Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.022
Filter
1.
Food Res Int ; 188: 114517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823849

ABSTRACT

Slowing the rate of carbohydrate digestion leads to low postprandial glucose and insulin responses, which are associated with reduced risk of type 2 diabetes. There is increasing evidence that food structure plays a crucial role in influencing the bioaccessibility and digestion kinetics of macronutrients. The aims of this study were to compare the effects of two hummus meals, with different degrees of cell wall integrity, on postprandial metabolic responses in relation to the microstructural and rheological characteristics of the meals. A randomised crossover trial in 15 healthy participants was designed to compare the acute effect of 27 g of starch, provided as hummus made from either intact chickpea cells (ICC) or ruptured chickpea cells (RCC), on postprandial metabolic responses. In vitro starch digestibility, microstructural and rheological experiments were also conducted to evaluate differences between the two chickpea hummus meals. Blood insulin and GIP concentrations were significantly lower (P < 0.02, P < 0.03) after the consumption of the ICC meal than the meal containing RCC. In vitro starch digestion for 90 min was slower in ICC than in RCC. Microscopic examination of hummus samples digested in vitro for 90 min revealed more intact chickpea cells in ICC compared to the RCC sample. Rheological experiments showed that fracture for ICC hummus samples occurred at smaller strains compared to RCC samples. However, the storage modulus for ICC was higher than RCC, which may be explained by the presence of intact cells in ICC. Food structure can affect the rate and extent of starch bioaccessibility and digestion and may explain the difference in the time course of metabolic responses between meals. The rheological properties were measured on the two types of meals before ingestion, showing significant differences that may point to different breakdown mechanisms during subsequent digestion. This trial was registered at clinicaltrial.gov as NCT03424187.


Subject(s)
Blood Glucose , Cicer , Cross-Over Studies , Digestion , Insulin , Postprandial Period , Rheology , Humans , Cicer/chemistry , Postprandial Period/physiology , Insulin/blood , Insulin/metabolism , Blood Glucose/metabolism , Adult , Male , Female , Young Adult , Starch/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/blood , Healthy Volunteers , Kinetics
2.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579777

ABSTRACT

Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.


Subject(s)
Adipose Tissue , Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Humans , Gastric Inhibitory Polypeptide/metabolism , Animals , Adipose Tissue/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Glucose/metabolism , Lipolysis , Obesity/metabolism
3.
Discov Med ; 36(183): 655-665, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665015

ABSTRACT

Incretin hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 and 2 (GLP-1, 2), belong to the group of gastrointestinal hormones. Their actions occur through interaction with GIP and GLP-1/2 receptors, which are present in various target tissues. Apart from their well-established roles in pancreatic function and insulin regulation, incretins elicit significant effects that extend beyond the pancreas. Specifically, these hormones stimulate osteoblast differentiation and inhibit osteoclast activity, thereby promoting bone anabolism. Moreover, they play a pivotal role in bone mineralization and overall bone quality and function, making them potentially therapeutic for managing bone health. Thus, this review provides a summary of the crucial involvement of incretins in bone metabolism, influencing both bone formation and resorption processes. While existing evidence is persuasive, further studies are necessary for a comprehensive understanding of the therapeutic potential of incretins in modifying bone health.


Subject(s)
Bone Remodeling , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Incretins , Humans , Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/metabolism , Incretins/therapeutic use , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/metabolism , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Pancreas/metabolism , Pancreas/drug effects , Pancreas/pathology
4.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G736-G746, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38625142

ABSTRACT

Autoimmune liver diseases are associated with an increased risk of diabetes, yet the underlying mechanisms remain unknown. In this cross-sectional study, we investigated the glucose-regulatory disturbances in patients with autoimmune hepatitis (AIH, n = 19), primary biliary cholangitis (PBC, n = 15), and primary sclerosing cholangitis (PSC, n = 6). Healthy individuals (n = 24) and patients with metabolic dysfunction-associated steatotic liver disease (MASLD, n = 18) were included as controls. Blood samples were collected during a 120-min oral glucose tolerance test. We measured the concentrations of glucose, C-peptide, insulin, glucagon, and the two incretin hormones, glucose insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), whole body insulin resistance (Matsuda index), insulin clearance, and insulinogenic index. All patient groups had increased fasting plasma glucose and impaired glucose responses compared with healthy controls. Beta-cell secretion was increased in AIH, PBC, and MASLD but not in PSC. Patients with AIH and MASLD had hyperglucagonemia and hepatic, as well as peripheral, insulin resistance and decreased insulin clearance, resulting in hyperinsulinemia. Patients with autoimmune liver disease had an increased GIP response, and those with AIH or PBC had an increased GLP-1 response. Our data demonstrate that the mechanism underlying glucose disturbances in patients with autoimmune liver disease differs from that underlying MASLD, including compensatory incretin responses in patients with autoimmune liver disease. Our results suggest that glucose disturbances are present at an early stage of the disease.NEW & NOTEWORTHY Patients with autoimmune liver disease but without overt diabetes display glucose disturbances early on in their disease course. We identified pathophysiological traits specific to these patients including altered incretin responses.


Subject(s)
Blood Glucose , Hepatitis, Autoimmune , Insulin Resistance , Insulin , Humans , Female , Male , Middle Aged , Blood Glucose/metabolism , Cross-Sectional Studies , Adult , Insulin/blood , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/metabolism , Hepatitis, Autoimmune/complications , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide 1/metabolism , Fatty Liver/metabolism , Fatty Liver/blood , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/metabolism , Aged , Glucose Tolerance Test , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/complications , Glucagon/blood , Glucagon/metabolism , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/complications , C-Peptide/blood
5.
Peptides ; 177: 171228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657908

ABSTRACT

Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Hormones , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Animals , Gastrointestinal Hormones/metabolism , Bone Density/drug effects , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/pathology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/analogs & derivatives , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/therapeutic use
6.
Mol Metab ; 84: 101945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653401

ABSTRACT

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.


Subject(s)
Body Weight , Eating , Gastric Inhibitory Polypeptide , Animals , Gastric Inhibitory Polypeptide/metabolism , Mice , Male , Mice, Inbred C57BL , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Glucagon-Like Peptide 1/metabolism , Intestinal Mucosa/metabolism , Obesity/metabolism , Incretins/metabolism
7.
Peptides ; 177: 171212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608836

ABSTRACT

Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.


Subject(s)
Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/metabolism , Humans , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/chemistry , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Obesity/drug therapy , Obesity/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Peptide Fragments/pharmacology , Peptide Fragments/chemistry , Peptide Fragments/metabolism
8.
Mol Metab ; 83: 101915, 2024 May.
Article in English | MEDLINE | ID: mdl-38492844

ABSTRACT

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Subject(s)
Body Weight , Eating , Gastric Inhibitory Polypeptide , Mice, Knockout , Obesity , Receptors, Gastrointestinal Hormone , Receptors, Leptin , Animals , Male , Mice , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Glucose/metabolism , Leptin/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Signal Transduction
9.
Curr Opin Endocrinol Diabetes Obes ; 31(3): 115-121, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38511400

ABSTRACT

PURPOSE OF REVIEW: Various gut hormones interact with the brain through delicate communication, thereby influencing appetite and subsequent changes in body weight. This review summarizes the effects of gut hormones on appetite, with a focus on recent research. RECENT FINDINGS: Ghrelin is known as an orexigenic hormone, whereas glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), postprandial peptide YY (PYY), and oxyntomodulin (OXM) are known as anorexigenic hormones. Recent human studies have revealed that gut hormones act differently in various systems, including adipose tissue, beyond appetite and energy intake, and even involve in high-order thinking. Environmental factors including meal schedule, food contents and quality, type of exercise, and sleep deprivation also play a role in the influence of gut hormone on appetite, weight change, and obesity. Recently published studies have shown that retatrutide, a triple-agonist of GLP-1, GIP, and glucagon receptor, and orforglipron, a GLP-1 receptor partial agonist, are effective in weight loss and improving various metabolic parameters associated with obesity. SUMMARY: Various gut hormones influence appetite, and several drugs targeting these receptors have been reported to exert positive effects on weight loss in humans. Given that diverse dietary and environmental factors affect the actions of gut hormones and appetite, there is a need for integrated and largescale long-term studies in this field.


Subject(s)
Appetite Regulation , Gastrointestinal Hormones , Obesity , Humans , Gastrointestinal Hormones/metabolism , Gastrointestinal Hormones/physiology , Appetite Regulation/physiology , Obesity/metabolism , Obesity/physiopathology , Cholecystokinin/physiology , Cholecystokinin/metabolism , Gastric Inhibitory Polypeptide/physiology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/physiology , Peptide YY/metabolism , Peptide YY/physiology , Oxyntomodulin , Animals , Ghrelin/physiology , Ghrelin/metabolism , Appetite/physiology , Appetite/drug effects
10.
Peptides ; 176: 171198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527521

ABSTRACT

In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.


Subject(s)
Energy Metabolism , Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Signal Transduction , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/agonists , Humans , Energy Metabolism/drug effects , Signal Transduction/drug effects , Gastric Inhibitory Polypeptide/metabolism , Animals , Obesity/metabolism , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Brain/metabolism
11.
Peptides ; 176: 171200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555054

ABSTRACT

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are peptide hormones produced by enteroendocrine cells in the small intestine. Despite being produced in the gut, the leveraging of their role in potentiating glucose-stimulated insulin secretion, also known as the incretin effect, has distracted from discernment of direct intestinal signaling circuits. Both preclinical and clinical evidence have highlighted a role for the incretins in inflammation. In this review, we highlight the discoveries of GLP-1 receptor (GLP-1R)+ natural (TCRαß and TCRγδ) and induced (TCRαß+CD4+ cells and TCRαß+CD8αß+) intraepithelial lymphocytes. Both endogenous signaling and pharmacological activation of GLP-1R impact local and systemic inflammation, the gut microbiota, whole-body metabolism, as well as the control of GLP-1 bioavailability. While GIPR signaling has been documented to impact hematopoiesis, the impact of these bone marrow-derived cells in gut immunology is not well understood. We uncover gaps in the literature of the evaluation of the impact of sex in these GLP-1R and GIP receptor (GIPR) signaling circuits and provide speculations of the maintenance roles these hormones play within the gut in the fasting-refeeding cycles. GLP-1R agonists and GLP-1R/GIPR agonists are widely used as treatments for diabetes and weight loss, respectively; however, their impact on gut homeostasis has not been fully explored. Advancing our understanding of the roles of GLP-1R and GIPR signaling within the gut at homeostasis as well as metabolic and inflammatory diseases may provide targets to improve disease management.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Inflammation , Receptors, Gastrointestinal Hormone , Humans , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, Gastrointestinal Hormone/metabolism , Inflammation/metabolism , Inflammation/immunology , Animals , Immunomodulation , Gastrointestinal Microbiome/immunology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Signal Transduction
12.
Mol Cell Endocrinol ; 587: 112201, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494045

ABSTRACT

The gut plays a crucial role in metabolism by regulating the passage of nutrients, water and microbial-derived substances to the portal circulation. Additionally, it produces incretins, such as glucose-insulinotropic releasing peptide (GIP) and glucagon-like derived peptide 1 (GLP1, encoded by gcg gene) in response to nutrient uptake. We aimed to investigate whether offspring from overweight rats develop anomalies in the barrier function and incretin transcription. We observed pro-inflammatory related changes along with a reduction in Claudin-3 levels resulting in increased gut-permeability in fetuses and offspring from overweight rats. Importantly, we found decreased gip mRNA levels in both fetuses and offspring from overweight rats. Differently, gcg mRNA levels were upregulated in fetuses, downregulated in female offspring and unchanged in male offspring from overweight rats. When cultured with high glucose, intestinal explants showed an increase in gip and gcg mRNA levels in control offspring. In contrast, offspring from overweight rats did not exhibit any response in gip mRNA levels. Additionally, while females showed no response, male offspring from overweight rats did exhibit an upregulation in gcg mRNA levels. Furthermore, female and male offspring from overweight rats showed sex-dependent anomalies when orally challenged with a glucose overload, returning to baseline glucose levels after 120 min. These results open new research questions about the role of the adverse maternal metabolic condition in the programming of impairments in glucose homeostasis, enteroendocrine function and gut barrier function in the offspring from overweight mothers and highlight the importance of a perinatal maternal healthy metabolism.


Subject(s)
Gastric Inhibitory Polypeptide , Overweight , Rats , Male , Female , Animals , Overweight/metabolism , Gastric Inhibitory Polypeptide/metabolism , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Peptides/metabolism , Homeostasis , RNA, Messenger/genetics
13.
J Med Chem ; 67(6): 4998-5010, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38458970

ABSTRACT

Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, ß-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.


Subject(s)
Gastric Inhibitory Polypeptide , Receptors, Gastrointestinal Hormone , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/metabolism , Insulin/metabolism , Dipeptidyl Peptidase 4/metabolism , Peptide Hydrolases , Peptides , Endopeptidases , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism
14.
Peptides ; 175: 171179, 2024 May.
Article in English | MEDLINE | ID: mdl-38360354

ABSTRACT

Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.


Subject(s)
Glucagon-Secreting Cells , Receptors, Gastrointestinal Hormone , Somatostatin-Secreting Cells/metabolism , Glucagon-Secreting Cells/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, Gastrointestinal Hormone/metabolism , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Signal Transduction
15.
Peptides ; 174: 171168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320643

ABSTRACT

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Receptors, Gastrointestinal Hormone , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Obesity/drug therapy , Obesity/metabolism , Blood Glucose/metabolism , Duodenum/metabolism , Peptides/therapeutic use , Enteroendocrine Cells/metabolism , Receptors, G-Protein-Coupled , Glucagon-Like Peptide-1 Receptor/metabolism
16.
Physiology (Bethesda) ; 39(3): 142-156, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353610

ABSTRACT

The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Adult , Humans , Adolescent , Incretins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use
17.
J Mol Endocrinol ; 72(4)2024 May 01.
Article in English | MEDLINE | ID: mdl-38240302

ABSTRACT

Enteroendocrine cells located along the gastrointestinal epithelium sense different nutrients/luminal contents that trigger the secretion of a variety of gut hormones with different roles in glucose homeostasis and appetite regulation. The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are involved in the regulation of insulin secretion, appetite, food intake and body weight after their nutrient-induced secretion from the gut. GLP-1 mimetics have been developed and used in the treatment of type 2 diabetes mellitus and obesity. Modulating the release of endogenous intestinal hormones may be a promising approach for the treatment of obesity and type 2 diabetes without surgery. For that reason, current understanding of the cellular mechanisms underlying intestinal hormone secretion will be the focus of this review. The mechanisms controlling hormone secretion depend on the nature of the stimulus, involving a variety of signalling pathways including ion channels, nutrient transporters and G-protein-coupled receptors.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Humans , Incretins/physiology , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Obesity/metabolism , Glucose/metabolism , Insulin/metabolism
18.
J Biomol Struct Dyn ; 42(6): 2859-2871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37254302

ABSTRACT

Management of type 2 diabetes mellitus (T2DM) using dipeptidyl peptidase IV (DPP IV) inhibitors is gaining precedence as this enzyme plays an indispensable role in cleaving and inactivating peptides, such as glucagon-like peptide-1 (GLP-1), incretin hormones, and glucose-dependent insulinotropic polypeptide (GIP). There are several DPP IV inhibitors used to treat T2DM, but limited by side effects such as disturbed GIT, flu-like symptoms, etc. Thus, there is an urgent need for the development of novel and better DPP IV inhibitors for the management of the same. In the present study, we investigated the effect of new boronic acid-based thiazole compounds as DPP IV inhibitors. We used substituted anilines that were progressively modified through a multi-step synthesis and then chemically characterised. These molecules have good binding affinity and molecular interactions at the active site of the DPP IV enzyme. Two boronic acid-based molecules, i.e. PC06R58 and PC06R108, were used for the assessment of their in-vitro enzymatic activities. Both molecules (PC06108 and PC06R58) exhibited potent uncompetitive DPP IV enzyme inhibition at two different concentrations of 90.9 and 15.6 nM, respectively, compared to sitagliptin having an IC50 of 17.3 nM. Furthermore, the oral glucose tolerance test suggested significantly reduced blood glucose levels at 20 mg/kg of the body weight upon administration of PC06R58 and PC06R108 molecules in rats after glucose ingestion (2 g/kg of the body weight). The compounds showed satisfactory DPP IV inhibition. Furthermore, DPP IV inhibitory activity and acceptable pre-ADME/Tox profile indicate it is a lead compound in this novel class of DPP IV inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Hyperglycemia , Rats , Animals , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucose , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Hyperglycemia/chemically induced , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/therapeutic use , Body Weight , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
19.
Eur J Pharm Sci ; 192: 106644, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37981049

ABSTRACT

INTRODUCTION: SY-009 produces a hypoglycemic effect via inhibiting sodium/glucose cotransporter 1 (SGLT1) in type 2 diabetes mellitus (T2DM) patients. This randomized, double-blind, placebo-controlled, and multiple-dose escalation clinical trial aimed to evaluate the pharmacokinetic and pharmacodynamical characteristics as well as the safety and tolerability of SY-009 in T2DM patients. METHOD: Fifty T2DM patients were randomized into experimental and placebo groups, and hospitalized for 9 days managed with a unified diet and rest management. Subjects were given SY-009 or placebo from day 1 to day 7 at different frequencies and dosages. Single dose cohort was defined as the first dose on day 1 and multiple dose cohort included all the dose from day 1 to 7. Blood samples were collected for pharmacokinetic analysis. Mixed meal tolerance tests were performed. Blood samples were collected to determine glucose, C-peptide, insulin, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP). RESULTS: PK parameters were not obtained because blood SY-009 concentrations were below the limit of quantitation in all subjects. SY-009 decreased the postprandial glucose. Blood glucose was controlled within 4 hours after taking the drug. Short-term administration of SY-009 (7 days) had no significant effects on fasting glucose but reduced the secretion of C-peptide, insulin, and GIP and increased GLP-1 secretion. The most common adverse event was gastrointestinal disorder manifesting abdominal pain, diarrhea, and bloating. CONCLUSION: Plasma exposure of SY-009 and its metabolites was fairly low in T2DM patients at doses of 1.0-4.0 mg. SY-009 reduced postprandial glucose, C-peptide, and insulin levels, showing relative safety and tolerability in the dose range of 1.0-4.0 mg. TRIALS REGISTRATION: ClinicalTrials.gov Identifier: NCT04345107.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/metabolism , C-Peptide/therapeutic use , Hypoglycemic Agents , Blood Glucose , Insulin/therapeutic use , Glucagon-Like Peptide 1 , Glucose , Gastric Inhibitory Polypeptide/adverse effects , Gastric Inhibitory Polypeptide/metabolism , Double-Blind Method
20.
Diabetes Res Clin Pract ; 207: 111084, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154534

ABSTRACT

AIM: Intra-pancreatic fat deposition (IPFD) while hypothesised to impair beta-cell function, its impact on alpha-cells remains unclear. We evaluated the association between IPFD and markers of pancreatic cells function using whey protein. METHODS: Twenty overweight women with impaired fasting glucose (IFG) and low or high IPFD (<4.66% vs ≥4.66%) consumed 3 beverage treatments: 0 g (water control), 12.5 g (low-dose) and 50.0 g (high-dose) whey protein, after an overnight fast, in randomised order. Blood glucose, insulin, C-peptide, glucagon, gastric-inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and amylin were analysed postprandially over 4 h. Incremental area-under-the-curve (iAUC), incremental maximum concentration (iCmax), and time to maximum concentration (Tmax) for these were compared between IPFD groups using repeated measures linear mixed models, also controlled for age (pcov). RESULTS: iAUC and iCmax glucose and insulin while similar between the two IPFD groups, high IPFD and ageing contributed to higher postprandial glucagon (iAUC: p = 0.012; pcov = 0.004; iCmax: p = 0.069; pcov = 0.021) and GLP-1 (iAUC: p = 0.006; pcov = 0.064; iCmax: p = 0.011; pcov = 0.122) concentrations. CONCLUSION: In our cohort, there was no evidence that IPFD impaired protein-induced insulin secretion. Conversely, IPFD may be associated with increased protein-induced glucagon secretion, a novel observation which warrants further investigation into its relevance in the pathogenesis of dysglycaemia and type-2 diabetes.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon , Female , Humans , Glucagon/metabolism , Whey Proteins , Overweight , Insulin , Blood Glucose/metabolism , Glucose/metabolism , Gastric Inhibitory Polypeptide/metabolism , Fasting , Eating
SELECTION OF CITATIONS
SEARCH DETAIL
...