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34467865

ABSTRACT

By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 µM) and higher kcat/Km ratio (1.663 s-1 µM-1). Activity was stimulated by Cu2+ and ß-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.


Subject(s)
Ganoderma , Laccase , Biodegradation, Environmental , Coloring Agents , Enzyme Stability , Ganoderma/metabolism , Hydrogen-Ion Concentration , Kinetics , Laccase/metabolism , Temperature , Textiles
14.
Sci Rep ; 11(1): 16330, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381084

ABSTRACT

Basal stem rot (BSR) of oil palm is a disastrous disease caused by a white-rot fungus Ganoderma boninense Pat. Non-ribosomal peptides (NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) are a group of secondary metabolites that act as fungal virulent factors during pathogenesis in the host. In this study, we aimed to isolate NRPS gene of G. boninense strain UPMGB001 and investigate the role of this gene during G. boninense-oil palm interaction. The isolated NRPS DNA fragment of 8322 bp was used to predict the putative peptide sequence of different domains and showed similarity with G. sinense (85%) at conserved motifs of three main NRPS domains. Phylogenetic analysis of NRPS peptide sequences demonstrated that NRPS of G. boninense belongs to the type VI siderophore family. The roots of 6-month-old oil palm seedlings were artificially inoculated for studying NRPS gene expression and disease severity in the greenhouse. The correlation between high disease severity (50%) and high expression (67-fold) of G. boninense NRPS gene at 4 months after inoculation and above indicated that this gene played a significant role in the advancement of BSR disease. Overall, these findings increase our knowledge on the gene structure of NRPS in G. boninense and its involvement in BSR pathogenesis as an effector gene.


Subject(s)
Ganoderma/genetics , Ganoderma/metabolism , Palm Oil/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , DNA, Plant/genetics , Genes, Plant/genetics , Phylogeny , Plant Roots/genetics , Plant Roots/metabolism , Seedlings/genetics , Seedlings/metabolism
15.
Molecules ; 25(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339375

ABSTRACT

In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.


Subject(s)
Alkaloids/chemistry , Antifungal Agents/chemistry , Ascomycota/chemistry , Fatty Acids/chemistry , Flavonoids/chemistry , Ganoderma/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Antifungal Agents/analysis , Antifungal Agents/pharmacology , Ascomycota/metabolism , Batch Cell Culture Techniques , Chromatography, High Pressure Liquid , Discriminant Analysis , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Flavonoids/isolation & purification , Flavonoids/pharmacology , Ganoderma/drug effects , Ganoderma/metabolism , Least-Squares Analysis , Principal Component Analysis , Spectrometry, Mass, Electrospray Ionization
16.
PLoS One ; 15(12): e0244791, 2020.
Article in English | MEDLINE | ID: mdl-33382817

ABSTRACT

Ageing and chronic diseases lead to muscle loss and impair the regeneration of skeletal muscle. Thus, it's crucial to seek for effective intervention to improve the muscle regeneration. Tid1, a mitochondrial co-chaperone, is important to maintain mitochondrial membrane potential and ATP synthesis. Previously, we demonstrated that mice with skeletal muscular specific Tid1 deficiency displayed muscular dystrophy and postnatal lethality. Tid1 can interact with STAT3 protein, which also plays an important role during myogenesis. In this study, we used GMI, immunomodulatory protein of Ganoderma microsporum, as an inducer in C2C12 myoblast differentiation. We observed that GMI pretreatment promoted the myogenic differentiation of C2C12 myoblasts. We also showed that the upregulation of mitochondria protein Tid1 with the GMI pre-treatment promoted myogenic differentiation ability of C2C12 cells. Strikingly, we observed the concomitant elevation of STAT3 acetylation (Ac-STAT3) during C2C12 myogenesis. Our study suggests that GMI promotes the myogenic differentiation through the activation of Tid1 and Ac-STAT3.


Subject(s)
Fungal Proteins/metabolism , Ganoderma/metabolism , HSP40 Heat-Shock Proteins/metabolism , Muscle Development/physiology , Myoblasts/cytology , STAT3 Transcription Factor/metabolism , Acetylation , Animals , Cell Differentiation/physiology , Cell Line , Cell Proliferation/physiology , Fungal Proteins/genetics , HSP40 Heat-Shock Proteins/genetics , Mice , Mice, Knockout , Myoblasts/metabolism , Up-Regulation
17.
J Microbiol ; 58(12): 1054-1064, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33263896

ABSTRACT

Antiplasmodial nortriterpenes with 3,4-seco-27-norlanostane skeletons, almost entirely obtained from fruiting bodies, represent the main evidential source for bioactive secondary metabolites derived from a relatively unexplored phytopathogenic fungus, Ganoderma boninense. Currently lacking is convincing evidence for antimicrobial secondary metabolites in this pathogen, excluding that obtained from commonly observed phytochemicals in the plants. Herein, we aimed to demonstrate an efficient analytical approach for the production of antibacterial secondary metabolites using the mycelial extract of G. boninense. Three experimental cultures were prepared from fruiting bodies (GBFB), mycelium cultured on potato dextrose agar (PDA) media (GBMA), and liquid broth (GBMB). Through solvent extraction, culture type-dependent phytochemical distributions were diversely exhibited. Water-extracted GBMB produced the highest yield (31.21 ± 0.61%, p < 0.05), but both GBFB and GBMA elicited remarkably higher yields than GBMB when polar-organic solvent extraction was employed. Greater quantities of phytochemicals were also obtained from GBFB and GBMA, in sharp contrast to those gleaned from GBMB. However, the highest antibacterial activity was observed in chloroform-extracted GBMA against all tested bacteria. From liquid-liquid extractions (LLE), it was seen that mycelia extraction with combined chloroform-methanol-water at a ratio of 1:1:1 was superior at detecting antibacterial activities with the most significant quantities of antibacterial compounds. The data demonstrate a novel means of assessing antibacterial compounds with mycelia by LLE which avoids the shortcomings of standardized methodologies. Additionally, the antibacterial extract from the mycelia demonstrate that previously unknown bioactive secondary metabolites of the less studied subsets of Ganoderma may serve as active and potent antimicrobial compounds.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Ganoderma/metabolism , Mycelium/metabolism , Phytochemicals/metabolism , Secondary Metabolism , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Microbial Sensitivity Tests , Phytochemicals/chemistry , Solvents
18.
Food Funct ; 11(12): 10690-10699, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33220673

ABSTRACT

Polysaccharides are one of the main active substances in Ganoderma atrum (G. atrum). The purpose of this study was to explore the protective effect of a G. atrum polysaccharide (PSG-1) on DSS-induced colitis and the underlying mechanism. The results showed that PSG-1 could maintain the integrity of the intestinal structure by promoting the expression of goblet cells and levels of tight junction proteins in the colon of DSS-induced colitis mice. Furthermore, PSG-1 relieved the inhibition of Bcl-2 and the overexpression of caspase-3 and caspase-9 caused by DSS. Simultaneously, PSG-1 restored the expression of Atg5, Atg7 and beclin-1 and inhibited the p-akt and p-mTOR levels, suggesting that PSG-1 promoted autophagy via the Akt/mTOR pathway. Moreover, PSG-1 inhibited the content of DCs in the colon and modulated the expression of IL-10 in DCs. In conclusion, PSG-1 alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier.


Subject(s)
Apoptosis/drug effects , Autophagy-Related Protein 7/metabolism , Autophagy/drug effects , Colitis, Ulcerative/drug therapy , Ganoderma/metabolism , Polysaccharides/pharmacology , Protective Agents/pharmacology , Animals , Autophagy-Related Protein 5/metabolism , Beclin-1/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Colitis, Ulcerative/chemically induced , Colon/pathology , Interleukin-10/metabolism , Male , Mice , Mice, Inbred C57BL , Polysaccharides/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
19.
Molecules ; 25(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076396

ABSTRACT

Wood residues from forestry industries can be potential raw materials for specialty and edible mushroom production. The aim of this study was to evaluate the suitability of wood residues for the cultivation of Ganoderma lucidum originating from boreal forests. The substrates tested included sawdust and wood chips of Betula spp., Populus tremula, Picea abies, Pinus sylvestris and Larix sp. The suitability of the substrates and the ability of the strains to develop fruiting bodies and produce ß-glucan were evaluated. Fruiting body formation was supported by applying two different cold shock treatments to substrate bags. The highest yields were observed with MUS192 strain and Betula spp. and P. tremula wood-based substrates. ß-Glucan content in the fruiting bodies was highest with the MUS75 and P. tremula wood-based substrate. Based on these findings, the combination of P. tremula wood residues and the MUS192 strain is proposed to enhance the yield and ß-glucan content of the fruiting bodies. A cold treatment of 5 °C is suggested to induce primordia formation and to increase fruiting probability. This is the first time that strains of G. lucidum originating from boreal forests have been compared and successfully cultivated simulating commercial indoor cultivation.


Subject(s)
Fruiting Bodies, Fungal/metabolism , Ganoderma/metabolism , Wood/chemistry , beta-Glucans/metabolism , Cold Temperature , Culture Media , Fruiting Bodies, Fungal/chemistry , Ganoderma/growth & development , Pinus/chemistry , Populus/chemistry , beta-Glucans/chemistry
20.
Genes (Basel) ; 11(11)2020 10 26.
Article in English | MEDLINE | ID: mdl-33114747

ABSTRACT

Ganoderma produces lignolytic enzymes that can degrade the lignin component of plant cell walls, causing basal stem rot to oil palms. Nitrogen sources may affect plant tolerance to root pathogens while hydrogen peroxide (H2O2), salicylic acid (SA) and jasmonic acid (JA) play important roles in plant defense against pathogens. In this study, we examined the expression of genes encoding manganese peroxidase (MnP) and laccase (Lac) in Ganoderma boninense treated with different nitrogen sources (ammonium nitrate, ammonium sulphate, sodium nitrate and potassium nitrate), JA, SA and H2O2. Transcripts encoding MnP and Lac were cloned from G. boninense. Of the three GbMnP genes, GbMnP_U6011 was up-regulated by all nitrogen sources examined and H2O2 but was down-regulated by JA. The expression of GbMnP_U87 was only up-regulated by JA while GbMnP_35959 was up-regulated by ammonium nitrate but suppressed by sodium nitrate and down-regulated by H2O2. Among the three GbLac genes examined, GbLac_U90667 was up-regulated by ammonium nitrate, JA, SA and H2O2; GbLac_U36023 was up-regulated by JA and H2O2 while GbLac_U30636 was up-regulated by SA but suppressed by ammonium sulphate, sodium nitrate, JA and H2O2. Differential expression of these genes may be required by their different functional roles in G. boninense.


Subject(s)
Ganoderma/metabolism , Hydrogen Peroxide/pharmacology , Laccase/metabolism , Nitrogen Compounds/pharmacology , Peroxidases/metabolism , Plant Growth Regulators/pharmacology , Amino Acid Sequence , Arecaceae/microbiology , Ganoderma/genetics , Gene Expression Regulation, Plant/genetics , Laccase/genetics , Lignin/metabolism , Peroxidases/genetics , Plant Diseases/microbiology , Plant Roots/microbiology , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...