Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65.291
Filter
1.
Mol Biol Rep ; 51(1): 677, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796641

ABSTRACT

BACKGROUND: One of the main causes of diabetic nephropathy is oxidative stress induced by hyperglycemia. Apelin inhibits insulin secretion. Besides, renal expression of TGF-ß is increased in diabetes mellitus (DM). The preventive effect of quercetin (Q) against renal functional disorders and tissue damage developed by DM in rats was assessed. METHODS: Forty male Wistar rats were grouped into normal control (NC), normal + quercetin (NQ: quercetin, 50 mg/kg/day by gavage), diabetic control (DC: streptozotocin, 65 mg/kg, i.p.), diabetic + quercetin pretreatment (D + Qpre), and diabetic + quercetin post-treatment (D + Qpost). All samples (24-hour urine, plasma, pancreatic, and renal tissues) were obtained at the terminal of the experiment. RESULTS: Compared to NC and NQ groups, DM ended in elevated plasma and glucose levels, decreased plasma insulin level, kidney dysfunction, augmented levels of malondialdehyde, decreased level of reduced glutathione, reduced enzymatic activities of superoxide dismutase and catalase, elevated gene expression levels of apelin and TGF-ß, also renal and pancreatic histological damages. Quercetin administration diminished entire the changes. However, the measure of improvement in the D + Qpre group was higher than that of the D + Qpost group. CONCLUSION: Quercetin prevents renal dysfunction induced by DM, which might be related to the diminution of lipid peroxidation, strengthening of antioxidant systems, and prevention of the apelin/ TGF-ß signaling pathway.


Subject(s)
Apelin , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Kidney , Oxidative Stress , Quercetin , Rats, Wistar , Transforming Growth Factor beta , Animals , Quercetin/pharmacology , Rats , Male , Transforming Growth Factor beta/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/drug therapy , Apelin/metabolism , Oxidative Stress/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Insulin/metabolism , Insulin/blood , Diabetes Mellitus, Type 1/metabolism , Gene Expression Regulation/drug effects
2.
Reprod Domest Anim ; 59(5): e14624, 2024 May.
Article in English | MEDLINE | ID: mdl-38798196

ABSTRACT

The study aimed to assess the local gene expression of adipokine members, namely vaspin, adiponectin, visfatin, resistin and their associated receptors - heat shock 70 protein 5 (HSPA5), adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) - in bovine follicles during the preovulatory period and early corpus luteum development. Follicles were collected before gonadotropin-releasing hormone (GnRH) treatment (0 h) and at 4, 10, 20, 25 and 60 h after GnRH application through transvaginal ovariectomy (n = 5 samples/group). Relative mRNA expression levels were quantified using real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin exhibited high mRNA levels immediately 4 h after GnRH application, followed by a significant decrease. Adiponectin mRNA levels were elevated at 25 h after GnRH treatment. AdipoR2 exhibited late-stage upregulation, displaying increased expression at 20, 25 and 60 h following GnRH application. Visfatin showed upregulation at 20 h post-GnRH application. In conclusion, the observed changes in adipokine family members within preovulatory follicles, following experimentally induced ovulation, may constitute crucial components of the local mechanisms regulating final follicle growth and development.


Subject(s)
Adipokines , Corpus Luteum , Gonadotropin-Releasing Hormone , Ovarian Follicle , Ovulation , Animals , Female , Cattle/physiology , Corpus Luteum/metabolism , Corpus Luteum/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovulation/physiology , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Adipokines/metabolism , Adipokines/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Regulation/drug effects , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism
3.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38809145

ABSTRACT

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Subject(s)
Gene Expression Regulation , Glucose , Osteoblasts , Osteoblasts/metabolism , Osteoblasts/drug effects , Animals , Glucose/metabolism , Rats , Gene Expression Regulation/drug effects , Gene Expression Profiling , Hyperglycemia/metabolism , Hyperglycemia/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Transcriptome , Osteogenesis/drug effects , Osteogenesis/genetics , Cell Survival/drug effects , Transcription, Genetic/drug effects , Cells, Cultured , Oxidative Stress/drug effects
4.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691185

ABSTRACT

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Subject(s)
Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
5.
Front Immunol ; 15: 1397432, 2024.
Article in English | MEDLINE | ID: mdl-38751427

ABSTRACT

Introduction: The release of mature interleukin (IL-) 1ß from osteoblasts in response to danger signals is tightly regulated by the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin-containing protein 3 (NLRP3) inflammasome. These danger signals include wear products resulting from aseptic loosening of joint arthroplasty. However, inflammasome activation requires two different signals: a nuclear factor-kappa B (NF-κB)-activating priming signal and an actual inflammasome-activating signal. Since human osteoblasts react to wear particles via Toll-like receptors (TLR), particles may represent an inflammasome activator that can induce both signals. Methods: Temporal gene expression profiles of TLRs and associated intracellular signaling pathways were determined to investigate the period when human osteoblasts take up metallic wear particles after initial contact and initiate a molecular response. For this purpose, human osteoblasts were treated with metallic particles derived from cobalt-chromium alloy (CoCr), lipopolysaccharides (LPS), and tumor necrosis factor-alpha (TNF) alone or in combination for incubation times ranging from one hour to three days. Shortly after adding the particles, their uptake was observed by the change in cell morphology and spectral data. Results: Exposure of osteoblasts to particles alone increased NLRP3 inflammasome-associated genes. The response was not significantly enhanced when cells were treated with CoCr + LPS or CoCr + TNF, whereas inflammation markers were induced. Despite an increase in genes related to the NLRP3 inflammasome, the release of IL-1ß was unaffected after contact with CoCr particles. Discussion: Although CoCr particles affect the expression of NLRP3 inflammasome-associated genes, a single stimulus was not sufficient to prime and activate the inflammasome. TNF was able to prime the NLRP3 inflammasome of human osteoblasts.


Subject(s)
Gene Expression Regulation , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Osteoblasts , Tumor Necrosis Factor-alpha , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteoblasts/immunology , Inflammasomes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Gene Expression Regulation/drug effects , Cells, Cultured , Signal Transduction/drug effects
6.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38755006

ABSTRACT

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Subject(s)
Epigenesis, Genetic , Glucose , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Glucose/metabolism , Epigenesis, Genetic/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Chromatin/metabolism , Chromatin/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Transcription, Genetic/drug effects , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Sulfoxides/pharmacology
7.
PLoS One ; 19(5): e0303528, 2024.
Article in English | MEDLINE | ID: mdl-38753618

ABSTRACT

Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,ß; TRα,ß) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,ß, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRß and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.


Subject(s)
Arsenic , Hypothalamus , Mitochondria , PPAR gamma , RNA, Messenger , Animals , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Mitochondria/metabolism , Mitochondria/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Arsenic/toxicity , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/genetics , Male , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Cell Respiration/drug effects , Gene Expression Regulation/drug effects
8.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731499

ABSTRACT

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Carbon , Maillard Reaction , Mesenchymal Stem Cells , PPAR gamma , Sterol Regulatory Element Binding Protein 1 , Humans , Carbon/chemistry , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Quantum Dots/chemistry , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Sulfur/chemistry
9.
Molecules ; 29(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731523

ABSTRACT

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Subject(s)
Cell Survival , Macrophages , Microplastics , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/metabolism , Animals , Mice , Nanoparticles/chemistry , Plastics/chemistry , RAW 264.7 Cells , Gene Expression/drug effects , Cell Line , Gene Expression Regulation/drug effects , Waste Products/analysis , Particle Size
10.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731597

ABSTRACT

Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.


Subject(s)
Artemisia , Artemisinins , Fibroblasts , Fibrosis , Humans , Artemisinins/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Survival/drug effects , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Actins/metabolism , Actins/genetics , Artesunate/pharmacology , Gene Expression Regulation/drug effects , Artemether/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology
11.
Anim Biotechnol ; 35(1): 2344208, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38741260

ABSTRACT

Garlic, known for its immune-modulating and antibiotic properties, contains lectins that possess antimicrobial and immunomodulatory effects. Galectins (Gals), which bind ß-galactosides, play a role in modulating immunity and pathological processes. It is hypothesized that garlic's lectin components interfere with animal lectins. St. Croix sheep, known for their resistance to parasites and adaptability, are influenced by dietary supplements for innate immunity. This study evaluated the impact of garlic drench on Galectin gene expression in St. Croix sheep. Adult non-lactating ewes received either garlic juice concentrate or sterile distilled water for four weeks. Blood samples were collected, and plasma and whole blood cells were separated. Galectin secretion was assessed using a Sheep-specific ELISA, while Galectin gene transcription was analyzed through real-time PCR. Garlic administration upregulated LGALS-3 gene expression and significantly increased total plasma protein concentration. Garlic supplementation also affected Galectin secretion, with Gal-1, Gal-3, and Gal-9 showing differential effects.


Subject(s)
Galectins , Garlic , Animals , Garlic/chemistry , Galectins/genetics , Galectins/metabolism , Sheep , Female , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Expression/drug effects , Animal Feed/analysis
12.
Pak J Pharm Sci ; 37(1): 79-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741403

ABSTRACT

Vanadyl sulfate (VS), is a component of some food supplements and experimental drugs. This study was carried out to present a novel method for induction of Type 2 diabetes in rats, then for the first time in literature, for evaluating the effect of VS on metabolic parameters and gene expression, simultaneously. 40 male wistar rats were distributed between the four groups, equally. High fat diet and fructose were used for diabetes induction. Diabetic rats treated by two different dose of VS for 12 weeks. Metabolic profiles were evaluated by commercial available kits and gene expression were assayed by real time-PCR. Compared to controls, in non-treated diabetic rats, weight, glucose, triglyceride, total cholesterol, insulin and insulin resistance were increased significantly (p-value <0.05) that indicated induction of type 2 diabetes. Further, the results showed that VS significantly reduced weight, insulin secretion, Tumor Necrosis Factor-alpha (TNF-α) genes expression, lipid profiles except HDL that we couldn't find any significant change and increased Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) gene expression in VS-treated diabetic animals in comparison with the non-treated diabetics. Our study demonstrated that vanadyl supplementation in diabetic rats had advantageous effects on metabolic profiles and related gene expression.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , PPAR gamma , Rats, Wistar , Tumor Necrosis Factor-alpha , Vanadium Compounds , Animals , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Blood Glucose/drug effects , Blood Glucose/metabolism , Vanadium Compounds/pharmacology , Insulin Resistance , Rats , Insulin/blood , Hypoglycemic Agents/pharmacology , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732159

ABSTRACT

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Subject(s)
Lung , Mice, Knockout , Receptor for Advanced Glycation End Products , Tobacco Smoke Pollution , Transcriptome , Animals , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Mice , Lung/metabolism , Lung/pathology , Lung/drug effects , Tobacco Smoke Pollution/adverse effects , Mice, Inbred C57BL , Signal Transduction/drug effects , Gene Expression Regulation/drug effects , Male , Gene Expression Profiling
14.
Aquat Toxicol ; 271: 106925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718521

ABSTRACT

Excessive antibiotic use has led to the spread of antibiotic resistance genes (ARGs), impacting gut microbiota and host health. However, the effects of antibiotics on amphibian populations remain unclear. We investigated the impact of oxytetracycline (OTC) and ciprofloxacin (CIP) on Chinese giant salamanders (Andrias davidianus), focusing on gut microbiota, ARGs, and gene expression by performing metagenome and transcriptome sequencing. A. davidianus were given OTC (20 or 40 mg/kg) or CIP (50 or 100 mg/kg) orally for 7 days. The results revealed that oral administration of OTC and CIP led to distinct changes in microbial composition and functional potential, with CIP treatment having a greater impact than OTC. Antibiotic treatment also influenced the abundance of ARGs, with an increase in fluoroquinolone and multi-drug resistance genes observed post-treatment. The construction of metagenome-assembled genomes (MAGs) accurately validated that CIP intervention enriched fish-associated potential pathogens Aeromonas hydrophila carrying an increased number of ARGs. Additionally, mobile genetic elements (MGEs), such as phages and plasmids, were implicated in the dissemination of ARGs. Transcriptomic analysis of the gut revealed significant alterations in gene expression, particularly in immune-related pathways, with differential effects observed between OTC and CIP treatments. Integration of metagenomic and transcriptomic data highlighted potential correlations between gut gene expression and microbial composition, suggesting complex interactions between the host gut and its gut microbiota in response to antibiotic exposure. These findings underscore the importance of understanding the impact of antibiotic intervention on the gut microbiome and host health in amphibians, particularly in the context of antibiotic resistance and immune function.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Gastrointestinal Microbiome , Oxytetracycline , Urodela , Animals , Oxytetracycline/toxicity , Gastrointestinal Microbiome/drug effects , Ciprofloxacin/pharmacology , Ciprofloxacin/toxicity , Urodela/genetics , Urodela/microbiology , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Transcriptome/drug effects , Metagenome , Metagenomics , Gene Expression Profiling , Water Pollutants, Chemical/toxicity , Aeromonas hydrophila/drug effects , Gene Expression Regulation/drug effects
15.
Sci Rep ; 14(1): 10733, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730024

ABSTRACT

Molecular responses to alcohol consumption are dynamic, context-dependent, and arise from a complex interplay of biological and external factors. While many have studied genetic risk associated with drinking patterns, comprehensive studies identifying dynamic responses to pharmacologic and psychological/placebo effects underlying binge drinking are lacking. We investigated transcriptome-wide response to binge, medium, and placebo alcohol consumption by 17 healthy heavy social drinkers enrolled in a controlled, in-house, longitudinal study of up to 12 days. Using RNA-seq, we identified 251 and 13 differentially expressed genes (DEGs) in response to binge drinking and placebo, respectively. Eleven protein-coding DEGs had very large effect sizes in response to binge drinking (Cohen's d > 1). Furthermore, binge dose significantly impacted the Cytokine-cytokine receptor interaction pathway (KEGG: hsa04060) across all experimental sequences. Placebo also impacted hsa04060, but only when administered following regular alcohol drinking sessions. Similarly, medium-dose and placebo commonly impacted KEGG pathways of Systemic lupus erythematosus, Neutrophil extracellular trap formation, and Alcoholism based on the sequence of drinking sessions. These findings together indicate the "dose-extending effects" of placebo at a molecular level. Furthermore, besides supporting alcohol dose-specific molecular changes, results suggest that the placebo effects may induce molecular responses within the same pathways regulated by alcohol.


Subject(s)
Binge Drinking , Gene Expression Profiling , Placebo Effect , Transcriptome , Humans , Binge Drinking/blood , Binge Drinking/genetics , Male , Female , Adult , Young Adult , Ethanol , Longitudinal Studies , Gene Expression Regulation/drug effects
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731911

ABSTRACT

In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.


Subject(s)
Connective Tissue Growth Factor , Drug Discovery , Humans , Connective Tissue Growth Factor/metabolism , Drug Discovery/methods , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Eye Diseases/drug therapy , Eye Diseases/metabolism , Fibrosis , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Gene Expression Regulation/drug effects
17.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38697845

ABSTRACT

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ergocalciferols , Membrane Proteins , Mice, Knockout , Mitophagy , Protein Kinases , Receptors, Calcitriol , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Mitophagy/genetics , Mitophagy/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Male , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Fibrosis , Kidney Tubules/metabolism , Kidney Tubules/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Inbred C57BL , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Gene Expression Regulation/drug effects
18.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791190

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is more prevalent in post- compared to pre-menopausal women. The underlying mechanisms are not fully understood. Data in humans is confounded by age and co-morbidities. We investigated the effects of ovariectomy and estrogen replacement on the left ventricular (LV) gene expression of pro-inflammatory and pro-fibrotic factors involved in HFpEF and putative regulating miRNAs. Nine-week-old C57BL/6 female mice were subjected to ovariectomy (OVX) or SHAM operation. OVX and SHAM groups were sacrificed 1-, 6-, and 12-weeks post-surgery (T1/SHAM; T1/OVX; T6/SHAM; T6/OVX, T12/SHAM). 17ß-estradiol (E2) or vehicle (VEH) was then administered to the OVX groups for 6 weeks (T12/OVX/E2; T12/OVX/VEH). Another SHAM group was sacrificed 12-weeks post-surgery. RNA and miRNAs were extracted from the LV apex. An early 3-fold increase in the gene expression of IL-1α, IL-6, Mmp9, Mmp12, Col1α1, and Col3α1 was observed one-week post-surgery in T1/OVX vs. T1/SHAM, but not at later time points. miRNA-26a was lower in T1/OVX vs. T1/SHAM and was inversely correlated with Col1α1 and Col3α1 expression 1-week post-surgery (r = -0.79 p < 0.001; r = -0.6 p = 0.007). miRNAs-26a, 29b, and 133a were significantly higher, while Col1α1, Col3α1, IL-1α, IL-6, Tnfα, Mmp12, and FasL gene expression was significantly lower in E2- compared to vehicle-treated OVX mice. miRNA-26a was inversely correlated with Col3α1 in T12/OVX/ E2 (r = -0.56 p = 0.02). OVX triggered an early increase in the gene expression of pro-inflammatory and pro-fibrotic factors, highlighting the importance of the early phase post-cessation of ovarian function. E2 replacement therapy, even if it was not immediately initiated after OVX, reversed these unfavorable changes and upregulated cardiac miRNA-26a, previously unknown to be affected by menopausal status.


Subject(s)
Collagen Type I , Estradiol , Heart Ventricles , Mice, Inbred C57BL , MicroRNAs , Ovariectomy , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Estradiol/pharmacology , Mice , Collagen Type I/genetics , Collagen Type I/metabolism , Heart Ventricles/metabolism , Heart Ventricles/drug effects , Collagen Type III/genetics , Collagen Type III/metabolism , Gene Expression Regulation/drug effects , Down-Regulation/drug effects , Heart Failure/genetics , Heart Failure/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Up-Regulation/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Estrogen Replacement Therapy
19.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791311

ABSTRACT

Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3ß. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3ß molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.


Subject(s)
Cardiotoxicity , Doxorubicin , MicroRNAs , Myocytes, Cardiac , Reactive Oxygen Species , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Animals , Doxorubicin/adverse effects , Doxorubicin/toxicity , Cardiotoxicity/etiology , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Guinea Pigs , Membrane Potential, Mitochondrial/drug effects , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Male , Calcium/metabolism , Gene Expression Regulation/drug effects
20.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791399

ABSTRACT

Oxylipins, the metabolites of polyunsaturated fatty acids, are vital in regulating cell proliferation and inflammation. Among these oxylipins, specialized pro-resolving mediators notably contribute to inflammation resolution. Previously, we showed that the specialized pro-resolving mediators isomer 11,17dihydroxy docosapentaenoic acid (11,17diHDoPE) can be synthesized in bacterial cells and exhibits anti-inflammatory effects in mammalian cells. This study investigates the in vivo impact of 11,17diHDoPE in mice exposed to particulate matter 10 (PM10). Our results indicate that 11,17diHDoPE significantly mitigates PM10-induced lung inflammation in mice, as evidenced by reduced pro-inflammatory cytokines and pulmonary inflammation-related gene expression. Metabolomic analysis reveals that 11,17diHDoPE modulates inflammation-related metabolites such as threonine, 2-keto gluconic acid, butanoic acid, and methyl oleate in lung tissues. In addition, 11,17diHDoPE upregulates the LA-derived oxylipin pathway and downregulates arachidonic acid- and docosahexaenoic acid-derived oxylipin pathways in serum. Correlation analyses between gene expression and metabolite changes suggest that 11,17diHDoPE alleviates inflammation by interfering with macrophage differentiation. These findings underscore the in vivo role of 11,17diHDoPE in reducing pulmonary inflammation, highlighting its potential as a therapeutic agent for respiratory diseases.


Subject(s)
Anti-Inflammatory Agents , Fatty Acids, Unsaturated , Metabolome , Particulate Matter , Pneumonia , Animals , Mice , Metabolome/drug effects , Pneumonia/metabolism , Pneumonia/chemically induced , Pneumonia/drug therapy , Particulate Matter/toxicity , Anti-Inflammatory Agents/pharmacology , Fatty Acids, Unsaturated/metabolism , Male , Lung/metabolism , Lung/pathology , Lung/drug effects , Mice, Inbred C57BL , Oxylipins/metabolism , Metabolomics/methods , Cytokines/metabolism , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...