Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 288
Filter
1.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Article in English | MEDLINE | ID: mdl-38709820

ABSTRACT

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Subject(s)
Mosquito Control , Animals , Mosquito Control/methods , Culicidae/genetics , Culicidae/physiology , Computational Biology/methods , Gene Drive Technology/methods , Mosquito Vectors/genetics , Aedes/genetics , Insecticide Resistance/genetics , Female
2.
PLoS Genet ; 20(5): e1011262, 2024 May.
Article in English | MEDLINE | ID: mdl-38753875

ABSTRACT

Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.


Subject(s)
CRISPR-Cas Systems , Gene Drive Technology , Gene Drive Technology/methods , Models, Genetic , Genetic Fitness , Alleles , Genetic Engineering/methods , Animals
3.
Malar J ; 23(1): 156, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773487

ABSTRACT

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Subject(s)
Anopheles , Gene Drive Technology , Malaria , Mosquito Control , Mosquito Vectors , Mosquito Control/methods , Mosquito Vectors/genetics , Malaria/prevention & control , Malaria/transmission , Animals , Anopheles/genetics , Gene Drive Technology/methods
4.
Nat Commun ; 15(1): 4560, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811556

ABSTRACT

Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.


Subject(s)
CRISPR-Cas Systems , Drosophila Proteins , Drosophila melanogaster , Gene Drive Technology , Germ Cells , Promoter Regions, Genetic , RNA, Guide, CRISPR-Cas Systems , Animals , Promoter Regions, Genetic/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Drive Technology/methods , Germ Cells/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Animals, Genetically Modified , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Alleles , Female , Male , RNA-Binding Proteins
5.
PLoS Genet ; 20(4): e1011226, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578788

ABSTRACT

CRISPR-based gene drives offer promising prospects for controlling disease-transmitting vectors and agricultural pests. A significant challenge for successful suppression-type drive is the rapid evolution of resistance alleles. One approach to mitigate the development of resistance involves targeting functionally constrained regions using multiple gRNAs. In this study, we constructed a 3-gRNA homing gene drive system targeting the recessive female fertility gene Tyrosine decarboxylase 2 (Tdc2) in Drosophila suzukii, a notorious fruit pest. Our investigation revealed only a low level of homing in the germline, but feeding octopamine restored the egg-laying defects in Tdc2 mutant females, allowing easier line maintenance than for other suppression drive targets. We tested the effectiveness of a similar system in Drosophila melanogaster and constructed additional split drive systems by introducing promoter-Cas9 transgenes to improve homing efficiency. Our findings show that genetic polymorphisms in wild populations may limit the spread of gene drive alleles, and the position effect profoundly influences Cas9 activity. Furthermore, this study highlights the potential of conditionally rescuing the female infertility caused by the gene drive, offering a valuable tool for the industrial-scale production of gene drive transgenic insects.


Subject(s)
Gene Drive Technology , Infertility, Female , Female , Animals , Humans , Drosophila/genetics , Drosophila melanogaster/genetics , Infertility, Female/genetics , CRISPR-Cas Systems , Fruit , RNA, Guide, CRISPR-Cas Systems , Phenotype
6.
Heredity (Edinb) ; 132(5): 232-246, 2024 May.
Article in English | MEDLINE | ID: mdl-38494530

ABSTRACT

Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.


Subject(s)
Anopheles , Gene Drive Technology , Genetics, Population , Malaria , Microsatellite Repeats , Mosquito Vectors , Anopheles/genetics , Animals , Mosquito Vectors/genetics , Malaria/transmission , Gene Drive Technology/methods , Melanesia , Alleles
7.
G3 (Bethesda) ; 14(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38306583

ABSTRACT

A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9. We find that targeting the wupA gene during spermatogenesis skews the sex ratio so fewer than 14% of progeny are daughters. That is unless we cross the mutagenic males to X^XY female flies that bear attached-X chromosomes, which reverses the inheritance of the poisoned X chromosome so that sons inherit it from their father, in which case only 2% of the progeny are sons. These sex ratio biases suggest that most of the CRISPR/Cas9 mutants we induced in the wupA gene are haplolethal but some are recessive lethal. The males generating wupA mutants do not suffer from reduced fertility; rather, the haplolethal mutants arrest development in the late stages of embryogenesis well after fertilized eggs have been laid. This provides a distinct advantage over genetic manipulation strategies involving sterility which can be countered by the remating of females. We also find that wupA mutants that destroy the nuclear localization signal of shorter isoforms are not haplolethal as long as the open reading frame remains intact. Like D. melanogaster, wupA orthologs of Drosophila suzukii and Anopheles mosquitos are found on X chromosomes making wupA a viable X-poisoning target in multiple species.


Subject(s)
Drosophila Proteins , Gene Drive Technology , Animals , Female , Male , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Gene Drive Technology/methods , Troponin I/genetics , X Chromosome/genetics
8.
Pest Manag Sci ; 80(6): 2950-2964, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38344908

ABSTRACT

BACKGROUND: One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses. RESULTS: We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants. We constructed a CRISPR/Cas9 homing drive and found that homing occurred in many genetic backgrounds with varying efficiencies. While the drive itself could not be homozygous, it converted resistant alleles into susceptible ones and produced recessive lethal alleles that could suppress populations. Our studies provided evidence for two distinct classes of gene drive resistance (GDR): rather than being mediated by the conventional non-homologous end-joining (NHEJ) pathway, one seemed to involve short homologous repair and the other was defined by genetic background. Additionally, we used simulations to explore a distinct application of susceptibility drives; the use of chemicals to prevent the spread of synthetic gene drives into protected areas. CONCLUSIONS: Insecticide susceptibility gene drives could be useful tools to control pest insects however problems with particularities of target loci and GDR will need to be overcome for them to be effective. Furthermore, realistic patterns of pest dispersal and high insecticide exposure rates would be required if susceptibility were to be useful as a 'safety-switch' to prevent the unwanted spread of gene drives. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Acetylcholinesterase , Drosophila melanogaster , Gene Drive Technology , Insecticide Resistance , Insecticides , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/drug effects , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , CRISPR-Cas Systems , Drosophila Proteins/genetics
9.
BMC Biol ; 22(1): 40, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369493

ABSTRACT

BACKGROUND: Threshold-dependent gene drives (TDGDs) could be used to spread desirable traits through a population, and are likely to be less invasive and easier to control than threshold-independent gene drives. Engineered Genetic Incompatibility (EGI) is an extreme underdominance system previously demonstrated in Drosophila melanogaster that can function as a TDGD when EGI agents of both sexes are released into a wild-type population. RESULTS: Here we use a single generation fitness assay to compare the fecundity, mating preferences, and temperature-dependent relative fitness to wild-type of two distinct genotypes of EGI agents. We find significant differences in the behavior/performance of these EGI agents that would not be predicted a priori based on their genetic design. We report a surprising temperature-dependent change in the predicted threshold for population replacement in an EGI agent that drives ectopic expression of the developmental morphogen pyramus. CONCLUSIONS: The single-generation fitness assay presented here could reduce the amount of time required to estimate the threshold for TDGD strategies for which hybrid genotypes are inviable. Additionally, this work underscores the importance of empirical characterization of multiple engineered lines, as behavioral differences can arise in unique genotypes for unknown reasons.


Subject(s)
Drosophila melanogaster , Gene Drive Technology , Animals , Male , Female , Animals, Genetically Modified , Drosophila melanogaster/genetics , Genetic Engineering , Population Dynamics
10.
Nat Commun ; 15(1): 952, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38296981

ABSTRACT

CRISPR-based gene drives have the potential to spread within populations and are considered as promising vector control tools. A doublesex-targeting gene drive was able to suppress laboratory Anopheles mosquito populations in small and large cages, and it is considered for field application. Challenges related to the field-use of gene drives and the evolving regulatory framework suggest that systems able to modulate or revert the action of gene drives, could be part of post-release risk-mitigation plans. In this study, we challenge an AcrIIA4-based anti-drive to inhibit gene drive spread in age-structured Anopheles gambiae population under complex feeding and behavioural conditions. A stochastic model predicts the experimentally-observed genotype dynamics in age-structured populations in medium-sized cages and highlights the necessity of large-sized cage trials. These experiments and experimental-modelling framework demonstrate the effectiveness of the anti-drive in different scenarios, providing further corroboration for its use in controlling the spread of gene drive in Anopheles.


Subject(s)
Anopheles , Gene Drive Technology , Malaria , Animals , Anopheles/genetics , Mosquito Vectors/genetics , Mosquito Control
11.
Nat Commun ; 15(1): 729, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272895

ABSTRACT

Aedes aegypti is the main vector of several major pathogens including dengue, Zika and chikungunya viruses. Classical mosquito control strategies utilizing insecticides are threatened by rising resistance. This has stimulated interest in new genetic systems such as gene drivesHere, we test the regulatory sequences from the Ae. aegypti benign gonial cell neoplasm (bgcn) homolog to express Cas9 and a separate multiplexing sgRNA-expressing cassette inserted into the Ae. aegypti kynurenine 3-monooxygenase (kmo) gene. When combined, these two elements provide highly effective germline cutting at the kmo locus and act as a gene drive. Our target genetic element drives through a cage trial population such that carrier frequency of the element increases from 50% to up to 89% of the population despite significant fitness costs to kmo insertions. Deep sequencing suggests that the multiplexing design could mitigate resistance allele formation in our gene drive system.


Subject(s)
Aedes , Gene Drive Technology , Insecticides , Zika Virus Infection , Zika Virus , Animals , CRISPR-Cas Systems/genetics , Aedes/genetics , RNA, Guide, CRISPR-Cas Systems , Zika Virus Infection/genetics , Zika Virus/genetics
12.
Nat Commun ; 15(1): 372, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191463

ABSTRACT

Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.


Subject(s)
Ceratitis capitata , Gene Drive Technology , Female , Male , Animals , Ceratitis capitata/genetics , Agriculture , Alleles , Electric Power Supplies
13.
Trends Plant Sci ; 29(2): 108-110, 2024 02.
Article in English | MEDLINE | ID: mdl-37863729

ABSTRACT

Selfish genetic elements (SGEs) display biased transmission to offspring. However, their breeding potential has remained obscure. Wang et al. recently reported a natural gene-drive system that can be harnessed to prevent hybrid incompatibility and to develop a synthetic gene-drive (SGD) system for crop improvement.


Subject(s)
Gene Drive Technology , Plant Breeding , Plants/genetics
14.
J Theor Biol ; 577: 111654, 2024 01 21.
Article in English | MEDLINE | ID: mdl-37984587

ABSTRACT

Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.


Subject(s)
Disasters , Gene Drive Technology , Humans , Population Dynamics
15.
Cell Rep ; 42(12): 113499, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039130

ABSTRACT

Gene drives are genetic constructs that can spread deleterious alleles with potential application to population suppression of harmful species. As gene drives can potentially spill over to other populations or species, control measures and fail-safe strategies must be considered. Gene drives can generate a rapid change in the population's genetic composition, leading to substantial demographic decline, processes that are expected to occur at a similar timescale during gene drive spread. We developed a gene drive model that combines evolutionary and demographic dynamics in a two-population setting. The model demonstrates how feedback between these dynamics generates additional outcomes to those generated by the evolutionary dynamics alone. We identify an outcome of particular interest where short-term suppression of the target population is followed by gene swamping and loss of the gene drive. This outcome can prevent spillover and is robust to the evolution of resistance, suggesting it may be suitable as a fail-safe strategy for gene drive deployment.


Subject(s)
Gene Drive Technology , Alleles , Models, Genetic
16.
Elife ; 122023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051195

ABSTRACT

Lipophorin is an essential, highly expressed lipid transport protein that is secreted and circulates in insect hemolymph. We hijacked the Anopheles coluzzii Lipophorin gene to make it co-express a single-chain version of antibody 2A10, which binds sporozoites of the malaria parasite Plasmodium falciparum. The resulting transgenic mosquitoes show a markedly decreased ability to transmit Plasmodium berghei expressing the P. falciparum circumsporozoite protein to mice. To force the spread of this antimalarial transgene in a mosquito population, we designed and tested several CRISPR/Cas9-based gene drives. One of these is installed in, and disrupts, the pro-parasitic gene Saglin and also cleaves wild-type Lipophorin, causing the anti-malarial modified Lipophorin version to replace the wild type and hitch-hike together with the Saglin drive. Although generating drive-resistant alleles and showing instability in its gRNA-encoding multiplex array, the Saglin-based gene drive reached high levels in caged mosquito populations and efficiently promoted the simultaneous spread of the antimalarial Lipophorin::Sc2A10 allele. This combination is expected to decrease parasite transmission via two different mechanisms. This work contributes to the design of novel strategies to spread antimalarial transgenes in mosquitoes, and illustrates some expected and unexpected outcomes encountered when establishing a population modification gene drive.


Subject(s)
Anopheles , Antimalarials , Gene Drive Technology , Lipoproteins , Animals , Mice , Anopheles/genetics , Anopheles/parasitology , Antimalarials/pharmacology , Mosquito Vectors/genetics , RNA, Guide, CRISPR-Cas Systems , Plasmodium falciparum/genetics , Plasmodium berghei/genetics
17.
Malar J ; 22(1): 384, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129897

ABSTRACT

BACKGROUND: Gene drive modified mosquitoes (GDMMs) have the potential to address Africa's persistent malaria problem, but are still in early stages of development and testing. Continuous engagement of African stakeholders is crucial for successful evaluation and implementation of these technologies. The aim of this multi-country study was, therefore, to explore the insights and recommendations of key stakeholders across Africa on the potential of GDMMs for malaria control and elimination in the continent. METHODS: A concurrent mixed-methods study design was used, involving a structured survey administered to 180 stakeholders in 25 countries in sub-Saharan Africa, followed by 18 in-depth discussions with selected groups and individuals. Stakeholders were drawn from academia, research and regulatory institutions, government ministries of health and environment, media and advocacy groups. Thematic content analysis was used to identify key topics from the in-depth discussions, and descriptive analysis was done to summarize information from the survey data. RESULTS: Despite high levels of awareness of GDMMs among the stakeholders (76.7%), there was a relatively low-level of understanding of their key attributes and potential for malaria control (28.3%). When more information about GDMMs was provided to the stakeholders, they readily discussed their insights and concerns, and offered several recommendations to ensure successful research and implementation of the technology. These included: (i) increasing relevant technical expertise within Africa, (ii) generating local evidence on safety, applicability, and effectiveness of GDMMs, and (iii) developing country-specific regulations for safe and effective governance of GDMMs. A majority of the respondents (92.9%) stated that they would support field trials or implementation of GDMMs in their respective countries. This study also identified significant misconceptions regarding the phase of GDMM testing in Africa, as several participants incorrectly asserted that GDMMs were already present in Africa, either within laboratories or released into the field. CONCLUSION: Incorporating views and recommendations of African stakeholders in the ongoing research and development of GDMMs is crucial for instilling stakeholder confidence on their potential application. These findings will enable improved planning for GDMMs in Africa as well as improved target product profiles for the technologies to maximize their potential for solving Africa's enduring malaria challenge.


Subject(s)
Culicidae , Gene Drive Technology , Malaria , Animals , Humans , Gene Drive Technology/methods , Africa South of the Sahara , Government , Malaria/prevention & control
18.
Genes (Basel) ; 14(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38136999

ABSTRACT

Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.


Subject(s)
CRISPR-Cas Systems , Gene Drive Technology , Gene Drive Technology/methods , Ecosystem , Weed Control/methods , Plant Weeds/genetics
19.
Science ; 382(6677): 1337-1338, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38127746

ABSTRACT

CRISPR-engineered herpesviruses can speed spread of genes to viral relatives in mice.


Subject(s)
CRISPR-Cas Systems , Gene Drive Technology , Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , Herpesvirus 1, Human/genetics , Herpes Simplex/prevention & control
20.
Nat Commun ; 14(1): 7561, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985762

ABSTRACT

Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test a CRISPR-based homing gene drive for Culex quinquefasciatus, and show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.


Subject(s)
Aedes , Culex , Gene Drive Technology , Animals , Culex/genetics , Mosquito Vectors/genetics , Aedes/genetics , Disease Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...