Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.664
Filter
1.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718571

ABSTRACT

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Light , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Hypocotyl/growth & development , Hypocotyl/metabolism , Hypocotyl/radiation effects , Hypocotyl/genetics , Cryptochromes/metabolism , Cryptochromes/genetics , DNA Repair/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , Morphogenesis/radiation effects , Blue Light
2.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786062

ABSTRACT

Pollen, the male gametophyte of seed plants, is extremely sensitive to UV light, which may prevent fertilization. As a result, strategies to improve plant resistance to solar ultraviolet (UV) radiation are required. The tardigrade damage suppressor protein (Dsup) is a putative DNA-binding protein that enables tardigrades to tolerate harsh environmental conditions, including UV radiation, and was therefore considered as a candidate for reducing the effects of UV exposure on pollen. Tobacco pollen was genetically engineered to express Dsup and then exposed to UV-B radiation to determine the effectiveness of the protein in increasing pollen resistance. To establish the preventive role of Dsup against UV-B stress, we carried out extensive investigations into pollen viability, germination rate, pollen tube length, male germ unit position, callose plug development, marker protein content, and antioxidant capacity. The results indicated that UV-B stress has a significant negative impact on both pollen grain and pollen tube growth. However, Dsup expression increased the antioxidant levels and reversed some of the UV-B-induced changes to pollen, restoring the proper distance between the tip and the last callose plug formed, as well as pollen tube length, tubulin, and HSP70 levels. Therefore, the expression of heterologous Dsup in pollen may provide the plant male gametophyte with enhanced responses to UV-B stress and protection against harmful environmental radiation.


Subject(s)
Nicotiana , Plant Proteins , Pollen , Ultraviolet Rays , Nicotiana/radiation effects , Nicotiana/genetics , Nicotiana/metabolism , Pollen/radiation effects , Pollen/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Stress, Physiological/radiation effects , Pollen Tube/metabolism , Pollen Tube/radiation effects , Pollen Tube/genetics , Plants, Genetically Modified , Antioxidants/metabolism , Germination/radiation effects , Gene Expression Regulation, Plant/radiation effects
3.
Plant Physiol Biochem ; 211: 108675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705047

ABSTRACT

Controlling light qualities have been acknowledged as an effective method to enhance the efficiency of phytoremediation, as light has a significant impact on plant growth. This study examined the effects of light qualities on cadmium (Cd) tolerance in aquatic plant Egeria densa using a combination of biochemical and transcriptomic approaches. The study revealed that E. densa exhibits higher resistance to Cd toxicity under red light (R) compared to blue light (B), as evidenced by a significant decrease in photosynthetic inhibition and damage to organelle ultrastructure. After Cd exposure, there was a significantly reduced Cd accumulation and enhanced levels of both glutathione reductase (GR) activity and glutathione (GSH), along with an increase in jasmonic acid (JA) in R-grown E. densa compared to B. Transcriptional analysis revealed that R caused an up-regulation of Cd transporter genes such as ABCG (G-type ATP-binding cassette transporter), ABCC (C-type ATP-binding cassette transporter), and CAX2 (Cation/H+ exchanger 2), while down-regulated the expression of HIPP26 (Heavy metal-associated isoprenylated plant protein 26), resulting in reduced Cd uptake and enhanced Cd exportation and sequestration into vacuoles. Moreover, the expression of genes involved in phytochromes and JA synthesis was up-regulated in Cd treated E. densa under R. In summary, the results suggest that R could limit Cd accumulation and improve antioxidant defense to mitigate Cd toxicity in E. densa, which might be attributed to the enhanced JA and phytochromes. This study provides a foundation for using light control methods with aquatic macrophytes to remediate heavy metal contamination in aquatic systems.


Subject(s)
Antioxidants , Cadmium , Light , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/metabolism , Hydrocharitaceae/metabolism , Hydrocharitaceae/drug effects , Hydrocharitaceae/radiation effects , Oxylipins/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Cyclopentanes/metabolism , Photosynthesis/drug effects , Glutathione/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Red Light
4.
Plant Physiol Biochem ; 211: 108698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714132

ABSTRACT

Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Breaks, Double-Stranded , DNA Repair , Flavonoids , Gene Expression Regulation, Plant , Transcription Factors , Ultraviolet Rays , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flavonoids/biosynthesis , Flavonoids/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Breaks, Double-Stranded/radiation effects , Gene Expression Regulation, Plant/radiation effects , Repressor Proteins
5.
J Integr Plant Biol ; 66(5): 956-972, 2024 May.
Article in English | MEDLINE | ID: mdl-38558526

ABSTRACT

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Receptors for Activated C Kinase , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Hypocotyl/growth & development , Hypocotyl/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Gene Expression Regulation, Plant/radiation effects , Light , Signal Transduction , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Light Signal Transduction , Phosphorylation
6.
Plant Biol (Stuttg) ; 26(4): 521-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568875

ABSTRACT

Plants face a wide range of biotic and abiotic stress conditions, which are further intensified by climate change. Among these stressors, increased irradiation in terms of intensity and wavelength range can lead to detrimental effects, such as chlorophyll degradation, destruction of the PSII reaction center, generation of ROS, alterations to plant metabolism, and even plant death. Here, we investigated the responses of two citrus genotypes, Citrus macrophylla (CM), and Troyer citrange (TC) to UV-B light-induced stress, by growing plants of both genotypes under control and UV-B stress conditions for 5 days to evaluate their tolerance mechanisms. TC seedlings had higher sensitivity to UV-B light than CM seedlings, as they showed more damage and increased levels of oxidative harm (indicated by the accumulation of MDA). In contrast, CM seedlings exhibited specific adaptive mechanisms, including accumulation of higher levels of proline under stressful conditions, and enhanced antioxidant capacity, as evidenced by increased ascorbate peroxidase activity and upregulation of the CsAPX2 gene. Phytohormone accumulation patterns were similar in both genotypes, with a decrease in ABA content in response to UV-B light. Furthermore, expression of genes involved in light perception and response was specifically affected in the tolerant CM seedlings, which exhibited higher expression of CsHYH/CsHY5 and CsRUP1-2 genes. These findings underscore the importance of the antioxidant system in citrus plants subjected to UV-B light-induced stress and suggest that CsHYH/CsHY5 and CsRUP1-2 could be considered genes associated with tolerance to such challenging conditions.


Subject(s)
Antioxidants , Citrus , Proline , Seedlings , Ultraviolet Rays , Citrus/radiation effects , Citrus/genetics , Citrus/physiology , Citrus/metabolism , Proline/metabolism , Antioxidants/metabolism , Seedlings/radiation effects , Seedlings/physiology , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological , Gene Expression Regulation, Plant/radiation effects , Genotype , Plant Growth Regulators/metabolism , Oxidative Stress/radiation effects , Adaptation, Physiological/radiation effects , Adaptation, Physiological/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
7.
Nat Commun ; 15(1): 3467, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658612

ABSTRACT

Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive. Here, we show that the quadruple mutant of SUPPRESSOR OF PHYA-105 family members (SPA1-SPA4) display repressed translation efficiency after light illumination. Moreover, SPA1 directly phosphorylates the eIF2α C-terminus under light conditions. The C-term-phosphorylated eIF2α promotes translation efficiency and photomorphogenesis, whereas the C-term-unphosphorylated eIF2α results in a decreased translation efficiency. We also demonstrate that the phosphorylated eIF2α enhances ternary complex assembly by promoting its affinity to eIF2ß and eIF2γ. This study reveals a unique mechanism by which light promotes translation via SPA1-mediated phosphorylation of the C-terminus of eIF2α in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Cycle Proteins , Eukaryotic Initiation Factor-2 , Light , Protein Biosynthesis , Phosphorylation , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Eukaryotic Initiation Factor-2/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Biosynthesis/radiation effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Gene Expression Regulation, Plant/radiation effects , Mutation
8.
J Integr Plant Biol ; 66(5): 897-908, 2024 May.
Article in English | MEDLINE | ID: mdl-38506424

ABSTRACT

The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cyclopentanes , Gene Expression Regulation, Plant , Oxylipins , Ultraviolet Rays , Arabidopsis/radiation effects , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Cyclopentanes/metabolism , Oxylipins/metabolism , Signal Transduction/radiation effects , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Lipoxygenase/metabolism , Lipoxygenase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding/radiation effects , Adaptation, Physiological/radiation effects , Adaptation, Physiological/genetics , Cell Nucleus/metabolism , Lipoxygenases
9.
J Integr Plant Biol ; 66(5): 973-985, 2024 May.
Article in English | MEDLINE | ID: mdl-38391049

ABSTRACT

Starch is a major storage carbohydrate in plants and is critical in crop yield and quality. Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues; however, the precise molecular mechanisms governing this process remain largely unknown. In this study, we revealed that high red to far-red (high R:FR) light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes, whereas low R:FR light suppress these processes. Arabidopsis phytochrome B (phyB), the primary R and FR photoreceptor, was identified as a critical positive regulator in this process. Downstream of phyB, basic leucine zipper transcription factor ELONGATED HYPOCOTYL5 (HY5) was found to enhance starch synthesis, whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, and PIF5) inhibit starch synthesis in Arabidopsis leaves. Notably, HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS, SS3, and SS4, which leads to antagonistic regulation of their expression and, consequently, starch synthesis. Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions. Conversely, under low R:FR light, PIFs predominantly inhibit starch synthesis. This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation, shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Phytochrome B , Starch , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Phytochrome B/metabolism , Phytochrome B/genetics , Starch/metabolism , Starch/biosynthesis , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Light , Light Signal Transduction , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
10.
Phytochemistry ; 213: 113766, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37343736

ABSTRACT

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Subject(s)
Food Storage , Fragaria , Fruit , Niacinamide , Catalase , Crop Production/methods , Electron Transport Complex II , Food Storage/methods , Fragaria/drug effects , Fragaria/metabolism , Fragaria/radiation effects , Fruit/drug effects , Fruit/metabolism , Fruit/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , NAD/metabolism , NADP/metabolism , Niacinamide/pharmacology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger , Superoxide Dismutase , Ultraviolet Rays
11.
Plant Cell Environ ; 46(5): 1596-1609, 2023 05.
Article in English | MEDLINE | ID: mdl-36757089

ABSTRACT

Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.


Subject(s)
Camellia sinensis , Gene Expression Regulation, Plant , Light , gamma-Glutamyltransferase , Camellia sinensis/enzymology , Camellia sinensis/genetics , gamma-Glutamyltransferase/genetics , gamma-Glutamyltransferase/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Proteolysis/radiation effects
12.
Gene ; 823: 146384, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35248661

ABSTRACT

UV-B radiation is a typical environmental stressor that can promote phytochemical accumulation in plants. Taxus species are highly appreciated due to the existence of bioactive taxoids (especially paclitaxel) and flavonoids. However, the effect of UV-B radiation on taxoid and flavonoid biosynthesis in Taxus cuspidata Sieb. et Zucc. is largely unknown. In the present work, the accumulation of taxoids and flavonoids in T. cuspidata plantlets was significantly induced by 12 and 24 h of UV-B radiation (3 W/m2), and a large number of significantly differentially expressed genes were obtained via transcriptomic analysis. The significant up-regulation of antioxidant enzyme- and flavonoid biosynthesis-related genes (phenylalanine ammonia lyase 1, chalcone synthase 2, flavonol synthase 1, and flavonoid 3', 5'-hydroxylase 2), suggested that UV-B might cause the oxidative stress thus promoting flavonoid accumulation in T. cuspidata. Moreover, the expression of some genes related to jasmonate metabolism and taxoid biosynthesis (taxadiene synthase, baccatin III-3-amino 3-phenylpropanoyltransferase 1, taxadiene-5α-hydroxylase, and ethylene response factors 15) was significantly activated, which indicated that UV-B might initiate jasmonate signaling pathway that contributed to taxoid enhancement in T. cuspidata. Additionally, the identification of some up-regulated genes involved in lignin biosynthesis pathway indicated that the lignification process in T. cuspidata might be stimulated for defense against UV-B radiation. Overall, our findings provided a better understanding of some potential key genes associated with flavonoid and taxoid biosynthesis in T. cuspidata exposed to UV-B radiation.


Subject(s)
Biosynthetic Pathways , Flavonoids/biosynthesis , Gene Expression Profiling/methods , Plant Stems/growth & development , Taxoids/metabolism , Taxus/genetics , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant/radiation effects , Oxidative Stress , Plant Proteins/genetics , Plant Stems/metabolism , Plant Stems/radiation effects , RNA-Seq , Tandem Mass Spectrometry , Taxus/growth & development , Taxus/metabolism , Taxus/radiation effects , Ultraviolet Rays/adverse effects
13.
PLoS Genet ; 18(1): e1009979, 2022 01.
Article in English | MEDLINE | ID: mdl-35051177

ABSTRACT

Radiation-induced mutations have been detected by whole-genome sequencing analyses of self-pollinated generations of mutagenized plants. However, large DNA alterations and mutations in non-germline cells were likely missed. In this study, in order to detect various types of mutations in mutagenized M1 plants, anthocyanin pigmentation was used as a visible marker of mutations. Arabidopsis seeds heterozygous for the anthocyanin biosynthetic genes were irradiated with gamma-rays. Anthocyanin-less vegetative sectors resulting from a loss of heterozygosity were isolated from the gamma-irradiated M1 plants. The whole-genome sequencing analysis of the sectors detected various mutations, including structural variations (SVs) and large deletions (≥100 bp), both of which have been less characterized in the previous researches using gamma-irradiated plant genomes of M2 or later generations. Various types of rejoined sites were found in SVs, including no-insertion/deletion (indel) sites, only-deletion sites, only-insertion sites, and indel sites, but the rejoined sites with 0-5 bp indels represented most of the SVs. Examinations of the junctions of rearrangements (SVs and large deletions), medium deletions (10-99 bp), and small deletions (2-9 bp) revealed unique features (i.e., frequency of insertions and microhomology) at the rejoined sites. These results suggest that they were formed preferentially via different processes. Additionally, mutations that occurred in putative single M1 cells were identified according to the distribution of their allele frequency. The estimated mutation frequencies and spectra of the M1 cells were similar to those of previously analyzed M2 cells, with the exception of the greater proportion of rearrangements in the M1 cells. These findings suggest there are no major differences in the small mutations (<100 bp) between vegetative and germline cells. Thus, this study generated valuable information that may help clarify the nature of gamma-irradiation-induced mutations and their occurrence in cells that develop into vegetative or reproductive tissues.


Subject(s)
Anthocyanins/metabolism , Arabidopsis/growth & development , Mutation , Whole Genome Sequencing/methods , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Gene Expression Regulation, Plant/radiation effects , Gene Frequency , High-Throughput Nucleotide Sequencing , Loss of Heterozygosity , Quantitative Trait Loci
14.
Biochem Biophys Res Commun ; 589: 204-208, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34922204

ABSTRACT

microRNA encoded peptide (miPEP) has been shown to have potential to regulate corresponding miRNA and associated function. miPEP858a regulate phenylpropanoid pathway and plant development. Several studies have suggested that various factors like light, temperature, heavy metals etc. can regulate gene and their associated functions. However, what are the regulators of miPEP are not reported till date. In this study we have reported that light directly regulates miPEP858a accumulation in Arabidopsis thaliana. Peptide assay in light and dark clearly showed the essential requirement of light. Along with this, we have reported that HY5 a shoot-to-root mobile, light-mediated transcription factor plays a crucial role in the function of miPEP858a. The transcript and endogenous protein accumulation of miPEP858a in hy5-215, OXHY5/hy5, and cop1-4 suggested that the HY5 positively regulates miPEP858a. In addition to that this study also include grafting assay between shoot of different mutant and transgenic lines with root of miPEP858a promoter:reporter lines and promoter deletion construct experiment clearly suggested that HY5 a transcription factor regulates light-dependent expression and accumulation of miPEP858a.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Light , MicroRNAs , Peptides , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant/radiation effects , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Peptides/chemistry , Peptides/metabolism , Plant Roots/metabolism , Plant Roots/radiation effects , Plant Shoots/metabolism , Plant Shoots/radiation effects , Transcription Factors/metabolism , Transcription, Genetic
16.
Cells ; 10(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34943792

ABSTRACT

Varying the spectral composition of light is one of the ways to accelerate the growth of conifers under artificial conditions for the development of technologies and to obtain sustainable seedlings required to preserve the existing areas of forests. We studied the influence of light of different quality on the growth, gas exchange, fluorescence indices of Chl a, and expression of key light-dependent genes of Pinus sylvestris L. seedlings. It was shown that in plants growing under red light (RL), the biomass of needles and root system increased by more than two and three times, respectively, compared with those of the white fluorescent light (WFL) control. At the same time, the rates of photosynthesis and respiration in RL and blue light (BL) plants were lower than those of blue red light (BRL) plants, and the difference between the rates of photosynthesis and respiration, which characterizes the carbon balance, was maximum under RL. RL influenced the number of xylem cells, activated the expression of genes involved in the transduction of cytokinin (Histidine-containing phosphotransfer 1, HPT1, Type-A Response Regulators, RR-A) and auxin (Auxin-induced protein 1, Aux/IAA) signals, and reduced the expression of the gene encoding the transcription factor phytochrome-interacting factor 3 (PIF3). It was suggested that RL-induced activation of key genes of cytokinin and auxin signaling might indicate a phytochrome-dependent change in cytokinins and auxins activity.


Subject(s)
Gene Expression Regulation, Plant/radiation effects , Light , Photosynthesis/genetics , Photosynthesis/radiation effects , Pinus sylvestris/growth & development , Pinus sylvestris/genetics , Seedlings/genetics , Seedlings/radiation effects , Biomass , Carbon Dioxide/metabolism , Fluorescence , Pigments, Biological/metabolism , Pinus sylvestris/anatomy & histology , Pinus sylvestris/radiation effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Cells ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34943893

ABSTRACT

In vascular plants, cryptochromes acting as blue-light photoreceptors have various functions to adapt plants to the fluctuating light conditions on land, while the roles of cryptochromes in bryophytes have been rarely reported. In this study, we investigated functions of a single-copy ortholog of cryptochrome (MpCRY) in the liverwort Marchantia polymorpha. Knock-out of MpCRY showed that a large number of the mutant plants exhibited asymmetric growth of thalli under blue light. Transcriptome analyses indicated that MpCRY is mainly involved in photosynthesis and sugar metabolism. Further physiological analysis showed that Mpcry mutant exhibited a reduction in CO2 uptake and sucrose metabolism. In addition, exogenous application of sucrose or glucose partially restored the symmetrical growth of the Mpcry mutant thalli. Together, these results suggest that MpCRY is involved in the symmetrical growth of thallus and the regulation of carbon fixation and sucrose metabolism in M. polymorpha.


Subject(s)
Carbon Cycle , Cryptochromes/metabolism , Marchantia/metabolism , Sucrose/metabolism , Amino Acid Sequence , Carbon Cycle/radiation effects , Cryptochromes/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Glucose/metabolism , Light , Marchantia/radiation effects , Mutation/genetics , Photosynthesis/genetics , Photosynthesis/radiation effects , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Transcription, Genetic/radiation effects
18.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884591

ABSTRACT

The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Plant/radiation effects , Light , Plant Proteins/metabolism , Plant Roots/metabolism , Plants/metabolism , Seedlings/metabolism , Plant Proteins/genetics , Plant Roots/radiation effects , Plants/radiation effects , Seedlings/radiation effects
19.
Plant Commun ; 2(6): 100245, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34778751

ABSTRACT

Improvements in plant architecture, such as reduced plant height under high-density planting, are important for agricultural production. Light and gibberellin (GA) are essential external and internal cues that affect plant architecture. In this study, we characterize the direct interaction of distinct receptors that link light and GA signaling in Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum L.). We show that the light receptor CRY1 represses GA signaling through interaction with all five DELLA proteins and promotion of RGA protein accumulation in Arabidopsis. Genetic analysis shows that CRY1-mediated growth repression is achieved by means of the DELLA proteins. Interestingly, we find that CRY1 also directly interacts with the GA receptor GID1 to competitively inhibit the GID1-GAI interaction. We also show that overexpression of TaCRY1a reduces plant height and coleoptile growth in wheat and that TaCRY1a interacts with both TaGID1 and Rht1 to competitively attenuate the TaGID1-Rht1 interaction. Based on these findings, we propose that the photoreceptor CRY1 competitively inhibits the GID1-DELLA interaction, thereby stabilizing DELLA proteins and enhancing their repression of plant growth.


Subject(s)
Adaptation, Ocular/genetics , Arabidopsis/growth & development , Gibberellins/metabolism , Nicotiana/growth & development , Receptors, Cell Surface/metabolism , Signal Transduction/radiation effects , Triticum/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant/radiation effects , Genes, Plant , Genetic Variation , Genotype , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/radiation effects , Plants, Genetically Modified , Receptors, Cell Surface/genetics , Signal Transduction/drug effects , Nicotiana/genetics , Nicotiana/metabolism , Triticum/genetics , Triticum/metabolism
20.
PLoS One ; 16(11): e0260468, 2021.
Article in English | MEDLINE | ID: mdl-34843573

ABSTRACT

Centella asiatica is rich in medical and cosmetic properties. While physiological responses of C. asiatica to light have been widely reported, the knowledge of the effects of light on its gene expression is sparse. In this study, we used RNA sequencing (RNA-seq) to investigate the expression of the C. asiatica genes in response to monochromatic red and blue light. Most of the differentially expressed genes (DEGs) under blue light were up-regulated but those under red light were down-regulated. The DEGs encoded for CRY-DASH and UVR3 were among up-regulated genes that play significant roles in responses under blue light. The DEGs involved in the response to photosystem II photodamages and in the biosynthesis of photoprotective xanthophylls were also up-regulated. The expression of flavonoid biosynthetic DEGs under blue light was up-regulated but that under red light was down-regulated. Correspondingly, total flavonoid content under blue light was higher than that under red light. The ABI5, MYB4, and HYH transcription factors appeared as hub nodes in the protein-protein interaction network of the DEGs under blue light while ERF38 was a hub node among the DEGs under red light. In summary, stress-responsive genes were predominantly up-regulated under blue light to respond to stresses that could be induced under high energy light. The information obtained from this study can be useful to better understand the responses of C. asiatica to different light qualities.


Subject(s)
Centella/genetics , Gene Expression Regulation, Plant/radiation effects , Transcriptome/radiation effects , Centella/radiation effects , Genes, Plant/radiation effects , Light , Stress, Physiological/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...