Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.306
Filter
1.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949298

ABSTRACT

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to wild-type perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, a methodology is presented designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with a same-day genotyping protocol (3 h) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. This method further includes guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate that this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula.


Subject(s)
Gastrulation , Single-Cell Analysis , Animals , Mice , Single-Cell Analysis/methods , Gastrulation/genetics , Female , Embryo, Mammalian , Germ Layers/cytology , Sequence Analysis, RNA/methods , Pregnancy
2.
Cells ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38994973

ABSTRACT

Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.


Subject(s)
Ciona intestinalis , Gastrulation , Gene Expression Regulation, Developmental , Animals , Gastrulation/genetics , Ciona intestinalis/genetics , Ciona intestinalis/embryology , Zebrafish/genetics , Zebrafish/embryology , Transcription Factors/metabolism , Transcription Factors/genetics , Strongylocentrotus purpuratus/genetics , Strongylocentrotus purpuratus/embryology , Conserved Sequence/genetics , Regulatory Sequences, Nucleic Acid/genetics , Lancelets/genetics , Lancelets/embryology , Evolution, Molecular
3.
Open Biol ; 14(7): 240139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955223

ABSTRACT

The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and in situ hybridization identified four genes (WIF1, PTGDS, ThPO and UCKL1) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells' behaviour and the evolution of axial growth zones.


Subject(s)
Gene Expression Regulation, Developmental , Organizers, Embryonic , Animals , Chick Embryo , Organizers, Embryonic/metabolism , Body Patterning/genetics , Gastrulation/genetics , Transcriptome , Gene Expression Profiling
4.
Proc Natl Acad Sci U S A ; 121(28): e2408346121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968117

ABSTRACT

Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early ß-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of ß-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in ß-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any ß-catenin transcriptional activity as measured by ß-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in ß-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.


Subject(s)
Body Patterning , Intercellular Signaling Peptides and Proteins , Signal Transduction , Xenopus Proteins , beta Catenin , Animals , Body Patterning/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Xenopus laevis/embryology , Gene Expression Regulation, Developmental , Gastrulation , Nodal Protein/metabolism , Nodal Protein/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology , Organizers, Embryonic/metabolism , Glycoproteins
5.
Nat Commun ; 15(1): 4976, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862520

ABSTRACT

Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.


Subject(s)
Bone Morphogenetic Proteins , Signal Transduction , Animals , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Mice , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/chemistry , Glycoproteins/metabolism , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Binding Sites , Protein Domains , Protein Binding , Organoids/metabolism , Organoids/embryology , HEK293 Cells , Gastrulation/genetics , Mutation , Crystallography, X-Ray , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Proteins
6.
Nat Commun ; 15(1): 5210, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890321

ABSTRACT

Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.


Subject(s)
Embryo, Mammalian , Endoderm , Gastrulation , Gene Expression Regulation, Developmental , Single-Cell Analysis , Animals , Endoderm/cytology , Endoderm/metabolism , Endoderm/embryology , Swine , Mice , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Cell Differentiation , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Transcriptome , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Cell Lineage , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Epithelial-Mesenchymal Transition/genetics
7.
Mol Cells ; 47(6): 100068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759887

ABSTRACT

The coordinated movement of germ layer progenitor cells reaches its peak at the dorsal side, where the Bmp signaling gradient is low, and minimum at the ventral side, where the Bmp gradient is high. This dynamic cell movement is regulated by the interplay of various signaling pathways. The noncanonical Wnt signaling cascade serves as a pivotal regulator of convergence and extension cell movement, facilitated by the activation of small GTPases such as Rho, Rab, and Rac. However, the underlying cause of limited cell movement at the ventral side remains elusive. To explore the functional role of a key regulator in constraining gastrulation cell movement at the ventral side, we investigated the Bmp4-direct target gene, sizzled (szl), to assess its potential role in inhibiting noncanonical Wnt signaling. In our current study, we demonstrated that ectopic expression of szl led to gastrulation defects in a dose-dependent manner without altering cell fate specification. Overexpression of szl resulted in decreased elongation of Activin-treated animal cap and Keller explants. Furthermore, our immunoprecipitation assay unveiled the physical interaction of Szl with noncanonical Wnt ligand proteins (Wnt5 and Wnt11). Additionally, the activation of small GTPases involved in Wnt signaling mediation (RhoA and Rac1) was diminished upon szl overexpression. In summary, our findings suggest that Bmp4 signaling negatively modulates cell movement from the ventral side of the embryo by inducing szl expression during early Xenopus gastrulation.


Subject(s)
Bone Morphogenetic Protein 4 , Cell Movement , Gastrulation , Xenopus Proteins , Xenopus laevis , Animals , Bone Morphogenetic Protein 4/metabolism , Ligands , Wnt Proteins/metabolism , Wnt Signaling Pathway , Xenopus laevis/embryology , Xenopus laevis/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/genetics
8.
Cell Stem Cell ; 31(7): 1072-1090.e8, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754429

ABSTRACT

Gastrulation is a critical stage in embryonic development during which the germ layers are established. Advances in sequencing technologies led to the identification of gene regulatory programs that control the emergence of the germ layers and their derivatives. However, proteome-based studies of early mammalian development are scarce. To overcome this, we utilized gastruloids and a multilayered mass spectrometry-based proteomics approach to investigate the global dynamics of (phospho) protein expression during gastruloid differentiation. Our findings revealed many proteins with temporal expression and unique expression profiles for each germ layer, which we also validated using single-cell proteomics technology. Additionally, we profiled enhancer interaction landscapes using P300 proximity labeling, which revealed numerous gastruloid-specific transcription factors and chromatin remodelers. Subsequent degron-based perturbations combined with single-cell RNA sequencing (scRNA-seq) identified a critical role for ZEB2 in mouse and human somitogenesis. Overall, this study provides a rich resource for developmental and synthetic biology communities endeavoring to understand mammalian embryogenesis.


Subject(s)
Cell Lineage , Embryonic Development , Proteomics , Animals , Mice , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Humans , Single-Cell Analysis , Cell Differentiation , Gastrula/metabolism , Gastrulation
9.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692274

ABSTRACT

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Subject(s)
Bone Morphogenetic Proteins , Cell Differentiation , Primitive Streak , Signal Transduction , Primitive Streak/metabolism , Primitive Streak/embryology , Bone Morphogenetic Proteins/metabolism , Humans , Signal Transduction/physiology , Animals , Mesoderm/metabolism , Mesoderm/embryology , Wnt Signaling Pathway/physiology , Wnt Proteins/metabolism , Gene Expression Regulation, Developmental , Gastrulation/physiology
10.
Curr Top Dev Biol ; 159: 272-308, 2024.
Article in English | MEDLINE | ID: mdl-38729678

ABSTRACT

Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Animals , Humans , Embryonic Development , Gastrulation , Vertebrates/embryology
11.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727576

ABSTRACT

Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.


Subject(s)
Gastrulation , Morphogenesis , Animals , Cell Movement , Primitive Streak/embryology , Cell Polarity , Gastrula/embryology , Chick Embryo
12.
Dev Biol ; 511: 76-83, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614285

ABSTRACT

This paper introduces a single-cell atlas for pivotal developmental stages in Xenopus, encompassing gastrulation, neurulation, and early tailbud. Notably surpassing its predecessors, the new atlas enhances gene mapping, read counts, and gene/cell type nomenclature. Leveraging the latest Xenopus tropicalis genome version, alongside advanced alignment pipelines and machine learning for cell type assignment, this release maintains consistency with previous cell type annotations while rectifying nomenclature issues. Employing an unbiased approach for cell type assignment proves especially apt for embryonic contexts, given the considerable number of non-terminally differentiated cell types. An alternative cell type attribution here adopts a fuzzy, non-deterministic stance, capturing the transient nature of early embryo progenitor cells by presenting an ensemble of types in superposition. The value of the new resource is emphasized through numerous examples, with a focus on previously unexplored germ cell populations where we uncover novel transcription onset features. Offering interactive exploration via a user-friendly web portal and facilitating complete data downloads, this atlas serves as a comprehensive and accessible reference.


Subject(s)
Xenopus , Animals , Xenopus/embryology , Xenopus/genetics , Gastrulation , Embryo, Nonmammalian/cytology , Neurulation/genetics , Neurulation/physiology , Single-Cell Analysis/methods , Gene Expression Regulation, Developmental
13.
Cell ; 187(11): 2855-2874.e19, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38657603

ABSTRACT

Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.


Subject(s)
Embryo, Mammalian , Gastrulation , Gene Expression Regulation, Developmental , Imaging, Three-Dimensional , Humans , Embryo, Mammalian/metabolism , Transcriptome/genetics , Gastrula/metabolism , Gastrula/embryology , Signal Transduction , Cell Lineage , Gene Expression Profiling , Body Patterning/genetics
14.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38639390

ABSTRACT

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Subject(s)
Cell Division , Cell Polarity , Drosophila melanogaster , Epithelial Cells , Metaphase , Spindle Apparatus , Stress, Mechanical , Animals , Metaphase/physiology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Spindle Apparatus/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/cytology , Cell Polarity/physiology , Body Patterning , Myosin Type II/metabolism , Embryo, Nonmammalian/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gastrulation/physiology
15.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579720

ABSTRACT

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Subject(s)
Cell Differentiation , Gastrulation , Germ Layers , Animals , Mice , Germ Layers/cytology , Germ Layers/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Fetal Proteins/metabolism , Fetal Proteins/genetics , Wnt Signaling Pathway , Cell Proliferation , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
16.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683880

ABSTRACT

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Subject(s)
Drosophila melanogaster , Ectoderm , Gastrulation , Mesoderm , Myosin Type II , Animals , Mesoderm/embryology , Mesoderm/cytology , Gastrulation/physiology , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Myosin Type II/metabolism , Drosophila melanogaster/embryology , Cell Polarity , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Embryo, Nonmammalian , Morphogenesis , Body Patterning/physiology , Drosophila/embryology
17.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683994

ABSTRACT

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Subject(s)
Neural Crest , Single-Cell Analysis , Xenopus laevis , Animals , Neural Crest/cytology , Neural Crest/metabolism , Single-Cell Analysis/methods , Xenopus laevis/embryology , Gene Expression Regulation, Developmental , Cell Movement , Gene Regulatory Networks , Transcriptome , Gastrulation , Neural Plate/metabolism , Neural Plate/embryology , Neural Plate/cytology , Epithelial-Mesenchymal Transition/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/cytology , Neurulation/genetics , Neurulation/physiology , Cell Differentiation
18.
Dev Biol ; 511: 53-62, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593904

ABSTRACT

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , TATA-Binding Protein Associated Factors , Animals , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , Mice , Embryonic Development/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Female , Blastocyst/metabolism , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Gastrulation/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Embryo, Mammalian/metabolism
19.
Mol Biol Cell ; 35(5): ar69, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38536475

ABSTRACT

The regulation of the cytoskeleton by multiple signaling pathways, sometimes in parallel, is a common principle of morphogenesis. A classic example of regulation by parallel pathways is Drosophila gastrulation, where the inputs from the Folded gastrulation (Fog)/Concertina (Cta) and the T48 pathways induce apical constriction and mesoderm invagination. Whether there are distinct roles for these separate pathways in regulating the complex spatial and temporal patterns of cytoskeletal activity that accompany early embryo development is still poorly understood. We investigated the roles of the Fog/Cta and T48 pathways and found that, by themselves, the Cta and T48 pathways both promote timely mesoderm invagination and apical myosin II accumulation, with Cta being required for timely cell shape change ahead of mitotic cell division. We also identified distinct functions of T48 and Cta in regulating cellularization and the uniformity of the apical myosin II network, respectively. Our results demonstrate that both redundant and distinct functions for the Fog/Cta and T48 pathways exist.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Gastrulation , Drosophila Proteins/metabolism , Morphogenesis , Mesoderm , Myosin Type II/metabolism , Drosophila melanogaster/metabolism
20.
Birth Defects Res ; 116(3): e2322, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38441368

ABSTRACT

INTRODUCTION: Body wall anomalies comprise a wide range of malformations. Limb-Body wall complex (LBWC) represents the most severe presentation of this group, with life threatening malformations in practically all the cases, including craniofacial, body wall defects, and limb anomalies. There is no consensus about its etiology and folding and gastrulation defects have been involved. Also, impaired angiogenesis has been proposed as a causative process. CASE REPORT: We present the case of a masculine stillborn, product of the first pregnancy in a 15-year-old, apparently healthy mother. He was delivered at 31 weeks of gestation due to an early rupture of membranes. He presented with multiple malformations including a wide body wall defect with multiple organ herniation and meromelia of the lower right limb. DISCUSSION AND CONCLUSIONS: LBWC represents a severe and invariably fatal pathology. There are no described risk factors, nevertheless, this case presented in a teenage mother, a well-described risk factor for other body wall anomalies. Its diagnosis allows us to discriminate between other pathologies that require prenatal or postnatal specialized treatment.


Subject(s)
Abnormalities, Multiple , Limb Deformities, Congenital , Male , Female , Pregnancy , Adolescent , Humans , Gastrulation , Gravidity , Limb Deformities, Congenital/diagnosis , Mothers
SELECTION OF CITATIONS
SEARCH DETAIL
...