Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.485
Filter
1.
Mol Biol Rep ; 51(1): 706, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824203

ABSTRACT

BACKGROUND: Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS: Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS: This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Microinjections , Mutation , Triticum , Triticum/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Microinjections/methods , Mutation/genetics , Pollen/genetics
2.
AAPS PharmSciTech ; 25(5): 129, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844700

ABSTRACT

Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Lung Neoplasms , Humans , CRISPR-Cas Systems/genetics , Lung Neoplasms/therapy , Lung Neoplasms/genetics , Gene Editing/methods , Animals , Genetic Therapy/methods , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Gene Transfer Techniques , Drug Delivery Systems/methods , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/genetics , Nanoparticles
3.
Elife ; 122024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847802

ABSTRACT

CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here, we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as sixfold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Zebrafish , Zebrafish/genetics , Animals , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Embryo, Nonmammalian/metabolism , RNA Folding
4.
PLoS One ; 19(6): e0304607, 2024.
Article in English | MEDLINE | ID: mdl-38848383

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with significant morbidity and mortality rates. AXIN1 is one of the top-mutated genes in HCC, but the mechanism by which AXIN1 mutations contribute to HCC development remains unclear. METHODS: In this study, we utilized CRISPR/Cas9 genome editing to repair AXIN1-truncated mutations in five HCC cell lines. RESULTS: For each cell line we successfully obtained 2-4 correctly repaired clones, which all show reduced ß-catenin signaling accompanied with reduced cell viability and colony formation. Although exposure of repaired clones to Wnt3A-conditioned medium restored ß-catenin signaling, it did not or only partially recover their growth characteristics, indicating the involvement of additional mechanisms. Through RNA-sequencing analysis, we explored the gene expression patterns associated with repaired AXIN1 clones. Except for some highly-responsive ß-catenin target genes, no consistent alteration in gene/pathway expression was observed. This observation also applies to the Notch and YAP/TAZ-Hippo signaling pathways, which have been associated with AXIN1-mutant HCCs previously. The AXIN1-repaired clones also cannot confirm a recent observation that AXIN1 is directly linked to YAP/TAZ protein stability and signaling. CONCLUSIONS: Our study provides insights into the effects of repairing AXIN1 mutations on ß-catenin signaling, cell viability, and colony formation in HCC cell lines. However, further investigations are necessary to understand the complex mechanisms underlying HCC development associated with AXIN1 mutations.


Subject(s)
Axin Protein , CRISPR-Cas Systems , Carcinoma, Hepatocellular , Liver Neoplasms , Mutation , beta Catenin , Axin Protein/genetics , Axin Protein/metabolism , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Gene Expression Regulation, Neoplastic , Gene Editing , Signal Transduction/genetics
5.
Nat Commun ; 15(1): 4892, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849329

ABSTRACT

Reducing disparities is vital for equitable access to precision treatments in cancer. Socioenvironmental factors are a major driver of disparities, but differences in genetic variation likely also contribute. The impact of genetic ancestry on prioritization of cancer targets in drug discovery pipelines has not been systematically explored due to the absence of pre-clinical data at the appropriate scale. Here, we analyze data from 611 genome-scale CRISPR/Cas9 viability experiments in human cell line models to identify ancestry-associated genetic dependencies essential for cell survival. Surprisingly, we find that most putative associations between ancestry and dependency arise from artifacts related to germline variants. Our analysis suggests that for 1.2-2.5% of guides, germline variants in sgRNA targeting sequences reduce cutting by the CRISPR/Cas9 nuclease, disproportionately affecting cell models derived from individuals of recent African descent. We propose three approaches to mitigate this experimental bias, enabling the scientific community to address these disparities.


Subject(s)
CRISPR-Cas Systems , Germ-Line Mutation , Humans , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Germ Cells/metabolism , Genetic Variation , Neoplasms/genetics , False Negative Reactions , Genome, Human , Cell Line, Tumor , Cell Line
6.
Planta ; 260(1): 16, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833022

ABSTRACT

MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mutation , Plants, Genetically Modified , Zea mays , Zea mays/genetics , Plants, Genetically Modified/genetics , Gene Editing/methods , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , DNA-Binding Proteins
7.
Elife ; 122024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829685

ABSTRACT

Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing. The main protocol modifications needed to achieve such high efficiencies were the addition of the DNA-PK inhibitor AZD7648, and the inclusion of spacer-breaking silent mutations in the donor in addition to mutations disrupting the PAM sequence. Critically, editing was even across the progenitor hierarchy, did not substantially distort the hierarchy or affect lineage outputs in colony-forming cell assays or the frequency of high self-renewal potential long-term culture initiating cells. As modelling of many diseases requires heterozygosity, we also demonstrated that the overall editing and zygosity can be tuned by adding in defined mixtures of mutant and wild-type donors. With these optimizations, editing at near-perfect efficiency can now be accomplished directly in human HSPCs. This will open new avenues in both therapeutic strategies and disease modelling.


Subject(s)
Gene Editing , Hematopoietic Stem Cells , Humans , Gene Editing/methods , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems/genetics , Fetal Blood/cytology , Cells, Cultured
8.
Sci Rep ; 14(1): 12870, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834632

ABSTRACT

One of the most recent advances in the genome editing field has been the addition of "TALE Base Editors", an innovative platform for cell therapy that relies on the deamination of cytidines within double strand DNA, leading to the formation of an uracil (U) intermediate. These molecular tools are fusions of transcription activator-like effector domains (TALE) for specific DNA sequence binding, split-DddA deaminase halves that will, upon catalytic domain reconstitution, initiate the conversion of a cytosine (C) to a thymine (T), and an uracil glycosylase inhibitor (UGI). We developed a high throughput screening strategy capable to probe key editing parameters in a precisely defined genomic context in cellulo, excluding or minimizing biases arising from different microenvironmental and/or epigenetic contexts. Here we aimed to further explore how target composition and TALEB architecture will impact the editing outcomes. We demonstrated how the nature of the linker between TALE array and split DddAtox head allows us to fine tune the editing window, also controlling possible bystander activity. Furthermore, we showed that both the TALEB architecture and spacer length separating the two TALE DNA binding regions impact the target TC editing dependence by the surrounding bases, leading to more restrictive or permissive editing profiles.


Subject(s)
Cytosine , Gene Editing , Thymine , Gene Editing/methods , Humans , Cytosine/metabolism , Cytosine/chemistry , Thymine/metabolism , Thymine/chemistry , Transcription Activator-Like Effectors/metabolism , Transcription Activator-Like Effectors/genetics , DNA/metabolism , DNA/genetics , HEK293 Cells
9.
J Transl Med ; 22(1): 526, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822352

ABSTRACT

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Subject(s)
Antigens, CD34 , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/cytology , Antigens, CD34/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Proteomics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Gene Editing , Cell Degranulation , Stem Cells/metabolism , Stem Cells/cytology , Cytokines/metabolism , Phenotype
10.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856917

ABSTRACT

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
11.
Theor Appl Genet ; 137(7): 154, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856926

ABSTRACT

KEY MESSAGE: Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.


Subject(s)
Edible Grain , Oryza , Plant Breeding , Plant Proteins , Thermotolerance , Oryza/genetics , Oryza/physiology , Oryza/growth & development , Oryza/metabolism , Thermotolerance/genetics , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phenotype , Gene Editing , Alkalies , CRISPR-Cas Systems , Plants, Genetically Modified/genetics
14.
Sci Adv ; 10(23): eadm7452, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848363

ABSTRACT

Understanding CRISPR-Cas9's capacity to produce native overexpression (OX) alleles would accelerate agronomic gains achievable by gene editing. To generate OX alleles with increased RNA and protein abundance, we leveraged multiplexed CRISPR-Cas9 mutagenesis of noncoding sequences upstream of the rice PSBS1 gene. We isolated 120 gene-edited alleles with varying non-photochemical quenching (NPQ) capacity in vivo-from knockout to overexpression-using a high-throughput screening pipeline. Overexpression increased OsPsbS1 protein abundance two- to threefold, matching fold changes obtained by transgenesis. Increased PsbS protein abundance enhanced NPQ capacity and water-use efficiency. Across our resolved genetic variation, we identify the role of 5'UTR indels and inversions in driving knockout/knockdown and overexpression phenotypes, respectively. Complex structural variants, such as the 252-kb duplication/inversion generated here, evidence the potential of CRISPR-Cas9 to facilitate significant genomic changes with negligible off-target transcriptomic perturbations. Our results may inform future gene-editing strategies for hypermorphic alleles and have advanced the pursuit of gene-edited, non-transgenic rice plants with accelerated relaxation of photoprotection.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mutagenesis , Oryza , Oryza/genetics , Gene Editing/methods , Alleles , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transgenes , Gene Expression Regulation, Plant
15.
Nat Commun ; 15(1): 4897, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851742

ABSTRACT

DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.


Subject(s)
CRISPR-Associated Protein 9 , Gene Editing , Protein Engineering , Uracil-DNA Glycosidase , Humans , Gene Editing/methods , Uracil-DNA Glycosidase/metabolism , Uracil-DNA Glycosidase/genetics , Protein Engineering/methods , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Cytosine/metabolism , Thymine/metabolism , CRISPR-Cas Systems , HEK293 Cells , Mutagenesis , Guanine/metabolism , DNA/metabolism , DNA/genetics
16.
Plant Mol Biol ; 114(3): 69, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842584

ABSTRACT

Petunias are renowned ornamental species widely cultivated as pot plants for their aesthetic appeal both indoors and outdoors. The preference for pot plants depends on their compact growth habit and abundant flowering. While genome editing has gained significant popularity in many crop plants in addressing growth and development and abiotic and biotic stress factors, relatively less emphasis has been placed on its application in ornamental plant species. Genome editing in ornamental plants opens up possibilities for enhancing their aesthetic qualities, offering innovative opportunities for manipulating plant architecture and visual appeal through precise genetic modifications. In this study, we aimed to optimize the procedure for an efficient genome editing system in petunia plants using the highly efficient multiplexed CRISPR/Cas9 system. Specifically, we targeted a total of six genes in Petunia which are associated with plant architecture traits, two paralogous of FLOWERING LOCUS T (PhFT) and four TERMINAL FLOWER-LIKE1 (PhTFL1) paralogous genes separately in two constructs. We successfully induced homogeneous and heterogeneous indels in the targeted genes through precise genome editing, resulting in significant phenotypic alterations in petunia. Notably, the plants harboring edited PhTFL1 and PhFT exhibited a conspicuously early flowering time in comparison to the wild-type counterparts. Furthermore, mutants with alterations in the PhTFL1 demonstrated shorter internodes than wild-type, likely by downregulating the gibberellic acid pathway genes PhGAI, creating a more compact and aesthetically appealing phenotype. This study represents the first successful endeavor to produce compact petunia plants with increased flower abundance through genome editing. Our approach holds immense promise to improve economically important potting plants like petunia and serve as a potential foundation for further improvements in similar ornamental plant species.


Subject(s)
CRISPR-Cas Systems , Flowers , Gene Editing , Petunia , Plant Proteins , Plants, Genetically Modified , Petunia/genetics , Petunia/growth & development , Flowers/genetics , Flowers/growth & development , Gene Editing/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Mutagenesis , Gene Expression Regulation, Plant , Phenotype
17.
Commun Biol ; 7(1): 696, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844522

ABSTRACT

The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Induced Pluripotent Stem Cells , Humans , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Mutation , RNA, Guide, CRISPR-Cas Systems/genetics , HEK293 Cells
18.
Genesis ; 62(3): e23598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727638

ABSTRACT

Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Neoplasms/genetics , Neoplasms/therapy , Animals , Genetic Therapy/methods , Gene Transfer Techniques
19.
PLoS One ; 19(5): e0288578, 2024.
Article in English | MEDLINE | ID: mdl-38739603

ABSTRACT

As a versatile genome editing tool, the CRISPR-Cas9 system induces DNA double-strand breaks at targeted sites to activate mainly two DNA repair pathways: HDR which allows precise editing via recombination with a homologous template DNA, and NHEJ which connects two ends of the broken DNA, which is often accompanied by random insertions and deletions. Therefore, how to enhance HDR while suppressing NHEJ is a key to successful applications that require precise genome editing. Histones are small proteins with a lot of basic amino acids that generate electrostatic affinity to DNA. Since H2A.X is involved in DNA repair processes, we fused H2A.X to Cas9 and found that this fusion protein could improve the HDR/NHEJ ratio by suppressing NHEJ. As various post-translational modifications of H2A.X play roles in the regulation of DNA repair, we also fused H2A.X mimicry variants to replicate these post-translational modifications including phosphorylation, methylation, and acetylation. However, none of them were effective to improve the HDR/NHEJ ratio. We further fused other histone variants to Cas9 and found that H2A.1 suppressed NHEJ better than H2A.X. Thus, the fusion of histone variants to Cas9 is a promising option to enhance precise genome editing.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing , Histones , Histones/metabolism , Histones/genetics , Humans , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Protein Processing, Post-Translational , DNA Breaks, Double-Stranded , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , HEK293 Cells , Acetylation
20.
Cell Mol Biol Lett ; 29(1): 66, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724931

ABSTRACT

The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and ß-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular ß-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/metabolism , Humans , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Gene Editing/methods , beta Catenin/metabolism , beta Catenin/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...