Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.640
Filter
1.
Food Res Int ; 188: 114352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823826

ABSTRACT

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Subject(s)
Digestion , Microgels , Taste , Whey Proteins , Whey Proteins/chemistry , Humans , Microgels/chemistry , Food Handling/methods , Gastrointestinal Tract/metabolism , Sensation
2.
Food Res Int ; 188: 114532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823889

ABSTRACT

Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 µg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.


Subject(s)
Digestion , Luteolin , Particle Size , Soybean Proteins , Luteolin/chemistry , Soybean Proteins/chemistry , Nanocomposites/chemistry , Polysaccharides/chemistry , Hydrophobic and Hydrophilic Interactions , Glycine max/chemistry , Solubility , Functional Food , Gastrointestinal Tract/metabolism
3.
Sci Data ; 11(1): 568, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824125

ABSTRACT

Technological advances in massively parallel sequencing have led to an exponential growth in the number of known protein sequences. Much of this growth originates from metagenomic projects producing new sequences from environmental and clinical samples. The Unified Human Gastrointestinal Proteome (UHGP) catalogue is one of the most relevant metagenomic datasets with applications ranging from medicine to biology. However, the low levels of sequence annotation may impair its usability. This work aims to produce a family classification of UHGP sequences to facilitate downstream structural and functional annotation. This is achieved through the release of the DPCfam-UHGP50 dataset containing 10,778 putative protein families generated using DPCfam clustering, an unsupervised pipeline grouping sequences into single or multi-domain architectures. DPCfam-UHGP50 considerably improves family coverage at protein and residue levels compared to the manually curated repository Pfam. In the hope that DPCfam-UHGP50 will foster future discoveries in the field of metagenomics of the human gut, we release a FAIR-compliant database of our results that is easily accessible via a searchable web server and Zenodo repository.


Subject(s)
Proteome , Humans , Gastrointestinal Tract/metabolism , Cluster Analysis , Molecular Sequence Annotation , Metagenomics , Databases, Protein
4.
Cell Host Microbe ; 32(5): 623-624, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723597

ABSTRACT

Common nutrients in our diet often affect our health through unexpected mechanisms. In a recent issue of Nature, Scott et al. show gut microbes convert dietary tryptophan into metabolites activating intestinal dopamine receptors, which can block attachment of bacterial pathogens to host cells.


Subject(s)
Dopamine , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Dopamine/metabolism , Humans , Receptors, Dopamine/metabolism , Animals , Tryptophan/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Bacteria/metabolism , Host-Pathogen Interactions , Bacterial Adhesion
5.
Food Res Int ; 186: 114317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729709

ABSTRACT

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Subject(s)
Digestion , Infant Formula , Infant, Premature , Milk, Human , Milk, Human/chemistry , Milk, Human/metabolism , Humans , Infant Formula/chemistry , Infant, Newborn , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Gastrointestinal Tract/metabolism , Models, Biological , Monoglycerides/metabolism , Monoglycerides/analysis , Dietary Fats/metabolism , Dietary Fats/analysis
6.
Gut Microbes ; 16(1): 2347728, 2024.
Article in English | MEDLINE | ID: mdl-38706226

ABSTRACT

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Subject(s)
Bifidobacterium , Gastrointestinal Microbiome , Indoles , Tryptophan , Tryptophan/metabolism , Humans , Indoles/metabolism , Bifidobacterium/metabolism , Bifidobacterium/genetics , Tryptophan Synthase/metabolism , Tryptophan Synthase/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
7.
Gut Microbes ; 16(1): 2351520, 2024.
Article in English | MEDLINE | ID: mdl-38717832

ABSTRACT

Links between the gut microbiota and human health have been supported throughout numerous studies, such as the development of neurological disease disorders. This link is referred to as the "microbiota-gut-brain axis" and is the focus of an emerging field of research. Microbial-derived metabolites and gut and neuro-immunological metabolites regulate this axis in health and many diseases. Indeed, assessing these signals, whether induced by microbial metabolites or neuro-immune mediators, could significantly increase our knowledge of the microbiota-gut-brain axis. However, this will require the development of appropriate techniques and potential models. Methods for studying the induced signals originating from the microbiota remain crucial in this field. This review discusses the methods and techniques available for studies of microbiota-gut-brain interactions. We highlight several much-debated elements of these methodologies, including the widely used in vivo and in vitro models, their implications, and perspectives in the field based on a systematic review of PubMed. Applications of various animal models (zebrafish, mouse, canine, rat, rabbit) to microbiota-gut-brain axis research with practical examples of in vitro methods and innovative approaches to studying gut-brain communications are highlighted. In particular, we extensively discuss the potential of "organ-on-a-chip" devices and their applications in this field. Overall, this review sheds light on the most widely used models and methods, guiding researchers in the rational choice of strategies for studies of microbiota-gut-brain interactions.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Humans , Brain/microbiology , Brain/metabolism , Brain/physiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Models, Animal , Mice
8.
Methods Cell Biol ; 186: 25-49, 2024.
Article in English | MEDLINE | ID: mdl-38705603

ABSTRACT

One of the earliest applications of flow cytometry was the measurement of DNA content in cells. This method is based on the ability to stain DNA in a stoichiometric manner (i.e., the amount of stain is directly proportional to the amount of DNA within the cell). For more than 40years, a number of studies have consistently demonstrated the utility of DNA flow cytometry as a potential diagnostic and/or prognostic tool in patients with most epithelial tumors, including pre-invasive lesions (such as dysplasia) in the gastrointestinal tract. However, its availability as a clinical test has been limited to few medical centers due to the requirement for fresh tissue in earlier studies and perceived technical demands. However, more recent studies have successfully utilized formalin-fixed paraffin-embedded (FFPE) tissue to generate high-quality DNA content histograms, demonstrating the feasibility of this methodology. This review summarizes step-by-step methods on how to perform DNA flow cytometry using FFPE tissue and analyze DNA content histograms based on the published consensus guidelines in order to assist in the diagnosis and/or risk stratification of many different epithelial tumors, with particular emphasis on dysplasia associated with Barrett's esophagus and inflammatory bowel disease.


Subject(s)
Flow Cytometry , Gastrointestinal Neoplasms , Genomic Instability , Humans , Flow Cytometry/methods , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/pathology , Genomic Instability/genetics , Precancerous Conditions/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Tissue Fixation/methods , Paraffin Embedding/methods , DNA/genetics , DNA/analysis , Gastrointestinal Tract/pathology , Gastrointestinal Tract/metabolism , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Barrett Esophagus/diagnosis
9.
PLoS Pathog ; 20(5): e1012189, 2024 May.
Article in English | MEDLINE | ID: mdl-38713723

ABSTRACT

Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.


Subject(s)
Ethanolamine , Gastrointestinal Microbiome , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , Mice , Animals , Ethanolamine/metabolism , Gastrointestinal Microbiome/physiology , Klebsiella Infections/microbiology , Klebsiella Infections/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Mice, Inbred C57BL , Female
10.
Food Res Int ; 187: 114413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763665

ABSTRACT

In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 µmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.


Subject(s)
Antioxidants , Biological Availability , Digestion , Humans , Antioxidants/chemistry , Myofibrils/chemistry , Myofibrils/metabolism , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Gastrointestinal Tract/metabolism , Animals
11.
Food Res Int ; 187: 114426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763676

ABSTRACT

Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.


Subject(s)
Antioxidants , Biological Availability , Digestion , Germination , Lupinus , Lupinus/metabolism , Lupinus/chemistry , Antioxidants/metabolism , Germination/drug effects , Mice , RAW 264.7 Cells , Animals , Polyphenols/metabolism , Flavonoids/analysis , Flavonoids/metabolism , gamma-Aminobutyric Acid/metabolism , Reactive Oxygen Species/metabolism , Hydroxybenzoates/metabolism , Hydroxybenzoates/analysis , Gastrointestinal Tract/metabolism
12.
Gut Microbes ; 16(1): 2350785, 2024.
Article in English | MEDLINE | ID: mdl-38725230

ABSTRACT

Interactions between diet and gastrointestinal microbiota influence health status and outcomes. Evaluating these relationships requires accurate quantification of dietary variables relevant to microbial metabolism, however current dietary assessment methods focus on dietary components relevant to human digestion only. The aim of this study was to synthesize research on foods and nutrients that influence human gut microbiota and thereby identify knowledge gaps to inform dietary assessment advancements toward better understanding of diet-microbiota interactions. Thirty-eight systematic reviews and 106 primary studies reported on human diet-microbiota associations. Dietary factors altering colonic microbiota included dietary patterns, macronutrients, micronutrients, bioactive compounds, and food additives. Reported diet-microbiota associations were dominated by routinely analyzed nutrients, which are absorbed from the small intestine but analyzed for correlation to stool microbiota. Dietary derived microbiota-relevant nutrients are more challenging to quantify and underrepresented in included studies. This evidence synthesis highlights advancements needed, including opportunities for expansion of food composition databases to include microbiota-relevant data, particularly for human intervention studies. These advances in dietary assessment methodology will facilitate translation of microbiota-specific nutrition therapy to practice.


Subject(s)
Diet , Gastrointestinal Microbiome , Humans , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism , Nutrients/metabolism
13.
Nutrients ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794751

ABSTRACT

Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.


Subject(s)
Gastrointestinal Microbiome , Lipid Metabolism , Liver , Saponins , Saponins/pharmacology , Lipid Metabolism/drug effects , Humans , Liver/metabolism , Liver/drug effects , Gastrointestinal Microbiome/drug effects , Animals , Signal Transduction/drug effects , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/drug effects
14.
Food Chem ; 453: 139644, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761735

ABSTRACT

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.


Subject(s)
Gelatin , Hydrogels , Pectins , Probiotics , Pectins/chemistry , Gelatin/chemistry , Probiotics/chemistry , Hydrogels/chemistry , Microbial Viability/drug effects , Lactobacillus acidophilus/chemistry , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Hydrogen-Ion Concentration , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology
15.
Food Chem ; 453: 139662, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38762946

ABSTRACT

In the present study, it was investigated if glucose addition (3 or 5%) to pork stimulates glycoxidation (pentosidine, PEN), glycation (Maillard reaction products, MRP), lipid oxidation (4-hydroxy-2-nonenal, 4-HNE; hexanal, HEX; thiobarbituric acid reactive substances, TBARS), and protein oxidation (protein carbonyl compounds, PCC) during various heating conditions and subsequent in vitro gastrointestinal digestion. An increase in protein-bound PEN level was observed during meat digestion, which was significantly stimulated by glucose addition (up to 3.3-fold) and longer oven-heating time (up to 2.5-fold) of the meat. These changes were accompanied by the distinct formation of MRP during heating and digestion of the meats. Remarkably, stimulated glyc(oxid)ation was accompanied by increased protein oxidation, whereas lipid oxidation was decreased, indicating these reactions are interrelated during gastrointestinal digestion of meat. Glucose addition generally didn't affect these oxidative reactions when pork was packed preventing air exposure and oven-heated until a core temperature of 75 °C was reached.


Subject(s)
Digestion , Glucose , Hot Temperature , Oxidation-Reduction , Protein Carbonylation , Animals , Swine , Glucose/metabolism , Glucose/chemistry , Cooking , Gastrointestinal Tract/metabolism , Lipid Peroxidation , Models, Biological , Glycosylation , Humans , Meat/analysis
16.
AAPS PharmSciTech ; 25(5): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816596

ABSTRACT

Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.


Subject(s)
Cannabis , Nanoparticles , Particle Size , Plant Extracts , Polylactic Acid-Polyglycolic Acid Copolymer , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Cannabis/chemistry , Nanoparticles/chemistry , Plant Extracts/chemistry , Drug Liberation , Cannabinoids/chemistry , Cannabidiol/chemistry , Nanocapsules/chemistry , Drug Carriers/chemistry , Polyglycolic Acid/chemistry , Lactic Acid/chemistry , Chitosan/chemistry , Chemistry, Pharmaceutical/methods , Alginates/chemistry , Pectins/chemistry , Gastrointestinal Tract/metabolism
17.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791603

ABSTRACT

In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.


Subject(s)
Dopamine , Intestinal Mucosa , Permeability , Renin-Angiotensin System , Tight Junctions , Humans , Renin-Angiotensin System/physiology , Dopamine/metabolism , Animals , Tight Junctions/metabolism , Intestinal Mucosa/metabolism , Gastrointestinal Tract/metabolism , Intestinal Barrier Function
18.
Gut Microbes ; 16(1): 2356284, 2024.
Article in English | MEDLINE | ID: mdl-38769683

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.


Subject(s)
Bacteria , Bile Acids and Salts , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Humans , Bile Acids and Salts/metabolism , Animals , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Dysbiosis/microbiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
19.
Sci Rep ; 14(1): 11923, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789470

ABSTRACT

Reliable in-vitro digestion models that are able to successfully replicate the conditions found in the human gastrointestinal tract are key to assess the fate and efficiency of new formulations aimed for oral consumption. However, current in-vitro models either lack the capability to replicate crucial dynamics of digestion or require large volumes of sample/reagents, which can be scarce when working with nanomaterials under development. Here, we propose a miniaturised digestion system, a digestion-chip, based on incubation chambers integrated on a polymethylmethacrylate device. The digestion-chip incorporates key dynamic features of human digestion, such as gradual acidification and gradual addition of enzymes and simulated fluids in the gastric phase, and controlled gastric emptying, while maintaining low complexity and using small volumes of sample and reagents. In addition, the new approach integrates real-time automated closed-loop control of two key parameters, pH and temperature, during the two main phases of digestion (gastric and intestinal) with an accuracy down to ± 0.1 °C and ± 0.2 pH points. The experimental results demonstrate that the digestion-chip successfully replicates the gold standard static digestion INFOGEST protocol and that the semi-dynamic digestion kinetics can be reliably fitted to a first kinetic order model. These devices can be easily adapted to dynamic features in an automated, sensorised, and inexpensive platform and will enable reliable, low-cost and efficient assessment of the bioaccessibility of new and expensive drugs, bioactive ingredients or nanoengineered materials aimed for oral consumption, thereby avoiding unnecessary animal testing.


Subject(s)
Digestion , Models, Biological , Humans , Digestion/physiology , Hydrogen-Ion Concentration , Kinetics , Gastrointestinal Tract/metabolism , Temperature , Miniaturization , Lab-On-A-Chip Devices
20.
Food Chem ; 453: 139587, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781909

ABSTRACT

Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.


Subject(s)
Digestion , Gastrointestinal Tract , Peptides , Peptides/chemistry , Humans , Gastrointestinal Tract/metabolism , Models, Biological , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...