Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 109(12): 1969-1980, 2022 12.
Article in English | MEDLINE | ID: mdl-36200335

ABSTRACT

PREMISE: Evidence suggests that bees may benefit from moderate levels of human development. However, the effects of human development on pollination and reproduction of bee-pollinated plants are less-well understood. Studies have measured natural variation in pollination and plant reproduction as a function of urbanization, but few have experimentally measured the magnitude of pollen limitation in urban vs. non-urban sites. Doing so is important to unambiguously link changes in pollination to plant reproduction. Previous work in the Southeastern United States found that urban sites supported twice the abundance of bees compared to non-urban sites. We tested the hypothesis that greater bee abundance in some of the same urban sites translates into reduced pollen limitation compared to non-urban sites. METHODS: We manipulated pollination to three native, wild-growing, bee-pollinated plants: Gelsemium sempervirens, Oenothera fruticosa, and Campsis radicans. Using supplemental pollinations, we tested for pollen limitation of three components of female reproduction in paired urban and non-urban sites. We also measured pollen receipt as a proxy for pollinator visitation. RESULTS: We found that all three plant species were pollen-limited for some measures of female reproduction. However, opposite to our original hypothesis, two of the three species were more pollen-limited in urban relative to non-urban sites. We found that open-pollinated flowers in urban sites received less conspecific and more heterospecific pollen on average than those in non-urban sites. CONCLUSIONS: These results suggest that even when urban sites have more abundant pollinators, this may not alleviate pollen limitation of native plant reproduction in urban landscapes.


Subject(s)
Bees , Gelsemium , Pollination , Animals , Humans , Gelsemium/physiology , Pollen , Reproduction , Plant Physiological Phenomena
2.
Homeopathy ; 110(1): 42-51, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32615611

ABSTRACT

BACKGROUND: Nuclear magnetic resonance (NMR) proton relaxation is sensitive to the dynamics of the water molecule, H2O, through the interaction of the spin of the proton (1H) with external magnetic and electromagnetic fields. NMR relaxation times describe how quickly the spin of 1H, forced in a direction by an external electromagnetic field, returns to a normal resting position. As a result, such measurements allow us potentially to describe higher structuring of water in homeopathic medicines. OBJECTIVE: The purpose of the present study was to verify whether specific NMR relaxation times could be measured in full lines of cH dynamizations of a metal (copper) and of a plant substance (Gelsemium sempervirens), compared with a solvent control, a potentized lactose control and a control prepared by simple dilution, in three production lines. It is aimed at verification of a previous publication (2017) on two new manufacturing lines of the same starting material and controls. MATERIALS AND METHODS: To monitor dilution and potentization processes, measurements of 1H spin-lattice T1 and spin-spin T2 relaxation times were used. T1 and T2 relaxation times were measured at 25°C with a spin analyser working at a frequency of 20 MHz. To account for its possible role as a confounding factor, free oxygen was also measured in all samples, using a MicroOptode meter. RESULTS: When the values of the three production lines were pooled, a statistically significant discrimination of NMR relaxation times between the medicines and their controls was confirmed. We found for copper cH and Gelsemium sempervirens cH a highly significant influence of the starting material (p = 0.008), a highly significant influence of level of dilution (p < 0.001), and a significant influence of the O2 concentration (p = 0.04). CONCLUSIONS: We have evidence of an obvious retention of a specific magnetic resonance signal when a substance (lactose, copper, Gelsemium) is diluted/potentized in pure water. This means that homeopathic solutions cannot be considered to be pure water. O2 is a covariant and not an explanatory variable: this factor itself is too weak to explain the NMR signal specificities in potentized samples. Homeopathic dilutions may thus have a specific material configuration governed not only by the potentized substance but also by the chemical nature of the containers, the chemical nature of dissolved gases and even by the electromagnetic environment. This sensitivity of homeopathically prepared medicines to electromagnetic fields may be amplified by the processes routinely applied during their preparation; because it occurs only when a dynamization has been performed, we may call this phenomenon "dynamic pharmacy".


Subject(s)
Copper/physiology , Gelsemium/physiology , Magnetic Resonance Spectroscopy/methods , Humans , Materia Medica , Water/chemistry
3.
Proc Biol Sci ; 285(1884)2018 08 15.
Article in English | MEDLINE | ID: mdl-30111599

ABSTRACT

Native species are increasingly living in urban landscapes associated with abiotic and biotic changes that may influence patterns of phenotypic selection. However, measures of selection in urban and non-urban environments, and exploration of the mechanisms associated with such changes, are uncommon. Plant-animal interactions have played a central role in the evolution of flowering plants and are sensitive to changes in the urban landscape, and thus provide opportunities to explore how urban environments modify selection. We evaluated patterns of phenotypic selection on the floral and resistance traits of Gelsemium sempervirens in urban and non-urban sites. The urban landscape had increased florivory and decreased pollen receipt, but showed only modest differences in patterns of selection. Directional selection for one trait, larger floral display size, was stronger in urban compared to non-urban sites. Neither quadratic nor correlational selection significantly differed between urban and non-urban sites. Pollination was associated with selection for larger floral display size in urban compared to non-urban sites, due to the differences in the translation of pollination into seeds rather than pollinator selectivity. Thus, our data suggest that urban landscapes may not result in sweeping differences in phenotypic selection but rather modest differences for some traits, potentially mediated by species interactions.


Subject(s)
Alkaloids/metabolism , Flowers/growth & development , Gelsemium/chemistry , Gelsemium/physiology , Phenotype , Pollination , Selection, Genetic , Cities , Flowers/chemistry , Gelsemium/growth & development , Herbivory , North Carolina
4.
Am J Bot ; 103(10): 1819-1828, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27765776

ABSTRACT

PREMISE OF THE STUDY: Floral evolution is frequently ascribed to selection by pollinators, but may also be shaped by antagonists. However, remarkably few studies have examined geographic mosaics in resistance to floral antagonists or the consequences for other floral interactions. METHODS: Gelsemium sempervirens experiences frequent nectar robbing in northern Georgia, but rarely in southern Georgia. We conducted common-garden experiments in both locations using genotypes from each region and measured robbing, pollinator attraction, floral attractive and defensive traits, and plant reproduction. KEY RESULTS: Nectar robbing was more than four times higher in the north vs. south, and pollinator visits did not differ between gardens. Across both gardens, northern genotypes were half as likely to be nectar-robbed but received half as many pollinator visits as southern genotypes, suggesting evolution of resistance to robbing at a cost of reduced pollinator attraction. Plant-level traits, such as height and number of flowers, were more closely associated with resistance to robbing than floral size, shape, or chemistry. Northern genotypes had lower female and estimated male reproduction compared to southern genotypes at both locations, which could be due to costs of resistance to nectar robbing, or costs of adaptations to other biotic or abiotic differences between regions. CONCLUSIONS: Our study indicates that geographic variation can play a strong role structuring interactions with floral antagonists and mutualists and provides evidence consistent with the hypothesis that local resistance to nectar robbing imposes costs in terms of decreased pollinator attraction and reproduction.


Subject(s)
Biological Evolution , Gelsemium/physiology , Insecta/physiology , Pollination , Symbiosis , Animal Distribution , Animals , Flowers/physiology , Georgia , Plant Nectar/analysis
5.
Am J Bot ; 103(6): 1061-70, 2016 06.
Article in English | MEDLINE | ID: mdl-27329944

ABSTRACT

PREMISE OF THE STUDY: Florivory could have direct negative effects on plant fitness due to consumption of floral organs, and indirect effects mediated through changes in traits important to pollination. These effects likely vary with plant sexual system, depending on sex- or morph-specific patterns of damage. We investigated the direct and indirect effects of simulated florivory on male and female components of reproduction in the native, distylous vine Gelsemium sempervirens. METHODS: We crossed floral damage and supplemental pollination treatments in a common garden array and tracked pollinator behavioral responses. We also estimated male function using fluorescent dye as an analog for pollen transfer, and measured both fruit and seed production. KEY RESULTS: The effects of floral damage varied by floral morph, the genus of floral visitor, and the component of reproduction measured. Damage reduced the number of pollinator visits to pin but not thrum plants, and increased the time some pollinators spent per flower in thrum but not pin plants. Flowers of damaged plants transferred more dye particles to recipient plants compared to undamaged plants, but only later in the season when the majority of dye transfer occurred. Damage had no effect on female reproduction. CONCLUSION: These results suggest that florivory can have positive indirect effects on estimated male plant reproduction through changes in different pollinators' behavior at flowers, but the effects of floral damage vary with male vs. female function. These results underscore the importance of other species' interactions at flowers in driving pollinator behavior and pollen transfer dynamics.


Subject(s)
Feeding Behavior/physiology , Flowers/physiology , Gelsemium/physiology , Insecta/physiology , Pollination/physiology , Animals , Coloring Agents/metabolism , Fluorescence , Reproduction/physiology , Seeds/physiology
6.
Ecology ; 89(8): 2207-17, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18724731

ABSTRACT

Pollen movement within and among plants affects inbreeding, plant fitness, and the spatial scale of genetic differentiation. Although a number of studies have assessed how plant and floral traits influence pollen movement via changes in pollinator behavior, few have explored how nectar chemical composition affects pollen transfer. As many as 55% of plants produce secondary compounds in their nectar, which is surprising given that nectar is typically thought to attract pollinators. We tested the hypothesis that nectar with secondary compounds may benefit plants by encouraging pollinators to leave plants after visiting only a few flowers, thus reducing self-pollen transfer. We used Gelsemium sempervirens, a plant whose nectar contains the alkaloid gelsemine, which has been shown to be a deterrent to foraging bee pollinators. We found that high nectar alkaloids reduced the total and proportion of self-pollen received by one-half and one-third, respectively. However, nectar alkaloids did not affect female reproduction when we removed the potential for self-pollination (by emasculating all flowers on plants). We then tested the assumption that self-pollen in combination with outcrossed pollen depresses seed set. We found that plants were weakly self-compatible, but self-pollen with outcrossed pollen did not reduce seed set relative to solely outcrossed flowers. Finally, an exponential model of pollen carryover suggests that high nectar alkaloids could benefit plants via increased pollen export (an estimate of male function), but only when pollinators were efficient and abundant and plants had large floral displays. Results suggest that high nectar alkaloids may benefit plants via increased pollen export under a restricted set of ecological conditions, but in general, the costs of high nectar alkaloids in reducing pollination balanced or outweighed the benefits of reducing self-pollen transfer for estimates of female and male reproduction.


Subject(s)
Alkaloids/pharmacology , Gelsemium/physiology , Pollen/physiology , Pollination/physiology , Alkaloids/chemistry , Animals , Bees/physiology , Random Allocation , Reproduction/physiology , Seeds
7.
Ann Bot ; 97(1): 141-50, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16299005

ABSTRACT

BACKGROUND AND AIMS: Most plant species are visited by a diversity of floral visitors. Pollen transfer of the four most common pollinating bee species and one nectar-robbing bee of the distylous plant Gelsemium sempervirens were compared. METHODS: Naturally occurring pollen loads carried by the common floral visitor species of G. sempervirens were compared. In addition, dyed pollen donor flowers and sequences of four emasculated recipient flowers in field cages were used to estimate pollen transfer, and the utility of fluorescent dye powder as an analogue for pollen transfer was determined. KEY RESULTS: Xylocopa virginica, Osmia lignaria and Habropoda laboriosa carried the most G. sempervirens pollen on their bodies, followed by Bombus bimaculatus and Apis mellifera. However, B. bimaculatus, O. lignaria and H. laboriosa transferred significantly more pollen than A. mellifera. Nectar-robbing X. virginica transferred the least pollen, even when visiting legitimately. Dye particles were strongly correlated with pollen grains on a stigma, and therefore provide a good analogue for pollen in this system. The ratio of pollen : dye across stigmas was not affected by bee species or interactions between bee species and floral morphology. However, dye transfer was more sensitive than pollen transfer to differences in floral morphology. CONCLUSIONS: The results from this study add to a growing body of literature highlighting that floral visitors vary in pollination effectiveness, and that visitors carrying the most pollen on their bodies may not always be the most efficient at depositing pollen on stigmas. Understanding the magnitude of variability in pollinator quality is one important factor for predicting how different pollinator taxa may influence the evolution of floral traits.


Subject(s)
Bees/physiology , Fluorescent Dyes/analysis , Gelsemium/physiology , Pollen/physiology , Adaptation, Biological , Animals , Feeding Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...