Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.389
Filter
1.
Narra J ; 4(1): e754, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798851

ABSTRACT

It is widely acknowledged that smoking exacerbates the severity of infectious diseases. A presumed mechanism involves the damage inflicted by tobacco smoke on the organs of host organisms. In this study, an alternative hypothesis was explored: smoking enhances the virulence of bacteria. This possibility was investigated using Escherichia coli as the model bacteria and Drosophila as the host organism. Our inquiry focused on the potential gene expression changes in E. coli subsequent to exposure to tobacco smoke extracts. Analysis of the transcription promoter activity of genes encoding proteins within the E. coli two-component system, a regulatory machinery governing gene expression, revealed the suppression of thirteen out of 23 promoters in response to tobacco smoke extracts. Subsequently, Drosophila was infected with E. coli exposed to tobacco smoke extracts or left untreated. Interestingly, there were no significant differences observed in the survival periods of Drosophila following infection with E. coli, whether treated or untreated with tobacco smoke extracts. Contrary to the initial hypothesis, the findings suggest that while tobacco smoke extracts alter gene expression in E. coli, these changes do not appear to impact bacterial virulence. Although this study has illuminated the influence of tobacco smoke extracts on the gene expression of E. coli, further analyses are necessary to elucidate the implications of these changes. Nevertheless, the results imply that smoking affects not only host organisms but may also exert influence on invading bacteria.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/drug effects , Animals , Virulence/genetics , Nicotiana/adverse effects , Nicotiana/microbiology , Drosophila/microbiology , Gene Expression Regulation, Bacterial/drug effects , Smoke/adverse effects , Virulence Factors/genetics
2.
Sci Rep ; 14(1): 12416, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816440

ABSTRACT

Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Streptococcus pneumoniae , Transcriptome , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/drug effects , Gene Expression Regulation, Bacterial/drug effects , Humans , Ligands , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Peptides/metabolism , Peptides/pharmacology
3.
PLoS One ; 19(5): e0301252, 2024.
Article in English | MEDLINE | ID: mdl-38696454

ABSTRACT

Bacteria are exposed to reactive oxygen and nitrogen species that provoke oxidative and nitrosative stress which can lead to macromolecule damage. Coping with stress conditions involves the adjustment of cellular responses, which helps to address metabolic challenges. In this study, we performed a global transcriptomic analysis of the response of Pseudomonas extremaustralis to nitrosative stress, induced by S-nitrosoglutathione (GSNO), a nitric oxide donor, under microaerobic conditions. The analysis revealed the upregulation of genes associated with inositol catabolism; a compound widely distributed in nature whose metabolism in bacteria has aroused interest. The RNAseq data also showed heightened expression of genes involved in essential cellular processes like transcription, translation, amino acid transport and biosynthesis, as well as in stress resistance including iron-dependent superoxide dismutase, alkyl hydroperoxide reductase, thioredoxin, and glutathione S-transferase in response to GSNO. Furthermore, GSNO exposure differentially affected the expression of genes encoding nitrosylation target proteins, encompassing metalloproteins and proteins with free cysteine and /or tyrosine residues. Notably, genes associated with iron metabolism, such as pyoverdine synthesis and iron transporter genes, showed activation in the presence of GSNO, likely as response to enhanced protein turnover. Physiological assays demonstrated that P. extremaustralis can utilize inositol proficiently under both aerobic and microaerobic conditions, achieving growth comparable to glucose-supplemented cultures. Moreover, supplementing the culture medium with inositol enhances the stress tolerance of P. extremaustralis against combined oxidative-nitrosative stress. Concordant with the heightened expression of pyoverdine genes under nitrosative stress, elevated pyoverdine production was observed when myo-inositol was added to the culture medium. These findings highlight the influence of nitrosative stress on proteins susceptible to nitrosylation and iron metabolism. Furthermore, the activation of myo-inositol catabolism emerges as a protective mechanism against nitrosative stress, shedding light on this pathway in bacterial systems, and holding significance in the adaptation to unfavorable conditions.


Subject(s)
Inositol , Nitrosative Stress , Pseudomonas , Inositol/metabolism , Pseudomonas/metabolism , Pseudomonas/genetics , Gene Expression Regulation, Bacterial/drug effects , S-Nitrosoglutathione/metabolism , S-Nitrosoglutathione/pharmacology , Aerobiosis , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gene Expression Profiling , Oxidative Stress
4.
Appl Microbiol Biotechnol ; 108(1): 343, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789572

ABSTRACT

Isolates of Vibrio splendidus are ubiquitously presented in various marine environments, and they can infect diverse marine culture animals, leading to high mortality and economic loss. Therefore, a control strategy of the infection caused by V. splendidus is urgently recommended. Tryptanthrin is a naturally extracted bioactive chemical with antimicrobial activity to other bacteria. In this study, the effects of tryptanthrin on the bacterial growth and virulence-related factors of one pathogenic strain V. splendidus AJ01 were determined. Tryptanthrin (10 µg/mL) could completely inhibit the growth of V. splendidus AJ01. The virulence-related factors of V. splendidus AJ01 were affected in the presence of tryptanthrin. Tryptanthrin resulted an increase in biofilm formation, but lead to reduction in the motility and hemolytic activity of V. splendidus cells. In the cells treated with tryptanthrin, two distinctly differentially expressed extracellular proteins, proteases and flagellum, were identified using SDS-PAGE combined with LC-MS. Real-time reverse transcriptase PCR confirmed that the genes involved in the flagellar formation and hemolysin decreased, whereas specific extracellular proteases and the genes involved in the biofilm formation were upregulated. Two previously annotated luxOVs genes were cloned, and their expression levels were analyzed at different cell densities. Molecular docking was performed to predict the interaction between LuxOVs and ATP/tryptanthrin. The two sigma-54-dependent transcriptional regulators showed similar ATP or tryptanthrin binding capacity but with different sites, and the direct competitive binding between ATP and tryptanthrin was present only in their binding to LuxO1. These results indicated that tryptanthrin can be used as a bactericide of V. splendidus by inhibiting the growth, bacterial flagella, and extracellular proteases, but increasing the biofilm. Sigma-54-dependent transcriptional regulator, especially the quorum sensing regulatory protein LuxO1, was determined to be the potential target of tryptanthrin. KEY POINTS: • Tryptanthrin inhibited the growth of V. splendidus in a dose-dependent manner. • The effect of tryptanthrin on the virulence factors of V. splendidus was characterized. • LuxO was the potential target for tryptanthrin based on molecular docking.


Subject(s)
Anti-Bacterial Agents , Biofilms , Quinazolines , Vibrio , Virulence Factors , Biofilms/drug effects , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinazolines/pharmacology , Quinazolines/chemistry , Virulence Factors/genetics , Molecular Docking Simulation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flagella/drug effects , Hemolysis/drug effects , Animals , Microbial Sensitivity Tests , Gene Expression Regulation, Bacterial/drug effects
5.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792126

ABSTRACT

The utilization of natural products in food preservation represents a promising strategy for the dual benefits of controlling foodborne pathogens and enhancing the nutritional properties of foods. Among the phytonutrients, flavonoids have been shown to exert antibacterial effects by disrupting bacterial cell membrane functionality; however, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of quercetin on the cell membrane permeability of Staphylococcus aureus ATCC 27217. A combined metabolomic and transcriptomic approach was adopted to examine the regulatory mechanism of quercetin with respect to the fatty acid composition and associated genes. Kinetic analysis and molecular docking simulations were conducted to assess quercetin's inhibition of ß-ketoacyl-acyl carrier protein reductase (FabG), a potential target in the bacterial fatty acid biosynthesis pathway. Metabolomic and transcriptomic results showed that quercetin increased the ratio of unsaturated to saturated fatty acids and the levels of membrane phospholipids. The bacteria reacted to quercetin-induced stress by attempting to enhance fatty acid biosynthesis; however, quercetin directly inhibited FabG activity, thereby disrupting bacterial fatty acid biosynthesis. These findings provide new insights into the mechanism of quercetin's effects on bacterial cell membranes and suggest potential applications for quercetin in bacterial inhibition.


Subject(s)
Anti-Bacterial Agents , Fatty Acids , Quercetin , Staphylococcus aureus , Quercetin/pharmacology , Quercetin/chemistry , Staphylococcus aureus/drug effects , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Metabolomics/methods , Transcriptome/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Gene Expression Profiling , Cell Membrane/drug effects , Cell Membrane/metabolism , Gene Expression Regulation, Bacterial/drug effects , Metabolome/drug effects , Cell Membrane Permeability/drug effects
6.
PLoS One ; 19(5): e0298746, 2024.
Article in English | MEDLINE | ID: mdl-38787890

ABSTRACT

Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.


Subject(s)
Ciprofloxacin , Proteomics , Transcriptome , Ciprofloxacin/pharmacology , Proteomics/methods , Virulence/drug effects , Transcriptome/drug effects , Enterohemorrhagic Escherichia coli/drug effects , Enterohemorrhagic Escherichia coli/pathogenicity , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Virulence Factors/metabolism , Proteome/metabolism , Gene Expression Profiling , Humans
7.
Biomed Pharmacother ; 175: 116716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735084

ABSTRACT

Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.


Subject(s)
Biofilms , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Tannins , Biofilms/drug effects , Biofilms/growth & development , Tannins/pharmacology , Escherichia coli/drug effects , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Trans-Activators
8.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article in English | MEDLINE | ID: mdl-38719589

ABSTRACT

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
9.
Artif Cells Nanomed Biotechnol ; 52(1): 261-269, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696143

ABSTRACT

The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of Euphorbia canariensis ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against Pseudomonas aeruginosa clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and pslD) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied in vivo using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.


Subject(s)
Anti-Bacterial Agents , Euphorbia , Plant Extracts , Pseudomonas aeruginosa , Respiratory Tract Infections , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Euphorbia/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Respiratory Tract Infections/drug therapy , Animals , Mice , Oxidative Stress/drug effects , Bacterial Load/drug effects , Gene Expression Regulation, Bacterial/drug effects
10.
Plant Physiol Biochem ; 211: 108673, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733937

ABSTRACT

Excess of selenium (Se) in aquatic ecosystems has necessitated thorough investigations into the effects/consequences of this metalloid on the autochthonous organisms exposed to it. The molecular details of Se-mediated adaptive response remain unknown in cyanobacteria. This study aims to uncover the molecular mechanisms driving the divergent physiological responses of cyanobacteria on exposure to selenate [Se(VI)] or selenite [Se(IV)], the two major water-soluble oxyanions of Se. The cyanobacterium, Anabaena PCC 7120, withstood 0.4 mM of Se(VI), whereas even 0.1 mM of Se(IV) was detrimental, affecting photosynthesis and enhancing endogenous ROS. Surprisingly, Anabaena pre-treated with Se(VI), but not Se(IV), showed increased tolerance to oxidative stress mediated by H2O2/methyl viologen. RNA-Seq analysis showed Se(VI) to elevate transcription of genes encoding anti-oxidant proteins and Fe-S cluster biogenesis, whereas the photosynthesis-associated genes, which were mainly downregulated by Se(IV), remained unaffected. Specifically, the content of typical 2-Cys-Prx (Alr4641), a redox-maintaining protein in Anabaena, was elevated with Se(VI). In comparison to the wild-type, the Anabaena strain over-expressing the Alr4641 protein (An4641+) showed enhanced tolerance to Se(VI) stress, whereas the corresponding knockdown-strain (KD4641) was sensitive to this stressor. Incidentally, among these strains, only An4641+ was better protected from the ROS-mediated damage caused by high dose of Se(VI). These results suggest that altering the content of the antioxidant protein 2-Cys-Prx, could be a potential strategy for modulating resistance to selenate. Thus, involvement of oxidative stress machinery appears to be the major determinant, responsible for the contrasting physiological differences observed in response to selenate/selenite in cyanobacteria.


Subject(s)
Anabaena , Oxidative Stress , Oxidative Stress/drug effects , Anabaena/metabolism , Anabaena/genetics , Anabaena/drug effects , Photosynthesis/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Selenium/metabolism , Selenium/pharmacology , Adaptation, Physiological/drug effects , Selenious Acid/pharmacology , Selenious Acid/metabolism , Reactive Oxygen Species/metabolism , Selenic Acid/pharmacology , Selenic Acid/metabolism , Gene Expression Regulation, Bacterial/drug effects
11.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674008

ABSTRACT

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Cysteine , Escherichia coli , Glutathione , Homeostasis , Cysteine/metabolism , Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Homeostasis/drug effects , Glutathione/metabolism , Anti-Bacterial Agents/pharmacology , Culture Media/chemistry , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Mutation , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects
12.
Antimicrob Agents Chemother ; 68(5): e0118523, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587412

ABSTRACT

Transcriptional responses in bacteria following antibiotic exposure offer insights into antibiotic mechanism of action, bacterial responses, and characterization of antimicrobial resistance. We aimed to define the transcriptional antibiotic response (TAR) in Mycobacterium tuberculosis (Mtb) isolates for clinically relevant drugs by pooling and analyzing Mtb microarray and RNA-seq data sets. We generated 99 antibiotic transcription profiles across 17 antibiotics, with 76% of profiles generated using 3-24 hours of antibiotic exposure and 49% within one doubling of the WHO antibiotic critical concentration. TAR genes were time-dependent, and largely specific to the antibiotic mechanism of action. TAR signatures performed well at predicting antibiotic exposure, with the area under the receiver operating curve (AUC) ranging from 0.84-1.00 (TAR <6 hours of antibiotic exposure) and 0.76-1.00 (>6 hours of antibiotic exposure) for upregulated genes and 0.57-0.90 and 0.87-1.00, respectfully, for downregulated genes. This work desmonstrates that transcriptomics allows for the assessment of antibiotic activity in Mtb within 6 hours of exposure.


Subject(s)
Mycobacterium tuberculosis , Transcriptome , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Transcriptome/genetics , Gene Expression Regulation, Bacterial/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Gene Expression Profiling/methods , Antitubercular Agents/pharmacology , Humans
13.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38653725

ABSTRACT

AIMS: Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, ß-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS: The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS: This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Outer Membrane Proteins , Imipenem , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Imipenem/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Acinetobacter Infections/microbiology , Humans , Porins/genetics , Porins/metabolism
14.
Microbiol Res ; 284: 127711, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636240

ABSTRACT

Microbial ferroptosis has been proved to combat drug-resistant pathogens, but whether this pattern can be applied to the prevention and control of Escherichia coli remains to be further explored. In this study, ferrous gluconate (FeGlu) showed remarkable efficacy in killing E. coli MG1655 with a mortality rate exceeding 99.9%, as well as enterotoxigenic E. coli H10407 (ETEC H10407) and enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). Bacteria death was instigated by the infiltration of Fe2+, accompanied by a burst of intracellular reactive oxygen species (ROS) and lipid peroxidation. Notably, mitigating lipid peroxidation failed to alleviate death of E. coli. Further findings confirmed that FeGlu induced DNA damage, and ΔrecA mutant showed more sensitive, implicating that DNA damage was involved in the death of E. coli. The direct interaction of Fe2+ with DNA was demonstrated by fluorescent staining, gel electrophoresis, and circular dichroism (CD). Moreover, proteomic analysis unveiled 50 differentially expressed proteins (DEPs), including 18 significantly down-regulated proteins and 32 significantly up-regulated proteins. Among them, the down-regulation of SOS-responsive transcriptional suppressor LexA indicated DNA damage induced severely by FeGlu. Furthermore, FeGlu influenced pathways such as fatty acid metabolism (FadB, FadE), iron-sulfur cluster assembly (IscA, IscU, YadR), iron binding, and DNA-binding transcription, along with α-linolenic acid metabolism, fatty acid degradation, and pyruvate metabolism. These pathways were related to FeGlu stress, including lipid peroxidation and DNA damage. In summary, FeGlu facilitated ferroptosis in E. coli through mechanisms involving lipid peroxidation and DNA damage, which presents a new strategy for the development of innovative antimicrobial strategies targeting E. coli infections.


Subject(s)
DNA Damage , Escherichia coli , Ferroptosis , Ferrous Compounds , Lipid Peroxidation , Reactive Oxygen Species , Ferroptosis/drug effects , DNA Damage/drug effects , Lipid Peroxidation/drug effects , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Ferrous Compounds/metabolism , Ferrous Compounds/pharmacology , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Proteomics , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Escherichia coli O157/metabolism
15.
Biomolecules ; 14(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38672469

ABSTRACT

Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogenic bacterium that causes huge economic losses to the pig farming industry and considerably threatens human health. The quorum sensing (QS) system plays a crucial role in the survival and pathogenesis of pathogenic bacteria. Hence, it is a viable approach to prevent ExPEC infection by compromising the QS system, particularly the LuxS/AI-2 system. In this study, we investigated the effects of baicalin on the LuxS/AI-2 system of ExPEC. Baicalin at concentrations of 25, 50, and 100 µg/mL significantly diminished the survival ability of ExPEC in hostile environments and could inhibit the biofilm formation and autoagglutination ability in ExPEC. Moreover, baicalin dose-dependently decreased the production of AI-2 and down-regulated the expression level of luxS in PCN033. These results suggest that baicalin can weaken the virulence of PCN033 by inhibiting the LuxS/AI-2 system. After the gene luxS was deleted, AI-2 production in PCN033 was almost completely eliminated, similar to the effect of baicalin on the production of AI-2 in PCN033. This indicates that baicalin reduced the production of AI-2 by inhibiting the expression level of luxS in ExPEC. In addition, the animal experiment further showed the potential of baicalin as a LuxS/AI-2 system inhibitor to prevent ExPEC infection. This study highlights the potential of baicalin as a natural quorum-sensing inhibitor for therapeutic applications in preventing ExPEC infection by targeting the LuxS/AI-2 system.


Subject(s)
Bacterial Proteins , Carbon-Sulfur Lyases , Extraintestinal Pathogenic Escherichia coli , Flavonoids , Homoserine , Homoserine/analogs & derivatives , Quorum Sensing , Quorum Sensing/drug effects , Flavonoids/pharmacology , Animals , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/metabolism , Swine , Virulence/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Homoserine/metabolism , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Extraintestinal Pathogenic Escherichia coli/genetics , Biofilms/drug effects , Biofilms/growth & development , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Lactones/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Swine Diseases/microbiology , Swine Diseases/drug therapy
16.
Int J Biol Macromol ; 269(Pt 1): 131806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670179

ABSTRACT

Acinetobacter baumannii is a notorious pathogen that commonly thrives in hospital environments and is responsible for numerous nosocomial infections in humans. The burgeoning multi-drug resistance leaves relatively minimal options for treating the bacterial infection, posing a significant problem and prompting the identification of new approaches for tackling the same. This motivated us to focus on non-canonical nucleic acid structures, mainly G-quadruplexes, as drug targets. G-quadruplexes have recently been gaining attention due to their involvement in multiple bacterial and viral pathogenesis. Herein, we sought to explore conserved putative G-quadruplex motifs in A. baumannii. In silico analysis revealed the presence of eight conserved motifs in genes involved in bacterial survival and pathogenesis. The biophysical and biomolecular analysis confirmed stable G-quadruplex formation by the motifs and showed a high binding affinity with the well-reported G-quadruplex binding ligand, BRACO-19. BRACO-19 exposure also decreased the growth of bacteria and downregulated the expression of G-quadruplex-harboring genes. The biofilm-forming ability of the bacteria was also affected by BRACO-19 addition. Taking all these observations into account, we have shown here for the first time the potential of G-quadruplex structures as a promising drug target in Acinetobacter baumannii, for addressing the challenges posed by this infamous pathogen.


Subject(s)
Acinetobacter baumannii , G-Quadruplexes , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , G-Quadruplexes/drug effects , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Gene Expression Regulation, Bacterial/drug effects
17.
Antimicrob Agents Chemother ; 68(5): e0011824, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38526048

ABSTRACT

Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Phenazines , Pseudomonas aeruginosa , Pyocyanine , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Ciprofloxacin/pharmacology , Quorum Sensing/drug effects , Phenazines/pharmacology , Phenazines/metabolism , Anti-Bacterial Agents/pharmacology , Pyocyanine/biosynthesis , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial/drug effects , Quinolones/pharmacology
18.
Indian J Med Microbiol ; 48: 100563, 2024.
Article in English | MEDLINE | ID: mdl-38518847

ABSTRACT

Therapeutic options for staphylococcus infections have been raised due to the emergence of VISA and VRSA. Six isolates of Staphylococcus aureus of clinical origin which were previously confirmed to carry vanG were selected for this study. Antimicrobial susceptibility was performed by disc diffusion method. Transcriptional expression of vanG and vanSG showed down regulation against vancomycin and teicoplanin but expression was increased with increasing concentration of antibiotics. vanUG, vanRG showed up regulation against glycopeptide exposure. The present study underscored that expression of vanG and its regulatory gene operons are dependent on concentration of vancomycin and teicoplanin exposure in S.aureus.


Subject(s)
Anti-Bacterial Agents , Gene Expression Regulation, Bacterial , Regulon , Staphylococcus aureus , Teicoplanin , Vancomycin , Teicoplanin/pharmacology , Vancomycin/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Humans , Gene Expression Regulation, Bacterial/drug effects , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling
19.
Med Mol Morphol ; 57(2): 101-109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386083

ABSTRACT

To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.


Subject(s)
Drug Resistance, Bacterial , Erythromycin , Staphylococcal Protein A , Staphylococcus aureus , Erythromycin/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Staphylococcal Protein A/genetics , Staphylococcal Protein A/metabolism , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/ultrastructure , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Bacterial/drug effects
20.
J Biol Chem ; 299(9): 105147, 2023 09.
Article in English | MEDLINE | ID: mdl-37567478

ABSTRACT

The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.


Subject(s)
Bacterial Proteins , Disulfides , Exotoxins , Gene Expression Regulation, Bacterial , Hemolysin Proteins , Intracellular Space , Sulfhydryl Compounds , Transcriptional Activation , Vibrio cholerae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Exotoxins/genetics , Exotoxins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Transcriptional Activation/drug effects , Vibrio cholerae/drug effects , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Disulfides/metabolism , Disulfides/pharmacology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Intracellular Space/metabolism , Mass Spectrometry , Metabolomics , Glutathione Disulfide/pharmacology , Gastrointestinal Microbiome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...