Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
BMC Plant Biol ; 24(1): 421, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760734

ABSTRACT

BACKGROUND: The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS: In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS: This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.


Subject(s)
Garlic , Heat Shock Transcription Factors , Phylogeny , Plant Proteins , Garlic/genetics , Garlic/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Genome, Plant , Multigene Family , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics
2.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38576169

ABSTRACT

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Subject(s)
Garlic , Glycogen , Humans , Glycogen/metabolism , Antioxidants/metabolism , Garlic/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Muscle, Skeletal , Dietary Supplements , RNA, Messenger/metabolism , Mitochondria/metabolism , Blood Glucose/metabolism
3.
J Agric Food Chem ; 72(17): 10117-10126, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38631034

ABSTRACT

Storage is important for the garlic cloves industry because it is critical to enabling a year-round supply. This study aimed to investigate the changes in biochemical and metabolic profiles in garlic cloves in terms of different temperatures and cultivars during storage using nontargeted and targeted metabolomics. The results showed that the storage temperatures and times were important factors affecting the composition and metabolite content of garlic cloves. In detail, the metabolic profiling of garlic cloves changed significantly at 22 °C, which was mainly related to sprouting. Furthermore, γ-glutamyl peptide was converted into the corresponding flavor precursors or free amino acids, leading to the fluctuation in the amount of nutrients in garlic cloves. In contrast, the quality of garlic cloves remained stable for 290 days at 0 °C though metabolism still occurred, which indicated that the slight chemical changes did not impact the quality significantly and low temperature could prolong their dormancy.


Subject(s)
Food Storage , Garlic , Garlic/chemistry , Garlic/metabolism , Temperature , Amino Acids/metabolism , Amino Acids/analysis , Metabolomics
4.
BMC Genom Data ; 25(1): 35, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532320

ABSTRACT

Pungency of garlic (Allium sativum L.) is generated from breakdown of the alk(en)yl cysteine sulphoxide (CSO), alliin and its subsequent breakdown to allicin under the activity of alliinase (All). Based on recent evidence, two other important genes including Sulfite reductase (SiR) and Superoxide dismutase (SOD) are thought to be related to sulfur metabolism. These three gene functions are in sulfate assimilation pathway. However, whether it is involved in stress response in crops is largely unknown. In this research, the order and priority of simultaneous expression of three genes including All, SiR and SOD were measured on some garlic ecotypes of Iran, collected from Zanjan, Hamedan and Gilan, provinces under sulfur concentrations (0, 6, 12, 24 and 60 g/ per experimental unit: pot) using real-time quantitative PCR (RT-qPCR) analysis. For understanding the network interactions between studied genes and other related genes, in silico gene network analysis was constructed to investigate various mechanisms underlying stimulation of A. sativum L. to cope with imposed sulfur. Complicated network including TF-TF, miRNA-TF, and miRNA-TF-gene, was split into sub-networks to have a deeper insight. Analysis of q-RT-PCR data revealed the highest expression in All and SiR genes respectively. To distinguish and select significant pathways in sulfur metabolism, RESNET Plant database of Pathway Studio software v.10 (Elsevier), and other relative data such as chemical reactions, TFs, miRNAs, enzymes, and small molecules were extracted. Complex sub-network exhibited plenty of routes between stress response and sulfate assimilation pathway. Even though Alliinase did not display any connectivity with other stress response genes, it showed binding relation with lectin functional class, as a result of which connected to leucine zipper, exocellulase, peroxidase and ARF functional class indirectly. Integration network of these genes revealed their involvement in various biological processes such as, RNA splicing, stress response, gene silencing by miRNAs, and epigenetic. The findings of this research can be used to extend further research on the garlic metabolic engineering, garlic stress related genes, and also reducing or enhancing the activity of the responsible genes for garlic pungency for health benefits and industry demands.


Subject(s)
Garlic , MicroRNAs , Garlic/chemistry , Garlic/genetics , Garlic/metabolism , Gene Regulatory Networks , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Sulfates/metabolism
5.
Sci Total Environ ; 923: 171432, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442749

ABSTRACT

The extensive utilization of mulch films in agricultural settings, coupled with the persistence of microplastic remnants in soil following the natural degradation of plastics, has given rise to detrimental microplastic impacts on crops. Arsenic (As) contamination in the environment is known to accumulate in crops through aquatic pathways or soil. Garlic (Allium sativum L.), a globally popular crop and seasoning, contains alliin, a precursor of its flavor compounds with medicinal properties. While alliin exhibits antimicrobial and antioxidant effects in garlic, its response to microplastics and arsenic has not been thoroughly investigated, specifically in terms of microplastic or As uptake. This study aimed to explore the impact of varied stress concentrations of microplastics on the toxicity, migration, and accumulation of As compounds. Results demonstrated that polystyrene (PS) fluorescent microspheres, with an 80 nm diameter, could permeate garlic bulbs through the root system, accumulating within vascular tissues and intercellular layers. Low concentrations of PS (10 and 20 mg L-1) and As (2 mg L-1) mitigated the production and accumulation of reactive oxygen species (ROS) and antioxidant enzymes in garlic. Conversely, garlic exhibited reduced root vigor, substance uptake, and translocation when treated with elevated As concentrations (4 mg L-1) in conjunction with PS concentrations of 40 and 80 mg L-1. An escalation in PS concentration facilitated As transport into bulbs but led to diminished As accumulation and biomass in the root system. Notably, heightened stress levels weakened garlic's antioxidant defense system, encompassing sulfur allicin and phytochelatin metabolism, crucial for combating the phytotoxicity of PS and As. In summary, PS exerted a detrimental influence on garlic, exacerbating As toxicity. The findings from this study offer insights for subsequent investigations involving Liliaceae plants.


Subject(s)
Arsenic , Cysteine/analogs & derivatives , Garlic , Antioxidants/metabolism , Garlic/metabolism , Microplastics/toxicity , Microplastics/metabolism , Plastics/metabolism , Arsenic/toxicity , Arsenic/metabolism , Soil
6.
Pestic Biochem Physiol ; 199: 105801, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458692

ABSTRACT

Atrazine is a widely applied herbicide to improve crop yield and maintain general health. It has been reported to impair thyroid function and architecture in experimental animals. Alterations in thyroid hormones disrupt normal body function and metabolism. Silymarin, a hepatoprotective flavonolignan, was found to improve thyroid function and body metabolism. Additionally, garlic displays several protective effects on body organs. Therefore, this study explored the prophylactic impact of natural compounds comprising silymarin and garlic extract on disrupted thyroid function, hepatic iodothyronine deiodinase type 1, and metabolic parameters in atrazine-intoxicated male rats. We found that daily pre- and co-treatment of atrazine-intoxicated male rats with silymarin (100 mg/kg, p.o) and/or garlic extract (10 mg/kg, p.o) significantly improved thyroid activation and hepatic functionality as evidenced by the re-establishment of T3, T3/T4, and TSH values as well as ALT and AST activities. Interestingly, individual or concurrent supplementation of the atrazine group with silymarin and garlic extract prevented the down-regulation in hepatic iodothyronine deiodinase type 1. These effects were coupled with the repletion of serum and hepatic antioxidants and the amelioration of lipid peroxidation. In addition, current natural products markedly alleviated weight gain, dyslipidemia, hyperglycemia, glucose intolerance, and insulin resistance. Notably, a cocktail of silymarin and garlic extract exerted superior protection against atrazine-triggered deterioration of thyroid, hepatic, and metabolic functioning to individual treatments. Present findings pinpoint the prophylactic and synergistic influence of silymarin and garlic extract combinatorial regimen on thyroid activation and body metabolism via enhancing antioxidant potential, maintaining hepatic function, and iodothyronine deiodinase type 1.


Subject(s)
Atrazine , Garlic , Silymarin , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Garlic/metabolism , Atrazine/toxicity , Silymarin/pharmacology , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Iodide Peroxidase/metabolism , Iodide Peroxidase/pharmacology , Liver
7.
Asian Pac J Cancer Prev ; 25(2): 575-585, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415544

ABSTRACT

OBJECTIVE: Investigate the anti-cancerous potential of garlic-derived nanovesicles (GDNVs), exploring their cytotoxic effects on HeLa and PC-3 cell lines, and elucidate the underlying mechanisms, including apoptosis induction and inhibition of epithelial-mesenchymal transition (EMT). METHODS: GDNVs were isolated using differential centrifugation and ultracentrifugation. Characterization was performed through dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM), and Fourier-transform infrared spectroscopy (FTIR). Cytotoxicity assessments on HeLa and PC-3 cell lines using MTT assay. Apoptosis induction was evaluated through nuclear morphology changes and quantification of apoptotic cells using DAPI and PI/annexin V analysis. Western blot of apoptosis-related proteins (bcl-2, bax, caspase-3) was analysed. Anti-metastatic potential was assessed using wound healing assay and EMT transition inhibition. RESULTS: Garlic-derived nanovesicles (GDNVs), characterized by a size of 134.2 nm, demonstrated a substantial and dose- as well as time-dependent anti-proliferative impact on HeLa and PC-3 cell lines. The induction of apoptosis was unequivocally established through discernible modifications in nuclear morphology. The apoptotic cell count in HeLa and PC-3 cells increased by 42.4 ± 4.2% and 38.2 ± 3.2%, respectively. Comprehensive Western blot demonstrated alterations in the expression of key apoptotic regulators, namely bcl-2, bax, and caspase-3, providing robust evidence for the initiation of apoptosis. Furthermore, GDNVs exerted a significant inhibitory effect (p < 0.001) on the migratory potential of both HeLa and PC-3 cells. Moreover, there was a discernible association between GDNVs and the suppression of Epithelial-Mesenchymal Transition (EMT), emphasizing their role in impeding the metastatic potential of these cancer cell lines. CONCLUSION: This study establishes, for the first time, the anti-cancerous potential of GDNVs. The observed dose- and time-dependent anti-proliferative effects, selective cytotoxicity, apoptosis induction, and anti-migratory potential highlight GDNVs as a promising candidate for cancer treatment.


Subject(s)
Garlic , Uterine Cervical Neoplasms , Male , Female , Humans , Caspase 3/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Garlic/metabolism , Prostate/pathology , bcl-2-Associated X Protein , Apoptosis , HeLa Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis Regulatory Proteins , Cell Line, Tumor , Cell Proliferation
8.
Nutrients ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276538

ABSTRACT

Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1ß, CYP1A1, and DNA POLß. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1ß and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLß protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.


Subject(s)
Allyl Compounds , Anticarcinogenic Agents , Breast Neoplasms , Garlic , Precancerous Conditions , Humans , Female , Garlic/metabolism , Antioxidants/pharmacology , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Apoptosis , Sulfides/pharmacology , Epithelial Cells/metabolism , Anticarcinogenic Agents/pharmacology , DNA Repair , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , DNA
9.
Int J Mol Sci ; 24(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38069099

ABSTRACT

Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.


Subject(s)
Garlic , Humans , Garlic/genetics , Garlic/metabolism , Domestication , Phenotype , Gene Expression Profiling , Crops, Agricultural/genetics , Reproduction/genetics
10.
Nanotechnology ; 35(9)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38029451

ABSTRACT

An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.


Subject(s)
Garlic , Metal Nanoparticles , Silver/chemistry , Garlic/metabolism , Metal Nanoparticles/chemistry , Reducing Agents , Antioxidants/chemistry , Electrolytes , Plant Extracts/chemistry
11.
Metabolomics ; 19(11): 89, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864615

ABSTRACT

INTRODUCTION: Twisted-leaf garlic (Allium obliquum L.) is a wild Allium species, which is traditionally used as aroma plant for culinary purposes due to its unique, garlic-like flavor. It represents an interesting candidate for domestication, breeding and cultivation. OBJECTIVES: The objective of this work was to explore and comprehensively characterize polar and semi-polar phytochemicals accumulating in leaves and bulbs of A. obliquum. METHOD: Plant material obtained from a multiyear field trial was analyzed using a metabolite profiling workflow based on ultra-high performance liquid chromatography-coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) and two chromatographic methods. For annotation of metabolites, tandem mass spectrometry experiments were carried out and the resulting accurate-mass collision-induced dissociation (CID) mass spectra interpreted. Onion and garlic bulb extracts were used as reference samples. RESULTS: Important metabolite classes influencing nutritional, sensory and technological properties were detected and structurally characterized including fructooligosaccharides with a degree of polymerization of 3-5, S-alk(en)ylcysteine sulfoxides and other S-substituted cysteine conjugates, flavonoids including O- and C-glycosylated flavones as well as O-glycosylated flavonols, steroidal saponins, hydroxycinnamic acid conjugates, phenylethanoids and free sphingoid bases. In addition, quantitative data for non-structural carbohydrates, S-alk(en)ylcysteine sulfoxides and flavonoids are provided. CONCLUSION: The compiled analytical data including CID mass spectra of more than 160 annotated metabolites provide for the first time a phytochemical inventory of A. obliquum and lay the foundation for its further use as aroma plant in food industry.


Subject(s)
Garlic , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Garlic/chemistry , Garlic/metabolism , Metabolomics , Chromatography, Liquid , Flavonoids/analysis , Sulfoxides/chemistry , Sulfoxides/metabolism , Plant Leaves/metabolism , Antioxidants/metabolism , Phytochemicals , Receptor Protein-Tyrosine Kinases/metabolism
12.
Nutrients ; 15(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836382

ABSTRACT

It is hypothesized that garlic, Allium sativum, might protect against oxidative stress that causes damage to cells and tissues leading to the development of various health conditions including cancer. However, it is not known whether garlic's potential anticancer benefits differ by form of garlic consumed. This study aimed to quantify and compare the in vitro antioxidant and antiproliferative activity of several garlic forms in water and alcohol extracts including fresh garlic, fresh garlic set aside, heated garlic, heated garlic set aside, garlic powder, black garlic, two commercially available garlic supplements. Antioxidant activity of different garlic forms were measured using three assays: DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay, superoxide assay, and hydroxyl assay. In vitro effects of garlic extracts were investigated against the most common lung cancer subtypes: H520, H1975, and A549 cell lines using the sulforhodamine B (SRB) assay. Among free radical scavenging assays, Garlicin®, a commercially available supplement, displayed high antioxidant activity in water and alcohol extracts (DPPH assay: 2.02 mg AAE (mg ascorbic acid equivalent)/g garlic and 3.53 mg AAE/g garlic, respectively; superoxide assay: 6.73 mg AAE/g garlic and 7.13 mg AAE/g garlic, respectively). In the hydroxyl assay, water extract of fresh garlic crushed and set aside for 10 min showed the highest antioxidant activity. Garlicin® alcohol extract and fresh garlic water extracts strongly inhibited the proliferation of H1975, A549 and H520 cells. Other forms of garlic including garlic powder and black garlic exhibited low antioxidant and antiproliferative activity. Our results demonstrate that the preparation and processing methods of garlic may lead to different antioxidant benefits.


Subject(s)
Antioxidants , Garlic , Antioxidants/metabolism , Garlic/metabolism , Superoxides , Powders , Plant Extracts/pharmacology , Water
13.
Biomater Adv ; 154: 213622, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742556

ABSTRACT

Bone homeostasis is predicated by osteoblast and osteoclast cell cycles where gene expressions are responsible for their differentiation from human mesenchymal stem cells (hMSC) and monocytes, respectively. The pro-osteogenic potential of an hMSC-monocyte co-culture can be measured through complementary DNA (mRNA synthesis) within the nucleus, known as quantitative polymerase chain reaction (qPCR). Through this technique, the effects of garlic extract (allicin) release from calcium phosphate bone scaffolds on gene expression of bone forming and bone remodeling cells was explored. Results show this complex biomaterial system enhances hMSC differentiation through the upregulation of bone-forming proteins. Osteoblastic gene markers alkaline phosphatase (ALP) and osteocalcin (BGLAP), are respectively upregulated by 3-fold and 1.6-fold by day 14. These mature osteoblasts then upregulate the receptor activator of nuclear factor-kB ligand (RANKL) which recruits osteoclast cells, as captured by a nearly 2-fold higher osteoclast expression of tartrate-resistance acid-phosphatase (ACP5). This also activates antagonist osteoprotegerin (OPG) expression in osteoblasts, decreasing osteoclast resorption potential and ACP5 expression by day 21. The pro-osteogenic environment with garlic extract release is further quantified by a 4× increase in phosphatase activity and visibly captured in immunofluorescent tagged confocal images. Also corroborated by enhanced collagen formation in a preliminary in vivo rat distal femur model, this work collectively reveals how garlic extract can enhance bioceramic scaffolds for bone tissue regenerative applications.


Subject(s)
Alkaline Phosphatase , Garlic , Rats , Animals , Humans , Alkaline Phosphatase/genetics , Monocytes/metabolism , Coculture Techniques , Garlic/metabolism , Bone and Bones/metabolism
14.
Food Funct ; 14(15): 6998-7010, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37435927

ABSTRACT

Depression is a severe mental disorder, with approximately 300 million people suffering from it. Recent studies have demonstrated that chronic neuroinflammation is significantly associated with intestinal flora and barrier function in depression. As a therapeutic herb, garlic (Allium sativum L.) has detoxification, antibacterial activity, and antiinflammatory functions; however, its antidepressant effect through gut microbiota and barrier function has not been reported yet. The present study investigated the effect of garlic essential oil (GEO) and its active constituent diallyl disulfide (DADS) on depressive behavior by attenuating the NLRP3 inflammasome, alternating intestinal barrier function and gut microbiota in an unpredictable chronic mild stress (US) model in rats. This study found that dopamine and serotonin turnover rates were reduced significantly with a low dose of GEO (25 mg per kg bw). The GEO groups effectively reversed sucrose preference and increased the total distance traveled in the behavioral test. Moreover, 25 mg per kg bw GEO inhibited the UCMS-induced activated inflammatory response, reflected by reduced expression in the frontal cortex of NLRP3, ASC, caspase-1, and its downstream IL-1ß proteins, as well as the concentration of IL-1ß and TNF-α in the serum. Supplementation with GEO increased the expression of occludin and ZO-1 and the concentration of short-chain fatty acids to influence the impact of intestinal permeability in depressive conditions. The results revealed that GEO administration caused significant changes in the α and ß diversity and abundance of certain bacteria. At the genus level, GEO administration significantly increased the relative abundance, particularly beneficial SCFA-producing bacteria, and may improve depression-like behavior. In conclusion, these results indicated the antidepressant effects of GEO involved in the inflammatory pathway, short-chain fatty acids, intestinal integrity, and intestinal composition.


Subject(s)
Garlic , Microbiota , Oils, Volatile , Humans , Rats , Animals , Inflammasomes/metabolism , Depression/metabolism , Garlic/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain/metabolism , Antidepressive Agents/pharmacology , Fatty Acids, Volatile , Stress, Psychological/drug therapy , Stress, Psychological/complications
15.
Food Funct ; 14(16): 7520-7534, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37523213

ABSTRACT

Plant-derived exosome-like nanovesicles play an important role in transferring their biological cargos to recipient cells. The effect of garlic-derived exosome-like nanovesicles (GENs) against inflammatory bowel disease (IBD) remains unknown. This study aimed to investigate the effect of GENs on dextran sulphate sodium (DSS)-induced colitis in mice. A comprehensive analysis of bioactive components in GENs was performed. Data showed that GENs contained 26 lipids, 61 proteins and 127 known microRNAs (miRNAs). Han-miR3630-5p in GENs could bind to the 3' untranslated region of toll-like receptor 4 (TLR4), which led to the inhibition of TLR4 expression. Besides, GENs significantly up-regulated the expression of barrier-related proteins and inhibited the overproduction of pro-inflammatory cytokines in LPS-induced Caco-2 cells. As a result, pretreatment with GENs at 100 mg kg-1 efficiently ameliorated the inflammatory bowel behavior, intestinal histological pathological damage, and tight junction protein dysfunction induced by DSS in the colon tissue. Intake of GENs significantly down-regulated the expressions of TLR4, myeloid differentiation primary response gene 88 (MyD88), and nuclear factor kappa-B (NF-κB), which suppressed the downstream cascades and led to less secretion of pro-inflammatory cytokines induced by DSS. Furthermore, pretreatment with GENs altered the gut microbiota profile of colitis mice by recovering the relative abundance of Lachnospiraceae and reducing the relative abundance of Helicobacter. Totally, GENs had potential to protect the colon against DSS-induced damage through inhibiting the TLR4/MyD88/NF-κB signaling pathway and regulating gut microbiota. This study clarified the role of miRNAs of GENs in anti-colitis and proved that GENs had a potential application for IBD prevention.


Subject(s)
Colitis , Exosomes , Garlic , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , MicroRNAs , Humans , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Garlic/metabolism , Toll-Like Receptor 4/metabolism , Dextran Sulfate/adverse effects , Caco-2 Cells , Exosomes/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/genetics , Colon/metabolism , Cytokines/metabolism , Antioxidants/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammatory Bowel Diseases/metabolism , Disease Models, Animal , Mice, Inbred C57BL
16.
BMC Complement Med Ther ; 23(1): 181, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268940

ABSTRACT

BACKGROUND: Although chronic wounds are devastating and can cause burden at multiple levels, chronic wound research is still far behind. Chronic wound treatment is often less efficient due to delay in diagnosis and treatment, non-specific treatment mainly due to lack of knowledge of wound healing or healing resistance genes. It's known that chronic wounds do not progress towards healing, because it gets stalled in inflammatory phase of wound healing. OBJECTIVE: We aimed to use phytoextracts possessing excellent anti-inflammatory properties to regulate the unbalanced levels of cytokines responsible for increased inflammation. METHODS: Evaluation of anti-inflammatory activity of selected phytoextracts namely, Camellia sinensis (L.) Kuntze, Acacia catechu (L.f) Willd., Curcuma longa (L.), Allium sativum (L.), Punica granatum (L.) and Azadirachta indica A. hereafter, called as catechin, epicatechin, curcumin, garlic, pomegranate and neem extracts, respectively in Acute wound fibroblasts (AWFs) and Chronic wound fibroblasts (CWFs) using flow cytometry. RESULTS: The phytoextracts exhibited no cytotoxicity below 100 µg/ml on normal Human Dermal fibroblasts (HDFs), while garlic extract showed highest cell viability followed by catechin, epicatechin, curcumin, pomegranate peel and neem based on IC50 value. Garlic, catechin and epicatechin extracts showed highest anti-inflammatory activities for both TGF-ß and TNF-α in both AWFs and CWFs treated cells. After treatment of AWFs with catechin, epicatechin and garlic extracts, TGF-ß and TNF-α expression was significantly reduced compared to untreated AWFs and reached to almost normal HDFs level. Also, after treatment of CWFs with catechin, epicatechin and garlic extracts, TGF-ß and TNF-α expression was significantly reduced compared to untreated CWFs and was lesser than untreated AWFs. CONCLUSION: The present findings reveal the potential of catechin, epicatechin and garlic extracts for the treatment of acute and chronic wounds with excellent anti-inflammatory properties.


Subject(s)
Catechin , Curcumin , Garlic , Pomegranate , Humans , Tumor Necrosis Factor-alpha/metabolism , Garlic/metabolism , Catechin/pharmacology , Transforming Growth Factor beta/metabolism , Curcumin/pharmacology , Pomegranate/metabolism , Anti-Inflammatory Agents/pharmacology , Fibroblasts/metabolism , Antioxidants/metabolism
17.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 33-51, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37300690

ABSTRACT

Garlic, a popular vegetable cum condiment is known widely for its health benefits, pharmacological properties and in curing several pathological conditions. This compelling horticultural bulb crop is propagated asexually from individual bulbils or cloves. It is an obligate apomict that lost its fertility and blooming potential long ago and probable reason for evolution from fertility to sterility to greater contiguity of human selection to asexual propagules as they are used in culinary as and when required. The crop is likely to be sterile owing to nutritional competition between topsets, pollen degeneration, chromosomal deletion, irregular chromosomal pairing and abnormal meiosis during gametogenesis and thus curbing genetic variation is needed utmost for its improvement. With asexual reproduction, molecular studies are challenging due to its expected and complex genome. Alongside classical molecular markers like RAPDs, AFLPs, SRAPs, SSRs, and isozymes; recent high-throughput genotyping-by-sequencing (GBS) approaches like DArTseq has allowed characterization, mapping, whole-genome profiling, DNA fingerprinting among others in garlic. However, in recent years, biotechnological tools, genetic transformation via biolistic or Agrobacterium tumefaciens, polyploidization or chromosomal doubling have emerged as a potent breeding tool in enabling the improvement of vegetatively propagated plants such as garlic. In recent times biological responses of garlic and its compounds have been studied using epigenomics, proteomics and transcriptomics by researchers in preclinical studies instigating the biological effects of garlic and such gene expression revealed many early mechanistic events which may clinically underlie important health benefits pertaining to garlic intake. This review thus encompasses efforts achieved till present date towards elucidation of garlic genome with regard to molecular, biotechnological analysis and gene expression in terms of in vitro and in vivo studies.


Subject(s)
Garlic , Humans , Garlic/genetics , Garlic/metabolism , Gene Expression Profiling , Random Amplified Polymorphic DNA Technique
18.
Genes (Basel) ; 14(6)2023 06 19.
Article in English | MEDLINE | ID: mdl-37372470

ABSTRACT

As the main reserve carbohydrate in garlic, fructan contributes to garlic's yield and quality formation. Numerous studies have shown that plant fructan metabolism induces a stress response to adverse environments. However, the transcriptional regulation mechanism of garlic fructan in low-temperature environments is still unknown. In this study, the fructan metabolism of garlic seedlings under low-temperature stress was revealed by transcriptome and metabolome approaches. With the extension of stress time, the number of differentially expressed genes and metabolites increased. Using weighted gene co-expression network analysis (WGCNA), three key enzyme genes related to fructan metabolism were screened (a total of 12 transcripts): sucrose: sucrose 1-fructosyltransferase (1-SST) gene; fructan: fructan 6G fructosyltransferase (6G-FFT) gene; and fructan 1-exohydrolase (1-FEH) gene. Finally, two hub genes were obtained, namely Cluster-4573.161559 (6G-FFT) and Cluster-4573.153574 (1-FEH). The correlation network and metabolic heat map analysis between fructan genes and carbohydrate metabolites indicate that the expression of key enzyme genes in fructan metabolism plays a positive promoting role in the fructan response to low temperatures in garlic. The number of genes associated with the key enzyme of fructan metabolism in trehalose 6-phosphate was the highest, and the accumulation of trehalose 6-phosphate content may mainly depend on the key enzyme genes of fructan metabolism rather than the enzyme genes in its own synthesis pathway. This study not only obtained the key genes of fructan metabolism in garlic seedlings responding to low temperatures but also preliminarily analyzed its regulatory mechanism, providing an important theoretical basis for further elucidating the cold resistance mechanism of garlic fructan metabolism.


Subject(s)
Garlic , Metabolomics , Fructans/metabolism , Garlic/metabolism , Temperature , Transcriptome , Gene Regulatory Networks
19.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047205

ABSTRACT

Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1ß, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE's dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.


Subject(s)
Garlic , Sepsis , Humans , Antioxidants/pharmacology , Garlic/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Monocytes/metabolism , Sepsis/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Environ Res ; 226: 115659, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36906266

ABSTRACT

Allium sativum (A. sativum)is well known for its therapeutic and culinary uses. Because of their high medicinal properties, the clove extract was selected to synthesize cobalt-tellurium nanoparticles. The aim of the study was to evaluate the protective activity of the nanofabricated cobalt-tellurium using A. sativum (Co-Tel-As-NPs) against H2O2-induced oxidative damage in HaCaT cells. Synthesized Co-Tel-As-NPs were analyzed using UV-Visible spectroscopy, FT-IR, EDAX, XRD, DLS, and SEM. Various concentrations of Co-Tel-As-NPs were used as a pretreatment on HaCaT cells before H2O2 was added. Then, the cell viability and mitochondrial damage were compared between pretreated and untreated control cells using an array of assays (MTT, LDH, DAPI, MMP, and TEM), and the intracellular ROS, NO, and antioxidant enzyme production were examined. In the present research, Co-Tel-As-NPs at different concentrations (0.5, 1.0, 2.0, and 4.0µg/mL) were tested for toxicity using HaCaT cells. Furthermore, the effect of H2O2 on the viability of HaCaT cells was evaluated using the MTT assay for Co-Tel-As-NPs. Among those, Co-Tel-As-NPs at 4.0 µg/mL showed notable protection; with the same treatment, cell viability was discovered to be 91% and LDH leakage was also significantly decreased. Additionally, the measurement of mitochondrial membrane potential was significantly decreased by Co-Tel-As-NPs pretreatment against H2O2. The recovery of the condensed and fragmented nuclei brought about by the action of Co-Tel-As-NPs was identified using DAPI staining. TEM examination of the HaCaT cells revealed that the Co-Tel-As-NPs had a therapeutic effect against H2O2 keratinocyte damage.


Subject(s)
Antioxidants , Garlic , Humans , Antioxidants/metabolism , Hydrogen Peroxide/toxicity , Garlic/metabolism , Tellurium/pharmacology , HaCaT Cells/metabolism , Cobalt/toxicity , Spectroscopy, Fourier Transform Infrared , Reactive Oxygen Species/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...