Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.667
Filter
1.
Dev Biol ; 512: 35-43, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38710381

ABSTRACT

The larval stage of the Drosophila melanogaster life cycle is characterized by rapid growth and nutrient storage that occur over three instar stages separated by molts. In the third instar, the steroid hormone ecdysone drives key developmental processes and behaviors that occur in a temporally-controlled sequence and prepare the animal to undergo metamorphosis. Accurately staging Drosophila larvae within the final third instar is critical due to the rapid developmental progress at this stage, but it is challenging because the rate of development varies widely across a population of animals even if eggs are laid within a short period of time. Moreover, many methods to stage third instar larvae are cumbersome, and inherent variability in the rate of development confounds some of these approaches. Here we demonstrate the usefulness of the Sgs3-GFP transgene, a fusion of the Salivary gland secretion 3 (Sgs3) and GFP proteins, for staging third instar larvae. Sgs3-GFP is expressed in the salivary glands in an ecdysone-dependent manner from the midpoint of the third instar, and its expression pattern changes reproducibly as larvae progress through the third instar. We show that Sgs3-GFP can easily be incorporated into experiments, that it allows collection of developmentally-equivalent individuals from a mixed population of larvae, and that its use enables precise assessment of changing levels of hormones, metabolites, and gene expression during the second half of the third instar.


Subject(s)
Drosophila melanogaster , Ecdysone , Green Fluorescent Proteins , Larva , Phenotype , Salivary Glands , Animals , Larva/metabolism , Larva/genetics , Salivary Glands/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Ecdysone/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Genes, Reporter , Gene Expression Regulation, Developmental/genetics , Animals, Genetically Modified , Metamorphosis, Biological/genetics
2.
Genes Dev ; 38(7-8): 308-321, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38719541

ABSTRACT

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Octamer Transcription Factor-3 , Oxidation-Reduction , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Animals , Mice , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Gene Expression Regulation, Developmental/genetics , Humans
3.
Curr Opin Genet Dev ; 86: 102192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604005

ABSTRACT

Embryonic diapause in mammals is a period of developmental pause of the embryo at the blastocyst stage. During diapause, the blastocyst has minimal cell proliferation, metabolic activity and gene expression. At reactivation, blastocyst development resumes, characterised by increases in cell number, biosynthesis and metabolism. Until recently, it has been unknown how diapause is maintained without any loss of blastocyst viability. This review focuses on recent progress in the identification of molecular pathways occurring in the blastocyst that can both cause and maintain the diapause state. A switch to lipid metabolism now appears essential to maintaining the diapause state and is induced by forkhead box protein O1. The forkhead box protein O transcription family is important for diapause in insects, nematodes and fish, but this is the first time a conclusive role has been established in mammals. Multiple epigenetic modifications are also essential to inducing and maintaining the diapause state, including both DNA and RNA methylation mechanisms. Finally, it now appears that diapause embryos, dormant stem cells and chemotherapeutic-resistant cancer cells may all share a universal system of quiescence.


Subject(s)
Blastocyst , Diapause , Embryonic Development , Animals , Blastocyst/metabolism , Blastocyst/cytology , Diapause/genetics , Embryonic Development/genetics , Epigenesis, Genetic , Gene Expression Regulation, Developmental/genetics , Humans , Lipid Metabolism/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
4.
Curr Opin Genet Dev ; 86: 102197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648722

ABSTRACT

Temporal control is central to deploy and coordinate genetic programs during development. At present, there is limited understanding of the molecular mechanisms that govern the duration and speed of developmental processes. Timing mechanisms may run in parallel and/or interact with each other to integrate temporal signals throughout the organism. In this piece, we consider findings on the extrinsic control of developmental tempo and discuss the intrinsic roles of cell cycle, metabolic rates, protein turnover, and post-transcriptional mechanisms in the regulation of tempo during neural development.


Subject(s)
Cell Cycle , Cell Differentiation , Gene Expression Regulation, Developmental , Neurogenesis , Animals , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Cell Cycle/genetics , Neurogenesis/genetics , Humans , Neurons/metabolism , Neurons/cytology
5.
Trends Genet ; 40(6): 480-494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658255

ABSTRACT

Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.


Subject(s)
Gene-Environment Interaction , Neurogenesis , Neurons , Humans , Neurons/cytology , Neurons/metabolism , Animals , Neurogenesis/genetics , Cell Differentiation/genetics , Mitosis/genetics , Gene Expression Regulation, Developmental/genetics , Brain/growth & development , Brain/metabolism , Brain/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology
6.
Nat Genet ; 56(4): 686-696, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467791

ABSTRACT

To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Animals , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Promoter Regions, Genetic/genetics , Drosophila/genetics , Cell Differentiation/genetics
8.
Dev Biol ; 510: 40-49, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493946

ABSTRACT

The Spalt transcriptional regulators participate in a variety of cell fate decisions during multicellular development. Vertebrate Spalt proteins have been mostly associated to the organization of heterochromatic regions, but they also contribute regulatory functions through binding to A/T rich motives present in their target genes. The developmental processes in which the Drosophila spalt genes participate are well known through genetic analysis, but the mechanism by which the Spalt proteins regulate transcription are still unknown. Furthermore, despite the prominent changes in gene expression associated to mutations in the spalt genes, the specific DNA sequences they bind are unknow. Here, we analyze a DNA fragment present in the regulatory region of the knirps gene. Spalt proteins are candidate repressors of knirps expression during the formation of the venation pattern in the wing disc, and we identified a minimal conserved 30bp sequence that binds to Spalt major both in vivo and in vitro. This sequence mediates transcriptional repression in the central region of the wing blade, constituting the first confirmed case of a direct regulatory interaction between Spalt major and its target DNA in Drosophila. Interestingly, we also find similar sequences in a set of eight novel candidate Spalt target genes, pointing to a common mechanism of transcriptional repression mediated by Spalt proteins.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Imaginal Discs/metabolism , Repressor Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Transcription Factors/metabolism , Homeodomain Proteins/metabolism , Wings, Animal
9.
Trends Genet ; 40(6): 495-510, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490933

ABSTRACT

Single-cell phylotranscriptomics is an emerging tool to reveal the molecular and cellular mechanisms of evolution. We summarize its utility in studying the hourglass pattern of ontogenetic evolution and for understanding the evolutionary history of cell types. The developmental hourglass model suggests that the mid-embryonic stage is the most conserved period of development across species, which is supported by morphological and molecular studies. Single-cell phylotranscriptomic analysis has revealed previously underappreciated heterogeneity in transcriptome ages among lineages and cell types throughout development, and has identified the lineages and tissues that drive the whole-organism hourglass pattern. Single-cell transcriptome age analyses also provide important insights into the origin of germ layers, the different selective forces on tissues during adaptation, and the evolutionary relationships between cell types.


Subject(s)
Single-Cell Analysis , Transcriptome , Animals , Transcriptome/genetics , Evolution, Molecular , Biological Evolution , Cell Lineage/genetics , Gene Expression Regulation, Developmental/genetics , Phylogeny , Gene Expression Profiling , Humans
10.
Adv Sci (Weinh) ; 11(20): e2308018, 2024 May.
Article in English | MEDLINE | ID: mdl-38493496

ABSTRACT

Epigenetic modifiers that accumulate in oocytes, play a crucial role in steering the developmental program of cleavage embryos and initiating life. However, the identification of key maternal epigenetic regulators remains elusive. In the findings, the essential role of maternal Ep400, a chaperone for H3.3, in oocyte quality and early embryo development in mice is highlighted. Depletion of Ep400 in oocytes resulted in a decline in oocyte quality and abnormalities in fertilization. Preimplantation embryos lacking maternal Ep400 exhibited reduced major zygotic genome activation (ZGA) and experienced developmental arrest at the 2-to-4-cell stage. The study shows that EP400 forms protein complex with NFYA, occupies promoters of major ZGA genes, modulates H3.3 distribution between euchromatin and heterochromatin, promotes transcription elongation, activates the expression of genes regulating mitochondrial functions, and facilitates the expression of rate-limiting enzymes of the TCA cycle. This intricate process driven by Ep400 ensures the proper execution of the developmental program, emphasizing its critical role in maternal-to-embryonic transition.


Subject(s)
Oocytes , Zygote , Animals , Mice , Oocytes/metabolism , Zygote/metabolism , Female , Embryonic Development/genetics , Chromatin/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Epigenesis, Genetic/genetics , E1A-Associated p300 Protein
11.
Curr Opin Genet Dev ; 86: 102178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461774

ABSTRACT

The rate of embryonic development is a species-specific trait that depends on the properties of the intracellular environment, namely, the rate at which gene products flow through the central dogma of molecular biology. Although any given step in the production and degradation of gene products could theoretically be co-opted by evolution to modulate developmental speed, species are observed to accelerate or slow down all steps simultaneously. This suggests the rate of these molecular processes is jointly regulated by an upstream, ultimate factor. Mitochondrial metabolism was recently proposed to act as an ultimate regulator by controlling the pace of protein synthesis upstream of developmental tempo. Alternative candidates for ultimate regulators include species-specific gene expression levels of factors involved in the central dogma, as well as species-specific cell size. Overall, much work remains to be done before we can confidently identify the ultimate causes of species-specific developmental rates.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Mitochondria , Mitochondria/metabolism , Mitochondria/genetics , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Species Specificity , Humans , Protein Biosynthesis
12.
Curr Opin Genet Dev ; 86: 102179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490162

ABSTRACT

The chronologically ordered generation of distinct cell types is essential for the establishment of neuronal diversity and the formation of neuronal circuits. Recently, single-cell transcriptomic analyses of various areas of the developing vertebrate nervous system have provided evidence for the existence of a shared temporal patterning program that partitions neurons based on the timing of neurogenesis. In this review, I summarize the findings that lead to the proposal of this shared temporal program before focusing on the developing spinal cord to discuss how temporal patterning in general and this program specifically contributes to the ordered formation of neuronal circuits.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Neurogenesis , Spinal Cord , Vertebrates , Animals , Neural Tube/growth & development , Neurogenesis/genetics , Vertebrates/growth & development , Vertebrates/genetics , Vertebrates/embryology , Body Patterning/genetics , Gene Expression Regulation, Developmental/genetics , Spinal Cord/growth & development , Spinal Cord/embryology , Neurons/cytology , Neurons/metabolism , Humans
13.
Nat Genet ; 56(4): 697-709, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509386

ABSTRACT

In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.


Subject(s)
Genes, Homeobox , Homeodomain Proteins , Mouse Embryonic Stem Cells , Transcription Factors , Animals , Mice , Cell Differentiation , Gene Expression Regulation , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mouse Embryonic Stem Cells/metabolism
14.
Curr Opin Genet Dev ; 86: 102180, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522266

ABSTRACT

Genes regulating developmental processes have been identified, but the mechanisms underlying their expression with the correct timing are still under investigation. Several genes show oscillatory expression that regulates the timing of developmental processes, such as somitogenesis and neurogenesis. These oscillations are also important for other developmental processes, such as cell proliferation and differentiation. In this review, we discuss the significance of oscillatory gene expression in developmental time and other forms of regulation.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Neurogenesis , Gene Expression Regulation, Developmental/genetics , Animals , Cell Differentiation/genetics , Neurogenesis/genetics , Cell Proliferation/genetics , Humans , Somites/growth & development , Ultradian Rhythm/genetics
15.
J Cell Physiol ; 239(5): e31222, 2024 May.
Article in English | MEDLINE | ID: mdl-38375873

ABSTRACT

Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.


Subject(s)
Cellular Reprogramming , DNA Methylation , Epigenesis, Genetic , Pluripotent Stem Cells , Totipotent Stem Cells , Animals , Humans , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Chromatin/metabolism , Chromatin/genetics , DNA Methylation/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Pluripotent Stem Cells/metabolism , Totipotent Stem Cells/metabolism
16.
Dev Biol ; 508: 24-37, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224933

ABSTRACT

Cephalochordates occupy a key phylogenetic position for deciphering the origin and evolution of chordates, since they diverged earlier than urochordates and vertebrates. The notochord is the most prominent feature of chordates. The amphioxus notochord features coin-shaped cells bearing myofibrils. Notochord-derived hedgehog signaling contributes to patterning of the dorsal nerve cord, as in vertebrates. However, properties of constituent notochord cells remain unknown at the single-cell level. We examined these properties using Iso-seq analysis, single-cell RNA-seq analysis, and in situ hybridization (ISH). Gene expression profiles broadly categorize notochordal cells into myofibrillar cells and non-myofibrillar cells. Myofibrillar cells occupy most of the central portion of the notochord, and some cells extend the notochordal horn to both sides of the ventral nerve cord. Some notochord myofibrillar genes are not expressed in myotomes, suggesting an occurrence of myofibrillar genes that are preferentially expressed in notochord. On the other hand, non-myofibrillar cells contain dorsal, lateral, and ventral Müller cells, and all three express both hedgehog and Brachyury. This was confirmed by ISH, although expression of hedgehog in ventral Müller cells was minimal. In addition, dorsal Müller cells express neural transmission-related genes, suggesting an interaction with nerve cord. Lateral Müller cells express hedgehog and other signaling-related genes, suggesting an interaction with myotomes positioned lateral to the notochord. Ventral Müller cells also expressed genes for FGF- and EGF-related signaling, which may be associated with development of endoderm, ventral to the notochord. Lateral Müller cells were intermediate between dorsal/ventral Müller cells. Since vertebrate notochord contributes to patterning and differentiation of ectoderm (nerve cord), mesoderm (somite), and endoderm, this investigation provides evidence that an ancestral or original form of vertebrate notochord is present in extant cephalochordates.


Subject(s)
Lancelets , Animals , Phylogeny , Notochord , Single-Cell Gene Expression Analysis , Hedgehog Proteins/genetics , Vertebrates , Gene Expression Regulation, Developmental/genetics
17.
J Neurosci ; 44(8)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38267260

ABSTRACT

The inner ear sensory neurons play a pivotal role in auditory processing and balance control. Though significant progresses have been made, the underlying mechanisms controlling the differentiation and survival of the inner ear sensory neurons remain largely unknown. During development, ISL1 and POU4F transcription factors are co-expressed and are required for terminal differentiation, pathfinding, axon outgrowth and the survival of neurons in the central and peripheral nervous systems. However, little is understood about their functional relationship and regulatory mechanism in neural development. Here, we have knocked out Isl1 or Pou4f1 or both in mice of both sexes. In the absence of Isl1, the differentiation of cochleovestibular ganglion (CVG) neurons is disturbed and with that Isl1-deficient CVG neurons display defects in migration and axon pathfinding. Compound deletion of Isl1 and Pou4f1 causes a delay in CVG differentiation and results in a more severe CVG defect with a loss of nearly all of spiral ganglion neurons (SGNs). Moreover, ISL1 and POU4F1 interact directly in developing CVG neurons and act cooperatively as well as independently in regulating the expression of unique sets of CVG-specific genes crucial for CVG development and survival by binding to the cis-regulatory elements including the promoters of Fgf10, Pou4f2, and Epha5 and enhancers of Eya1 and Ntng2 These findings demonstrate that Isl1 and Pou4f1 are indispensable for CVG development and maintenance by acting epistatically to regulate genes essential for CVG development.


Subject(s)
Ear, Inner , Gene Expression Regulation, Developmental , Animals , Female , Male , Mice , Ganglia/metabolism , Gene Expression Regulation, Developmental/genetics , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Trends Genet ; 40(3): 238-249, 2024 03.
Article in English | MEDLINE | ID: mdl-38262796

ABSTRACT

Maternal mRNAs accumulate during egg growth and must be judiciously degraded or translated to ensure successful development of mammalian embryos. In this review we integrate recent investigations into pathways controlling rapid degradation of maternal mRNAs during the maternal-to-zygotic transition. Degradation is not indiscriminate, and some mRNAs are selectively protected and rapidly translated after fertilization for reprogramming the zygotic genome during early embryogenesis. Oocyte specific cofactors and pathways have been illustrated to control different futures of maternal mRNAs. We discuss mechanisms that control the fate of maternal mRNAs during late oogenesis and after fertilization. Issues to be resolved in current maternal mRNA research are described, and future research directions are proposed.


Subject(s)
Embryonic Development , RNA, Messenger, Stored , Animals , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism , Embryonic Development/genetics , Oocytes , Oogenesis/genetics , Zygote , Gene Expression Regulation, Developmental/genetics , Mammals/genetics
19.
Dev Biol ; 508: 123-137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290645

ABSTRACT

microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.


Subject(s)
MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Embryo, Nonmammalian/metabolism , Sea Urchins/genetics , Sea Urchins/metabolism , Signal Transduction/genetics , Gene Regulatory Networks , Gene Expression Regulation, Developmental/genetics , Mesoderm/metabolism
20.
Curr Opin Genet Dev ; 84: 102148, 2024 02.
Article in English | MEDLINE | ID: mdl-38271845

ABSTRACT

Specifically timed pulses of the moulting hormone ecdysone are necessary for developmental progression in insects, guiding development through important milestones such as larval moults, pupation and metamorphosis. It also coordinates the acquisition of cell identities, known as cell patterning, and growth in a tissue-specific manner. In the absence of ecdysone, the ecdysone receptor heterodimer Ecdysone Receptor and Ultraspiracle represses expression of target primary response genes, which become de-repressed as the ecdysone titre rises. However, ecdysone signalling elicits both repressive and activating responses in a temporal and tissue-specific manner. To understand how ecdysone achieves such specificity, this review explores the layers of gene regulation involved in stage-appropriate ecdysone responses in Drosophila fruit flies.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Ecdysone/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Steroids , Gene Expression Regulation , Larva , Gene Expression Regulation, Developmental/genetics , Drosophila melanogaster
SELECTION OF CITATIONS
SEARCH DETAIL
...