Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.116
Filter
1.
Arch Dermatol Res ; 316(6): 316, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822884

ABSTRACT

In the present study, we have formulated a methotrexate (MTX)-loaded microemulsion topical gel employing quality-by-design optimization. The optimized lipid-based microemulsion was incorporated into a 2% carbopol gel. The prepared formulation was characterized for micromeritics, surface charge, surface morphology, conductivity studies, rheology studies, texture analysis/spreadability, drug entrapment, and drug loading studies. The formulation was further evaluated for drug release and release kinetics, cytotoxicity assays, drug permeation and drug retention studies, and dermatokinetics. The developed nanosystem was not only rheologically acceptable but also offered substantial drug entrapment and loading. From drug release studies, it was observed that the nanogel showed higher drug release at pH 5.0 compared to plain MTX, plain gel, and plain microemulsion. The developed system with improved dermatokinetics, nanometric size, higher drug loading, and enhanced efficacy towards A314 squamous epithelial cells offers a huge promise in the topical delivery of methotrexate.


Subject(s)
Drug Liberation , Emulsions , Gels , Methotrexate , Skin Absorption , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/pharmacokinetics , Humans , Skin Absorption/drug effects , Rheology , Lipids/chemistry , Administration, Cutaneous , Skin/metabolism , Skin/drug effects , Administration, Topical , Drug Delivery Systems/methods , Animals , Particle Size , Drug Carriers/chemistry , Nanogels/chemistry
2.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
3.
Food Res Int ; 188: 114461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823861

ABSTRACT

Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.


Subject(s)
Freezing , Gels , Muscle Proteins , Myofibrils , Animals , Gels/chemistry , Swine , Muscle Proteins/chemistry , Myofibrils/chemistry , Food Handling/methods , Protein Denaturation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry , Oxidation-Reduction
4.
Food Res Int ; 188: 114474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823865

ABSTRACT

Limited proteolysis, CaCl2 and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl2. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl2 increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl2. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 âˆ¼ 30 % higher compared to those of the PP counterpart. CaCl2 addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl2 on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.


Subject(s)
Calcium Chloride , Carboxymethylcellulose Sodium , Gels , Pea Proteins , Proteolysis , Rheology , Calcium Chloride/chemistry , Pea Proteins/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Hydrophobic and Hydrophilic Interactions , Digestion , Pisum sativum/chemistry , Microscopy, Electron, Scanning , Hydrolysis , Electrophoresis, Polyacrylamide Gel
5.
Carbohydr Polym ; 339: 122288, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823936

ABSTRACT

This paper reports on biofunctionalisation of a poly(lactic acid) (PLA) film by surface activation through cold plasma treatment followed by coating with a chitosan-gelatin xerogel. The UV cross-linking of the xerogel precursor was simultaneously performed with the fixation onto the PLA support. This has a strong effect on surface properties, in terms of wettability, surface free energy, morphology and micromechanical features. The hydrophilic - hydrophobic character of the surface, determined by contact angle measurements, was tuned along the process, passing from moderate hydrophobic PLA to enhanced hydrophilic plasma activated surface, which favors coating adhesion, then to moderate hydrophobic chitosan-gelatin coating. The coating has a Lewis amphoteric surface, with a porous xerogel-like morphology, as revealed by scanning electron microscopy images. By riboflavin mediated UV cross-linking the chitosan-gelatin coating becomes high adhesive and with a more pronounced plasticity, as shown by AFM force-distance spectroscopy. Thus prepared surface-coated PLA supports were successfully tested for growth of dermal fibroblasts, which are known for their induction potential of chondrogenic cells, which is very important in cartilage tissue engineering.


Subject(s)
Chitosan , Fibroblasts , Gelatin , Polyesters , Chitosan/chemistry , Gelatin/chemistry , Polyesters/chemistry , Fibroblasts/drug effects , Fibroblasts/cytology , Humans , Surface Properties , Gels/chemistry , Ultraviolet Rays , Plasma Gases/chemistry , Hydrophobic and Hydrophilic Interactions , Coated Materials, Biocompatible/chemistry , Cross-Linking Reagents/chemistry , Wettability
6.
Food Chem ; 452: 139562, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749140

ABSTRACT

The growing global interest in physical and environmental health has led to the development of plant-based products. Although soy protein and wheat gluten are commonly utilized, concerns regarding gluten-related health issues have driven exploration into alternative proteins. Zein has emerged as a promising option. This research investigated the impact of extraction methods on zein characteristics and the structures of SPI-zein composite gels. Different extraction methods yielded zein with protein contents ranging from 48.12 % to 64.34 %. Ethanol-extracted Z1 and Z3, obtained at different pH conditions, exhibited zeta potential of -3.25 and 5.43 mV, respectively. They displayed similar characteristics to commercial zein and interacted comparably in composite gels. Conversely, alkaline-extracted Z2 had a zeta potential of -2.37 mV and formed distinct gels when combined with SPI. These results indicated that extraction methods influence zein behaviour in composite gels, offering possibilities for tailored formulations and expanding zein's applications, particularly in gluten-free plant-based products.


Subject(s)
Gels , Zein , Zein/chemistry , Gels/chemistry , Glutens/chemistry , Glutens/isolation & purification , Triticum/chemistry , Soybean Proteins/chemistry , Soybean Proteins/isolation & purification
7.
BMC Oral Health ; 24(1): 551, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734599

ABSTRACT

BACKGROUND: Periodontal diseases may benefit more from topical treatments with nanoparticles rather than systemic treatments due to advantages such as higher stability and controlled release profile. This study investigated the preparation and characterization of thermosensitive gel formulations containing clindamycin-loaded niosomes and solid lipid nanoparticles (SLNs) loaded with fluconazole (FLZ), as well as their in vitro antibacterial and antifungal effects in the treatment of common microorganisms that cause periodontal diseases. METHODS: This study loaded niosomes and SLNs with clindamycin and FLZ, respectively, and assessed their loading efficiency, particle size, and zeta potential. The particles were characterized using a variety of methods such as differential scanning calorimetry (DSC), dynamic light scattering (DLS), and Transmission Electron Microscopy (TEM). Thermosensitive gels were formulated by combining these particles and their viscosity, gelation temperature, in-vitro release profile, as well as antibacterial and antifungal effects were evaluated. RESULTS: Both types of these nanoparticles were found to be spherical (TEM) with a mean particle size of 243.03 nm in niosomes and 171.97 nm in SLNs (DLS), and respective zeta potentials of -23.3 and -15. The loading rate was 98% in niosomes and 51% in SLNs. The release profiles of niosomal formulations were slower than those of the SLNs. Both formulations allowed the release of the drug by first-order kinetic. Additionally, the gel formulation presented a slower release of both drugs compared to niosomes and SLNs suspensions. CONCLUSION: Thermosensitive gels containing clindamycin-loaded niosomes and/or FLZ-SLNs were found to effectively fight the periodontitis-causing bacteria and fungi.


Subject(s)
Clindamycin , Fluconazole , Gels , Liposomes , Nanoparticles , Particle Size , Periodontal Diseases , Clindamycin/administration & dosage , Clindamycin/therapeutic use , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/pharmacology , Periodontal Diseases/drug therapy , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Transmission , Temperature , Calorimetry, Differential Scanning , Candida albicans/drug effects , Viscosity , Lipids/chemistry , Humans
8.
Int J Pharm Compd ; 28(3): 182-186, 2024.
Article in English | MEDLINE | ID: mdl-38768499

ABSTRACT

Extemporaneously compounded Methimazole 1% and 10% in PLO Gel Mediflo™30 Pre-Mixed were studied to assess physical, chemical and microbial stability over time. The formulations were stored at room temperature in tightly closed, light resistant plastic containers. Chemical stability was evaluated using a validated, stability indicating HPLC analysis and physical stability was evaluated through observation of organoleptic appearance and pH measurement at predetermined time points. Lastly, antimicrobial effectiveness testing was conducted per USP <51> guidelines. The results indicate that compounded Methimazole remained within the stability criteria for the duration of the study and can be assigned an extended beyond-use-date of 120 days under the studied conditions.


Subject(s)
Drug Compounding , Drug Stability , Methimazole , Methimazole/chemistry , Methimazole/analysis , Antithyroid Agents/chemistry , Gels , Hydrogen-Ion Concentration , Drug Storage
9.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709874

ABSTRACT

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Subject(s)
Exosomes , Glioblastoma , Immunotherapy , Lymph Nodes , Exosomes/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Animals , Mice , Gels/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice, Inbred C57BL
10.
Curr Pharm Des ; 30(7): 489-518, 2024.
Article in English | MEDLINE | ID: mdl-38757691

ABSTRACT

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.


Subject(s)
Drug Delivery Systems , Gels , Gels/chemistry , Humans , Administration, Topical , Animals , Administration, Cutaneous , Skin Absorption/drug effects
11.
BMC Oral Health ; 24(1): 573, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760715

ABSTRACT

BACKGROUND: The aim of this study is to examine the cytotoxic effects of dental gels with different contents, which are frequently used during teething, on gingival mesenchymal stem cells (G-MSCs). METHOD: The teething gels used in this study were Dentinox, Gengigel, Osanite, and Jack and Jill. The human gingival mesenchimal stem cells (hG-MSCs) were incubated with these teething gel solutions (0.1%, 50% and 80% concentrations). Reproductive behavior of G-MSCs was monitored in real time for 72 h using the xCELLigence real-time cell analyzer (RTCA) system. Two-way repeated Anova test and post hoc Bonferroni test were used to evaluate the effect of concentration and dental gel on 0-hour and 72-hour viability. Significance was evaluated at p < 0.05 level. RESULTS: Teething gels prepared at 50% concentration are added to the G-MSC culture, the "cell index" value of G-MSCs to which Dentinox brand gel is added is significantly lower than all other groups (p = 0.05). There is a statistically significant difference between the concentrations in terms of cell index values at the 72nd hour compared to the 0th hour (p = 0.001). CONCLUSIONS: The local anesthetic dental gels used in children have a more negative effect on cell viability as concentration increases.


Subject(s)
Cell Survival , Gels , Gingiva , Mesenchymal Stem Cells , Humans , Gingiva/cytology , Gingiva/drug effects , Mesenchymal Stem Cells/drug effects , Cell Survival/drug effects , Cells, Cultured , In Vitro Techniques
12.
Nanoscale ; 16(20): 9861-9874, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712977

ABSTRACT

A guided bone regeneration (GBR) membrane can act as a barrier to prevent the invasion and interference from foreign soft tissues, promoting infiltration and proliferation of osteoblasts in the bone defect area. Herein, a composite scaffold with dual functions of osteogenesis and antibacterial effects was prepared for GBR. A polycaprolactone (PCL)/nano-hydroxyapatite (n-HA) aerogel produced by electrospinning and freeze-drying techniques was fabricated as the loose layer of the scaffold, while a PCL nanofiber membrane was used as the dense layer. Chitosan (CS) solution served as a middle layer to provide mechanical support and antibacterial effects between the two layers. Morphological results showed that the loose layer had a porous structure with n-HA successfully dispersed in the aerogels, while the dense layer possessed a sufficiently dense structure. In vitro antibacterial experiments illustrated that the CS solution in the middle layer stabilized the scaffold structure and endowed the scaffold with good antibacterial properties. The cytocompatibility results indicated that both fibroblasts and osteoblasts exhibited superior cell activity on the dense and loose layers, respectively. In particular, the dense layer made of nanofibers could work as a barrier layer to inhibit the infiltration of fibroblasts into the loose layer. In vitro osteogenesis analysis suggested that the PCL/n-HA aerogel could enhance the bone induction ability of bone mesenchymal stem cells, which was confirmed by the increased expression of the alkaline phosphatase activity. The loose structure facilitated the infiltration and migration of bone mesenchymal stem cells for better osteogenesis. In summary, such a composite scaffold exhibited excellent osteogenic and antibacterial properties as well as the barrier effect, thus holding promising potential for use as GBR materials.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Chitosan , Durapatite , Nanofibers , Osteoblasts , Osteogenesis , Polyesters , Chitosan/chemistry , Chitosan/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bone Regeneration/drug effects , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Animals , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Mice , Tissue Scaffolds/chemistry , Gels/chemistry , Staphylococcus aureus/drug effects , Fibroblasts/drug effects , Fibroblasts/cytology
13.
ACS Appl Mater Interfaces ; 16(20): 25843-25855, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717308

ABSTRACT

Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.


Subject(s)
Calcium Phosphates , Nanofibers , Silicon Dioxide , Tissue Scaffolds , Wound Healing , Nanofibers/chemistry , Animals , Rabbits , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Skin/drug effects , Regeneration/drug effects , Mice , Gels/chemistry
14.
ACS Appl Mater Interfaces ; 16(20): 25825-25835, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738662

ABSTRACT

Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.


Subject(s)
Cosmetics , Deep Learning , Fourier Analysis , Gels , Cosmetics/chemistry , Gels/chemistry , Humans , Neural Networks, Computer
15.
AAPS PharmSciTech ; 25(5): 115, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755324

ABSTRACT

More than 1 billion people worldwide suffer from hypertension; therefore, hypertension management has been categorized as a global health priority. Losartan potassium (LP) is an antihypertensive drug with a limited oral bioavailability of about 33% since it undergoes the initial metabolic cycle. Thus, nasal administration is a unique route to overcome first-pass metabolism. The investigation focused on the potential effects of LP-loaded spanlastic vesicles (SNVs) on LP pharmacodynamics and pharmacokinetic parameters, utilizing a thin-film hydration methodology established on a 3122 full factorial design. Entrapment efficiency (EE%) ranged from 39.8 ± 3.87.8 to 83.8 ± 2.92% for LP-SNVs. Vesicle size (VS) varied from 205.5 ± 6.5.10 to 445.1 ± 13.52 nm, and the percentage of LP released after 8 h (Q8h) ranged from 30.8 ± 3.10 to 68.8 ± 1.45%. LP permeated through the nasal mucosa during 24 h and flocculated from 194.1 ± 4.90 to 435.3 ± 13.53 µg/cm2. After twenty-four hours, the optimal LP-SNVs in-situ gel showed 2.35 times more permeation through the nasal mucosa than the LP solution. It also lowered systolic blood pressure, so it is thought to be better than the reference formulation in terms of pharmacodynamics. The pharmacokinetics studies demonstrated that the intranasal LP-SNVs gel boosted its bioavailability approximately 6.36 times compared to the oral LP solution. Our research showed that intranasal LP-SNVs could be a good nanoplatform because they are well-tolerated and have possible pharmacokinetics and pharmacodynamics.


Subject(s)
Antihypertensive Agents , Gels , Hypertension , Losartan , Losartan/pharmacokinetics , Losartan/administration & dosage , Losartan/pharmacology , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Animals , Hypertension/drug therapy , Male , Rats , Biological Availability , Administration, Intranasal , Nanoparticles/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Particle Size , Angiotensin II/pharmacokinetics , Angiotensin II/administration & dosage , Angiotensin II/pharmacology , Blood Pressure/drug effects , Rats, Wistar , Chemistry, Pharmaceutical/methods
16.
Otol Neurotol ; 45(5): 564-571, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38728560

ABSTRACT

OBJECTIVE: To investigate the safety and feasibility of precise delivery of a long-acting gel formulation containing 6% dexamethasone (SPT-2101) to the round window membrane for the treatment of Menière's disease. STUDY DESIGN: Prospective, unblinded, cohort study. SETTING: Tertiary care neurotology clinic. PATIENTS: Adults 18 to 85 years with a diagnosis of unilateral definite Menière's disease per Barany society criteria. INTERVENTIONS: A single injection of a long-acting gel formulation under direct visualization into the round window niche. MAIN OUTCOME MEASURES: Procedure success rate, adverse events, and vertigo control. Vertigo control was measured with definitive vertigo days (DVDs), defined as any day with a vertigo attack lasting 20 minutes or longer. RESULTS: Ten subjects with unilateral Menière's disease were enrolled. Precise placement of SPT-2101 at the round window was achieved in all subjects with in-office microendoscopy. Adverse events included one tympanic membrane perforation, which healed spontaneously after the study, and two instances of otitis media, which resolved with antibiotics. The average number of DVDs was 7.6 during the baseline month, decreasing to 3.3 by month 1, 3.7 by month 2, and 1.9 by month 3. Seventy percent of subjects had zero DVDs during the third month after treatment. CONCLUSIONS: SPT-2101 delivery to the round window is safe and feasible, and controlled trials are warranted to formally assess efficacy.


Subject(s)
Dexamethasone , Meniere Disease , Round Window, Ear , Humans , Meniere Disease/drug therapy , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Middle Aged , Male , Female , Aged , Adult , Treatment Outcome , Prospective Studies , Aged, 80 and over , Delayed-Action Preparations , Cohort Studies , Vertigo/drug therapy , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Gels , Young Adult
17.
Anal Chim Acta ; 1306: 342613, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692794

ABSTRACT

Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 µA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Gels , Glucose , Gold , Nickel , Biosensing Techniques/methods , Nickel/chemistry , Gels/chemistry , Gold/chemistry , Glucose/analysis , Electrodes , Nanowires/chemistry , Humans , Limit of Detection
18.
J Radiat Res ; 65(3): 393-401, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38739893

ABSTRACT

Hyaluronate gel injection (HGI) in the rectovaginal septum and vesicovaginal septum is effective in the setting of high-dose-rate image-guided adaptive brachytherapy (IGABT) for cervical cancer. We aimed to retrospectively investigate optimal conditions for HGI to achieve optimal dose distribution with a minimum number of HGI. We classified 50 IGABT plans of 13 patients with cervical cancer who received IGABT both with and without HGI in the rectovaginal septum and vesicovaginal septum into the following two groups: plan with (number of plans = 32) and plan without (number of plans = 18) HGI. The irradiation dose parameters of high-risk clinical target volume (CTVHR) and organs at risk per fraction were compared between these groups. We also developed the adjusted dose score (ADS), reflecting the overall irradiation dose status for four organs at risk and CTVHR in one IGABT plan and investigated its utility in determining the application of HGI. HGI reduced the maximum dose to the most exposed 2.0 cm3 (D2.0 cm3) of the bladder while increasing the minimum dose covering 90% of CTVHR and the percentage of CTVHR receiving 100% of the prescription dose in one IGABT plan without causing any associated complications. An ADS of ≥2.60 was the optimum cut-off value to decide whether to perform HGI. In conclusion, HGI is a useful procedure for improving target dose distribution while reducing D2.0 cm3 in the bladder in a single IGABT plan. The ADS can serve as a useful indicator for the implementation of HGI.


Subject(s)
Brachytherapy , Gels , Hyaluronic Acid , Radiotherapy Dosage , Uterine Cervical Neoplasms , Humans , Female , Hyaluronic Acid/administration & dosage , Brachytherapy/methods , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/diagnostic imaging , Middle Aged , Aged , Radiotherapy, Image-Guided/methods , Injections , Adult , Organs at Risk/radiation effects , Dose-Response Relationship, Radiation , Radiotherapy Planning, Computer-Assisted/methods , Time Factors , Retrospective Studies
19.
Biosensors (Basel) ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38785701

ABSTRACT

At the heart of the non-implantable electronic revolution lies ionogels, which are remarkably conductive, thermally stable, and even antimicrobial materials. Yet, their potential has been hindered by poor mechanical properties. Herein, a double network (DN) ionogel crafted from 1-Ethyl-3-methylimidazolium chloride ([Emim]Cl), acrylamide (AM), and polyvinyl alcohol (PVA) was constructed. Tensile strength, fracture elongation, and conductivity can be adjusted across a wide range, enabling researchers to fabricate the material to meet specific needs. With adjustable mechanical properties, such as tensile strength (0.06-5.30 MPa) and fracture elongation (363-1373%), this ionogel possesses both robustness and flexibility. This ionogel exhibits a bi-modal response to temperature and strain, making it an ideal candidate for strain sensor applications. It also functions as a flexible strain sensor that can detect physiological signals in real time, opening doors to personalized health monitoring and disease management. Moreover, these gels' ability to decode the intricate movements of sign language paves the way for improved communication accessibility for the deaf and hard-of-hearing community. This DN ionogel lays the foundation for a future in which e-skins and wearable sensors will seamlessly integrate into our lives, revolutionizing healthcare, human-machine interaction, and beyond.


Subject(s)
Sign Language , Humans , Polyvinyl Alcohol/chemistry , Monitoring, Physiologic , Wearable Electronic Devices , Gels/chemistry , Imidazoles/chemistry , Biosensing Techniques , Acrylamide , Tensile Strength
20.
Rev Assoc Med Bras (1992) ; 70(5): e20231548, 2024.
Article in English | MEDLINE | ID: mdl-38775510

ABSTRACT

OBJECTIVE: The aim of this study was to compare endometrial thickness with the use of transdermal estrogen (gel) versus oral estrogen (pills) for endometrial preparation in the frozen embryo transfer cycle and serum estrogen concentrations during the preparation cycle, side effects, and chemical and clinical pregnancy rates. METHODS: This was a prospective, randomized controlled trial of women undergoing endometrial preparation for cryopreserved blastocyst transfer. A total of 88 women were randomized, of which 82 completed the study protocol. Of this group, 44 received 6 mg/day of estradiol valerate orally (pills group) and 38 received 4.5 mg/day of estradiol hemihydrate transdermally (gel group). Endometrial thickness was measured using transvaginal ultrasound between the 7 and 10th day of the cycle. Serum estradiol concentrations were measured on the day of initiating the cycle, on control transvaginal ultrasounds, and on the day of embryo transfer. Side effects were documented at each study visit. p<0.05 were adopted as statistically significant. The groups were compared using Student's t-test for continuous variables and chi-square or Fisher's exact test for categorical variables. RESULTS: There were no significant group differences (p>0.05) in endometrial thickness, biochemical and clinical pregnancy rates, miscarriage rate, blood estradiol concentrations, duration of estradiol administration, or cycle cancellation rates. CONCLUSION: Endometrial preparation with transdermal estrogen yielded similar reproductive outcomes to oral estrogen with fewer side effects.


Subject(s)
Administration, Cutaneous , Cryopreservation , Embryo Transfer , Endometrium , Estradiol , Pregnancy Rate , Humans , Female , Embryo Transfer/methods , Endometrium/drug effects , Endometrium/diagnostic imaging , Adult , Pregnancy , Estradiol/administration & dosage , Estradiol/blood , Administration, Oral , Prospective Studies , Cryopreservation/methods , Gels , Estrogens/administration & dosage , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...