Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.461
Filter
1.
Front Immunol ; 15: 1365554, 2024.
Article in English | MEDLINE | ID: mdl-38765017

ABSTRACT

Accumulating studies have indicated that the gut microbiota plays a pivotal role in the onset of autoimmune diseases by engaging in complex interactions with the host. This review aims to provide a comprehensive overview of the existing literatures concerning the relationship between the gut microbiota and autoimmune diseases, shedding light on the complex interplay between the gut microbiota, the host and the immune system. Furthermore, we aim to summarize the impacts and potential mechanisms that underlie the interactions between the gut microbiota and the host in autoimmune diseases, primarily focusing on systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, type 1 diabetes mellitus, ulcerative colitis and psoriasis. The present review will emphasize the clinical significance and potential applications of interventions based on the gut microbiota as innovative adjunctive therapies for autoimmune diseases.


Subject(s)
Autoimmune Diseases , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/immunology , Autoimmune Diseases/microbiology , Autoimmune Diseases/immunology , Animals , Dysbiosis/immunology , Autoimmunity
2.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758808

ABSTRACT

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Mice , Gastrointestinal Microbiome/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Macrophages/immunology , Immune Checkpoint Inhibitors/pharmacology , Mice, Knockout , Female , Intestines/immunology
3.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38719750

ABSTRACT

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Subject(s)
Candida albicans , Celiac Disease , Homeostasis , Mast Cells , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/metabolism , Humans , Candida albicans/pathogenicity , Candida albicans/immunology , Mast Cells/immunology , Mast Cells/metabolism , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Candidiasis/immunology , Candidiasis/microbiology , Animals , Candida/pathogenicity , Candida/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism
5.
J Reprod Immunol ; 163: 104251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718429

ABSTRACT

Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.


Subject(s)
Abortion, Habitual , Microbiota , Humans , Abortion, Habitual/microbiology , Abortion, Habitual/immunology , Abortion, Habitual/diagnosis , Female , Pregnancy , Microbiota/immunology , Gastrointestinal Microbiome/immunology , Endometrium/microbiology , Endometrium/immunology , Endometrium/pathology , Vagina/microbiology , Vagina/immunology
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732038

ABSTRACT

The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.


Subject(s)
Autoimmune Diseases , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/immunology , Autoimmune Diseases/microbiology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Animals , Fatty Acids, Volatile/metabolism , Kidney Diseases/microbiology , Kidney Diseases/immunology , Kidney Diseases/therapy
8.
Adv Protein Chem Struct Biol ; 140: 381-417, 2024.
Article in English | MEDLINE | ID: mdl-38762276

ABSTRACT

Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.


Subject(s)
Cardiovascular Diseases , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Cardiovascular Diseases/immunology , Immunotherapy , Immunity, Innate/immunology , Gastrointestinal Microbiome/immunology , Animals , Adaptive Immunity/immunology
9.
Front Immunol ; 15: 1367053, 2024.
Article in English | MEDLINE | ID: mdl-38756775

ABSTRACT

Background: With the worsening of the greenhouse effect, the correlation between the damp-heat environment (DH) and the incidence of various diseases has gained increasing attention. Previous studies have demonstrated that DH can lead to intestinal disorders, enteritis, and an up-regulation of NOD-like receptor protein 3 (NLRP3). However, the mechanism of NLRP3 in this process remains unclear. Methods: We established a DH animal model to observe the impact of a high temperature and humidity environment on the mice. We sequenced the 16S rRNA of mouse feces, and the RNA transcriptome of intestinal tissue, as well as the levels of cytokines including interferon (IFN)-γ and interleukin (IL)-4 in serum. Results: Our results indicate that the intestinal macrophage infiltration and the expression of inflammatory genes were increased in mice challenged with DH for 14 days, while the M2 macrophages were decreased in Nlrp3 -/- mice. The alpha diversity of intestinal bacteria in Nlrp3 -/- mice was significantly higher than that in control mice, including an up-regulation of the Firmicutes/Bacteroidetes ratio. Transcriptomic analysis revealed 307 differentially expressed genes were decreased in Nlrp3 -/- mice compared with control mice, which was related to humoral immune response, complement activation, phagocytic recognition, malaria and inflammatory bowel disease. The ratio of IFN-γ/IL-4 was decreased in control mice but increased in Nlrp3 -/- mice. Conclusions: Our study found that the inflammation induced by DH promotes Th2-mediated immunity via NLRP3, which is closely related to the disruption of intestinal flora.


Subject(s)
Gastrointestinal Microbiome , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Th2 Cells , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Mice , Gastrointestinal Microbiome/immunology , Th2 Cells/immunology , Hot Temperature , Alarmins/immunology , Alarmins/metabolism , Mice, Inbred C57BL , Macrophages/immunology , Cytokines/metabolism , Disease Models, Animal
10.
Nat Commun ; 15(1): 4051, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744839

ABSTRACT

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Subject(s)
B-Lymphocytes , Dendritic Cells , Endodeoxyribonucleases , Gastrointestinal Microbiome , Animals , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Gastrointestinal Microbiome/immunology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Female , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Male
11.
Aging Clin Exp Res ; 36(1): 117, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780713

ABSTRACT

Diet is one of the lifestyle factors that is most amenable to intervention, and has a substantial effect on the potential for successful aging and mitigation of the risk of disease. Good nutrition is a pillar of healthy aging, and a large body of evidence attests to the benefits of the Mediterranean diet on the quality of the aging process. The Mediterranean diet comprises a wide range of nutrients which, both individually and collectively, exert positive effects on immunity, in large part mediated by the gut microbiota. In this article, we review the effect of the Mediterranean diet on immunity, and how its beneficial effects are mediated by the gut microbiota. We review the effects of certain key components of the Mediterranean dietary pattern, including vitamins, zinc, selenium, and polyphenols. Overall, the existing body of evidence convincingly demonstrates that the Mediterreanean diet affects immune health by maintaining a healthy body weight and reducing the risk of metabolic and cardiovascular diseases; by reducing inflammation and by promoting a healthy gut microbiota profile.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/immunology , Aged , Aging/immunology , Immunity/physiology
12.
Front Immunol ; 15: 1365673, 2024.
Article in English | MEDLINE | ID: mdl-38817603

ABSTRACT

Importance: Research is beginning to elucidate the sophisticated mechanisms underlying the microbiota-gut-brain-immune interface, moving from primarily animal models to human studies. Findings support the dynamic relationships between the gut microbiota as an ecosystem (microbiome) within an ecosystem (host) and its intersection with the host immune and nervous systems. Adding this to the effects on epigenetic regulation of gene expression further complicates and strengthens the response. At the heart is inflammation, which manifests in a variety of pathologies including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis (MS). Observations: Generally, the research to date is limited and has focused on bacteria, likely due to the simplicity and cost-effectiveness of 16s rRNA sequencing, despite its lower resolution and inability to determine functional ability/alterations. However, this omits all other microbiota including fungi, viruses, and phages, which are emerging as key members of the human microbiome. Much of the research has been done in pre-clinical models and/or in small human studies in more developed parts of the world. The relationships observed are promising but cannot be considered reliable or generalizable at this time. Specifically, causal relationships cannot be determined currently. More research has been done in Alzheimer's disease, followed by Parkinson's disease, and then little in MS. The data for MS is encouraging despite this. Conclusions and relevance: While the research is still nascent, the microbiota-gut-brain-immune interface may be a missing link, which has hampered our progress on understanding, let alone preventing, managing, or putting into remission neurodegenerative diseases. Relationships must first be established in humans, as animal models have been shown to poorly translate to complex human physiology and environments, especially when investigating the human gut microbiome and its relationships where animal models are often overly simplistic. Only then can robust research be conducted in humans and using mechanistic model systems.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Humans , Gastrointestinal Microbiome/immunology , Animals , Brain-Gut Axis/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/microbiology , Neuroinflammatory Diseases/etiology , Brain/immunology , Brain/microbiology
13.
Biomed Pharmacother ; 175: 116773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776679

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a significant global burden of morbidity and mortality, with lung injury being the primary cause of death in affected patients. The pathogenesis of lung injury, however, remains a complex issue. In recent years, the role of the immune system in lung injury has attracted extensive attention worldwide. Despite advancements in our understanding of various lung injury subtypes, significant limitations persist in both prevention and treatment. This review investigates the immunopathogenesis of ALI/ARDS, aiming to elucidate the pathological processes of lung injury mediated by dendritic cells (DCs), natural killer (NK) cells, phagocytes, and neutrophils. Furthermore, the article expounds on the critical contributions of gut microbiota, inflammatory pathways, and cytokine storms in the development of ALI/ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Gastrointestinal Microbiome/immunology , Dendritic Cells/immunology , Neutrophils/immunology , Killer Cells, Natural/immunology , Lung/immunology , Lung/pathology
14.
Am J Reprod Immunol ; 91(5): e13859, 2024 May.
Article in English | MEDLINE | ID: mdl-38722063

ABSTRACT

Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.


Subject(s)
Abortion, Habitual , Humans , Female , Pregnancy , Abortion, Habitual/immunology , Immune Tolerance , Maternal-Fetal Exchange/immunology , Gastrointestinal Microbiome/immunology , Immunotherapy/methods
17.
J Hematol Oncol ; 17(1): 33, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745196

ABSTRACT

The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Neoplasms , Humans , Gastrointestinal Microbiome/immunology , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Animals
18.
Front Immunol ; 15: 1365871, 2024.
Article in English | MEDLINE | ID: mdl-38756771

ABSTRACT

More than 20% of American adults live with a mental disorder, many of whom are treatment resistant or continue to experience symptoms. Other approaches are needed to improve mental health care, including prevention. The role of the microbiome has emerged as a central tenet in mental and physical health and their interconnectedness (well-being). Under normal conditions, a healthy microbiome promotes homeostasis within the host by maintaining intestinal and brain barrier integrity, thereby facilitating host well-being. Owing to the multidirectional crosstalk between the microbiome and neuro-endocrine-immune systems, dysbiosis within the microbiome is a main driver of immune-mediated systemic and neural inflammation that can promote disease progression and is detrimental to well-being broadly and mental health in particular. In predisposed individuals, immune dysregulation can shift to autoimmunity, especially in the presence of physical or psychological triggers. The chronic stress response involves the immune system, which is intimately involved with the gut microbiome, particularly in the process of immune education. This interconnection forms the microbiota-gut-immune-brain axis and promotes mental health or disorders. In this brief review, we aim to highlight the relationships between stress, mental health, and the gut microbiome, along with the ways in which dysbiosis and a dysregulated immune system can shift to an autoimmune response with concomitant neuropsychological consequences in the context of the microbiota-gut-immune-brain axis. Finally, we aim to review evidenced-based prevention strategies and potential therapeutic targets.


Subject(s)
Brain-Gut Axis , Brain , Dysbiosis , Gastrointestinal Microbiome , Mental Disorders , Mental Health , Stress, Psychological , Humans , Gastrointestinal Microbiome/immunology , Brain-Gut Axis/immunology , Stress, Psychological/immunology , Stress, Psychological/microbiology , Dysbiosis/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Brain/immunology , Animals , Neuroimmunomodulation
19.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781213

ABSTRACT

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Subject(s)
Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-22 , Interleukin-33 , Interleukins , Streptococcus pneumoniae , Animals , Interleukin-33/immunology , Interleukin-33/genetics , Interleukin-33/metabolism , Interleukins/metabolism , Interleukins/immunology , Interleukins/genetics , Mice , Streptococcus pneumoniae/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Humans , Mice, Knockout , Microbiota/immunology , Mice, Inbred C57BL , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Gastrointestinal Microbiome/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Polymorphism, Single Nucleotide
20.
Microbiol Spectr ; 12(6): e0328323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38727214

ABSTRACT

The immune response induced by respiratory syncytial virus (RSV) infection is closely related to changes in the composition and function of gastrointestinal microorganisms. However, the specific mechanism remains unknown and the pulmonary-intestinal axis deserves further study. In this study, the mRNA levels of ROR-γt and Foxp3 in the lung and intestine increased first and then decreased. IL-17 and IL-22 reached the maximum on the third day after infection in the lung, and on the second day after infection in the small intestine and colon, respectively. RegⅢγ in intestinal tissue reached the maximum on the third day after RSV infection. Moreover, the genus enriched in the RSV group was Aggregatibacter, and Proteus was reduced. RSV infection not only causes Th17/Treg cell imbalance in the lungs of mice but also leads to the release of excessive IL-22 from the lungs through blood circulation which binds to IL-22 receptors on the intestinal surface, inducing RegⅢγ overexpression, impaired intestinal Th17/Treg development, and altered gut microbiota composition. Our research reveals a significant link between the pulmonary and intestinal axis after RSV infection. IMPORTANCE: RSV is the most common pathogen causing acute lower respiratory tract infections in infants and young children, but the complex interactions between the immune system and gut microbiota induced by RSV infection still requires further research. In this study, it was suggested that RSV infection in 7-day-old BALB/c suckling mice caused lung inflammation and disruption of Th17/Treg cells development, and altered the composition of gut microbiota through IL-22 induced overexpression of RegⅢγ, leading to intestinal immune injury and disruption of gut microbiota. This research reveals that IL-22 may be the link between the lung and gut. This study may provide a new insight into the intestinal symptoms caused by RSV and other respiratory viruses and the connection between the lung and gut axis, as well as new therapeutic ideas for the treatment of RSV-infected children.


Subject(s)
Gastrointestinal Microbiome , Interleukin-22 , Interleukins , Lung , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Viruses , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/microbiology , Gastrointestinal Microbiome/immunology , T-Lymphocytes, Regulatory/immunology , Mice , Th17 Cells/immunology , Lung/immunology , Lung/microbiology , Lung/virology , Lung/pathology , Interleukins/metabolism , Interleukins/genetics , Interleukins/immunology , Respiratory Syncytial Viruses/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Female , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/immunology , Pancreatitis-Associated Proteins/metabolism , Intestines/immunology , Intestines/microbiology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...