Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.441
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 211-219, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822515

ABSTRACT

Asthma is a chronic respiratory disease that is characterized by airway inflammation, excessive mucus production, and airway remodeling. Prevention and treatment for asthma is an urgent issue in clinical studies. In recent years, N6-methyladenosine methylation (m6A) has emerged as a promising regulatory approach involved in multiple diseases. ALKBH5 (alkB homolog 5) is a demethylase widely studied in disease pathologies. This work aimed to explore the regulatory mechanisms underlying the ALKBH5-regulated asthma. We established an interleukin-13 (IL-13)-stimulated cell model to mimic the in vitro inflammatory environment of asthma. ALKBH5 knockdown in bronchial epithelial cells was performed using siRNAs, and the knockdown efficacy was analyzed by quantitative PCR (qPCR). Cell viability and proliferation were measured by cell counting kit 8 (CCK-8) and colony formation assay. The ferroptosis was assessed by measuring the total iron, Fe2+, lipid reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. The enrichment of N6-methyladenosine methylation (m6A) modification was detected by the MeRIP assay. Knockdown of ALKBH5 significantly elevated the survival and colony formation ability of bronchial epithelial cells in the IL-13 induction model. The levels of total iron, Fe2+, lipid ROS, and MDA were remarkedly elevated, and the SOD level was reduced in IL-13-induced bronchial epithelial cells, and depletion of ALKBH5 reversed these effects. Knockdown of ALKBH5 elevated the enrichment of m6A modification and expression of glutathione peroxidase 4 (GPX4). Knockdown of GPX4 abolished the pro-proliferation and anti-ferroptosis effects of siALKBH5. Knockdown of ALKBH5 improved the proliferation of bronchial epithelial cells and alleviated cell ferroptosis.


Subject(s)
Adenosine , AlkB Homolog 5, RNA Demethylase , Asthma , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Asthma/genetics , Asthma/metabolism , Asthma/pathology , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Proliferation/genetics , Methylation , Disease Progression , Cell Line , Ferroptosis/genetics , Epithelial Cells/metabolism , Down-Regulation , Bronchi/pathology , Bronchi/metabolism , Gene Knockdown Techniques , Cell Survival/genetics
2.
Oncol Res ; 32(6): 1119-1128, 2024.
Article in English | MEDLINE | ID: mdl-38827327

ABSTRACT

It has been shown that the high expression of human epididymis protein 4 (HE4) in most lung cancers is related to the poor prognosis of patients, but the mechanism of pathological transformation of HE4 in lung cancer is still unclear. The current study is expected to clarify the function and mechanism of HE4 in the occurrence and metastasis of lung adenocarcinoma (LUAD). Immunoblotting evaluated HE4 expression in lung cancer cell lines and biopsies, and through analysis of The Cancer Genome Atlas (TCGA) dataset. Frequent HE4 overexpression was demonstrated in LUAD, but not in lung squamous cell carcinoma (LUSC), indicating that HE4 can serve as a biomarker to distinguish between LUAD and LUSC. HE4 knockdown significantly inhibited cell growth, colony formation, wound healing, and invasion, and blocked the G1-phase of the cell cycle in LUAD cell lines through inactivation of the EGFR signaling downstream including PI3K/AKT/mTOR and RAF/MAPK pathways. The first-line EGFR inhibitor gefitinib and HE4 shRNA had no synergistic inhibitory effect on the growth of lung adenocarcinoma cells, while the third-line EGFR inhibitor osimertinib showed additive anti-proliferative effects. Moreover, we provided evidence that HE4 regulated EGFR expression by transcription regulation and protein interaction in LUAD. Our findings suggest that HE4 positively modulates the EGFR signaling pathway to promote growth and invasiveness in LUAD and highlight that targeting HE4 could be a novel strategy for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , ErbB Receptors , Lung Neoplasms , Neoplasm Invasiveness , Signal Transduction , WAP Four-Disulfide Core Domain Protein 2 , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , WAP Four-Disulfide Core Domain Protein 2/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Animals , Mice , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Proteins/metabolism , Proteins/genetics
3.
Cell Adh Migr ; 18(1): 1-12, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38831518

ABSTRACT

In this research, we investigated the role of PIK3R6, a regulatory subunit of PI3Kγ, known for its tumor-promoting properties, in clear cell renal cell carcinoma (CCRCC). Utilizing the UALCAN website, we found PIK3R6 upregulated in CCRCC, correlating with lower survival rates. We compared PIK3R6 expression in CCRCC tumor tissues and adjacent normal tissues using immunohistochemistry. Post RNA interference-induced knockdown of PIK3R6 in 786-O and ACHN cell lines, we performed CCK-8, colony formation, Edu staining, flow cytometry, wound healing, and transwell assays. Results showed that PIK3R6 silencing reduced cell proliferation, migration, and invasion, and induced G0/G1 phase arrest and apoptosis. Molecular analysis revealed decreased CDK4, Cyclin D1, N-cadherin, Vimentin, Bcl-2, p-PI3K and p-AKT, with increased cleaved caspase-3, Bax, and E-cadherin levels in CCRCC cells. Moreover, inhibiting PIK3R6 hindered tumor growth. These findings suggest a significant role for PIK3R6 in CCRCC cell proliferation and metastasis, presenting it as a potential therapeutic target.


Subject(s)
Apoptosis , Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Cell Movement/genetics , Animals , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Gene Knockdown Techniques , Female , Male
4.
BMC Cancer ; 24(1): 551, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693472

ABSTRACT

OBJECTIVE: We aimed to screen novel gene signatures for ovarian cancer (OC) and explore the role of biomarkers in OC via regulating pyroptosis using bioinformatics analysis. METHODS: Differentially expressed genes (DEGs) of OC were screened from GSE12470 and GSE16709 datasets. Hub genes were determined from protein-protein interaction networks after bioinformatics analysis. The role of Centromeric protein M (CENPM) in OC was assessed by subcutaneous tumor experiment using hematoxylin-eosin and immunohistochemical staining. Tumor metastasis was evaluated by detecting epithelial-mesenchymal transition-related proteins. The proliferation, migration, and invasion were determined using cell counting kit and transwell assay. Enzyme-linked immunosorbent assay was applied to measure inflammatory factors. The mRNA and protein expression were detected using real-time quantitative PCR and western blot. RESULTS: We determined 9 hub genes (KIFC1, PCLAF, CDCA5, KNTC1, MCM3, OIP5, CENPM, KIF15, and ASF1B) with high prediction value for OC. In SKOV3 and A2780 cells, the expression levels of hub genes were significantly up-regulated, compared with normal ovarian cells. CENPM was selected as a key gene. Knockdown of CENPM suppressed proliferation, migration, and invasion of OC cells. Subcutaneous tumor experiment revealed that CENPM knockdown significantly suppressed tumor growth and metastasis. Additionally, pyroptosis was promoted in OC cells and xenograft tumors after CENPM knockdown. Furthermore, CENPM knockdown activated cGAS-STING pathway and the pathway inhibitor reversed the inhibitory effect of CENPM knockdown on viability, migration, and invasion of OC cells. CONCLUSION: CENPM was a novel biomarker of OC, and knockdown of CENPM inhibited OC progression by promoting pyroptosis and activating cGAS-STING pathway.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Ovarian Neoplasms , Pyroptosis , Signal Transduction , Humans , Female , Pyroptosis/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Movement/genetics , Xenograft Model Antitumor Assays , Mice, Nude
5.
Colloids Surf B Biointerfaces ; 238: 113930, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692174

ABSTRACT

Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.


Subject(s)
Breast Neoplasms , Cytokines , Monocarboxylic Acid Transporters , Muscle Proteins , Nanoparticles , RNA, Small Interfering , Tumor Microenvironment , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Nanoparticles/chemistry , Humans , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Female , Cytokines/metabolism , Tumor Microenvironment/drug effects , Muscle Proteins/genetics , Muscle Proteins/metabolism , RNA, Small Interfering/genetics , Cell Line, Tumor , Cell Survival/drug effects , Animals , Mice , Gene Knockdown Techniques , Particle Size , Hydrogen-Ion Concentration
6.
Nat Commun ; 15(1): 3996, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734693

ABSTRACT

SPI1 was recently reported as a genetic risk factor for Alzheimer's disease (AD) in large-scale genome-wide association studies. However, it is unknown whether SPI1 should be downregulated or increased to have therapeutic benefits. To investigate the effect of modulating SPI1 levels on AD pathogenesis, we performed extensive biochemical, histological, and transcriptomic analyses using both Spi1-knockdown and Spi1-overexpression mouse models. Here, we show that the knockdown of Spi1 expression significantly exacerbates insoluble amyloid-ß (Aß) levels, amyloid plaque deposition, and gliosis. Conversely, overexpression of Spi1 significantly ameliorates these phenotypes and dystrophic neurites. Further mechanistic studies using targeted and single-cell transcriptomics approaches demonstrate that altered Spi1 expression modulates several pathways, such as immune response pathways and complement system. Our data suggest that transcriptional reprogramming by targeting transcription factors, like Spi1, might hold promise as a therapeutic strategy. This approach could potentially expand the current landscape of druggable targets for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloidosis , Disease Models, Animal , Proto-Oncogene Proteins , Transcriptome , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Mice , Amyloidosis/genetics , Amyloidosis/metabolism , Amyloidosis/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Phenotype , Mice, Transgenic , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/genetics , Humans , Male , Mice, Inbred C57BL , Gene Expression Profiling , Gene Knockdown Techniques , Trans-Activators
7.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241254588, 2024.
Article in English | MEDLINE | ID: mdl-38758016

ABSTRACT

PURPOSE: The abnormal function and survival of chondrocytes result in articular cartilage failure, which may accelerate the onset and development of osteoarthritis (OA). This study is aimed to investigate the role of LINC01094 in chondrocyte apoptosis. METHODS: The viability and apoptosis of lipopolysaccharide (LPS)-induced chondrocytes were evaluated through CCK-8 assay and flow cytometry analysis, respectively. The expression levels of LINC01094, miR-577 and MTF1 were detected by qRT-PCR. Dual luciferase reporter tests were implemented for the verification of targeted relationships among them. Western blotting was employed to measure the levels of pro-apoptotic proteins (Caspase3 and Caspase9). RESULTS: The viability of LPS-induced chondrocytes was overtly promoted by loss of LINC01094 or miR-577 upregulation, but could be repressed via MTF1 overexpression. The opposite results were observed in apoptosis rate and the levels of Caspase3 and Caspase9. LINC01094 directly bound to miR-577, while MTF1 was verified to be modulated by miR-577. Both LINC01094 and MTF1 were at high levels, whereas miR-577 was at low level in OA synovial fluid and LPS-induced chondrocytes. Furthermore, the highly expressed miR-577 abolished the influences of MTF1 overexpression on LPS-induced chondrocytes. CONCLUSIONS: Silencing of LINC01094 represses the apoptosis of chondrocytes through upregulating miR-577 expression and downregulating MTF1 levels, providing a preliminary insight for the treatment of OA in the future.


Subject(s)
Apoptosis , Chondrocytes , MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Transcription Factors , Chondrocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factor MTF-1 , Cells, Cultured , Gene Knockdown Techniques , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Lipopolysaccharides
8.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758505

ABSTRACT

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Subject(s)
Cardiomegaly , Isoproterenol , NAV1.5 Voltage-Gated Sodium Channel , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Cardiomegaly/genetics , Cardiomegaly/metabolism , Rats , Cell Line , Isoproterenol/pharmacology , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Animals , Gene Knockdown Techniques , Humans , Myoblasts, Cardiac/metabolism , Energy Metabolism/genetics , Gene Expression Regulation/genetics
9.
Elife ; 132024 May 10.
Article in English | MEDLINE | ID: mdl-38727716

ABSTRACT

PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.


Subject(s)
Carbon Dioxide , Homeodomain Proteins , Transcription Factors , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Carbon Dioxide/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Rats , Gene Knockdown Techniques , Male , Hypoventilation/genetics , Hypoventilation/congenital , Hypoventilation/metabolism , Chemoreceptor Cells/metabolism , Rats, Sprague-Dawley , Sleep Apnea, Central/genetics , Sleep Apnea, Central/metabolism , Neurons/metabolism , Neurons/physiology
10.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Article in English | MEDLINE | ID: mdl-38758159

ABSTRACT

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Subject(s)
Acute Lung Injury , Angiopoietin-Like Protein 2 , Autophagy , Lipopolysaccharides , Macrophages, Alveolar , Membrane Glycoproteins , Pyroptosis , Receptors, Immunologic , Animals , Pyroptosis/genetics , Pyroptosis/drug effects , Autophagy/genetics , Mice , Macrophages, Alveolar/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Gene Knockdown Techniques , Male , Mice, Inbred C57BL , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Mice, Knockout
11.
Cell Commun Signal ; 22(1): 272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750472

ABSTRACT

BACKGROUND: In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS: Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS: Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1ß, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS: Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.


Subject(s)
Glioma , Janus Kinase 2 , Membrane Glycoproteins , Microglia , NF-kappa B , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Gene Knockdown Techniques , Cell Proliferation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Apoptosis/genetics , Disease Progression , Cell Movement/genetics
12.
Anim Biotechnol ; 35(1): 2344210, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38785376

ABSTRACT

The PPARGC1A gene plays a fundamental role in regulating cellular energy metabolism, including adaptive thermogenesis, mitochondrial biogenesis, adipogenesis, gluconeogenesis, and glucose/fatty acid metabolism. In a previous study, our group investigated seven SNPs in Mediterranean buffalo associated with milk production traits, and the current study builds on this research by exploring the regulatory influences of the PPARGC1A gene in buffalo mammary epithelial cells (BuMECs). Our findings revealed that knockdown of PPARGC1A gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis. Additionally, we observed downregulated triglyceride secretion after PPARGC1A knockdown. Furthermore, the critical genes related to milk production, including the STATS, BAD, P53, SREBF1, and XDH genes were upregulated after RNAi, while the FABP3 gene, was downregulated. Moreover, Silencing the PPARGC1A gene led to a significant downregulation of ß-casein synthesis in BuMECs. Our study provides evidence of the importance of the PPARGC1A gene in regulating cell growth, lipid, and protein metabolism in the buffalo mammary gland. In light of our previous research, the current study underscores the potential of this gene for improving milk production efficiency and overall dairy productivity in buffalo populations.


Subject(s)
Buffaloes , Epithelial Cells , Mammary Glands, Animal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Buffaloes/genetics , Epithelial Cells/metabolism , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Milk , Gene Expression Regulation , Lactation/genetics , Cell Proliferation/genetics , Gene Knockdown Techniques , Apoptosis/genetics
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790096

ABSTRACT

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Subject(s)
Dual-Specificity Phosphatases , Macrophages , NF-kappa B , Signal Transduction , Animals , Mice , RAW 264.7 Cells , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Knockdown Techniques , Mycobacterium bovis/immunology , Cytokines/metabolism , Cytokines/genetics
14.
Biomolecules ; 14(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785917

ABSTRACT

H19 is an essential imprinted gene that is expressed to govern normal embryonic development. During reprogramming, the parental pronuclei have asymmetric reprogramming capacities and the critical reprogramming factors predominantly reside in the male pronucleus. After inhibiting the expression of H19 and Gtl2, androgenetic haploid ESCs (AG-haESCs) can efficiently and stably support the generation of healthy SC pups at a rate of ~20%, and double-knockout parthenogenetic haESCs can also produce efficiently. Induced pluripotent stem (iPS) cell reprogramming is thought to have a characteristic epigenetic pattern that is the reverse of its developmental potential; however, it is unclear how H19 participates in iPS cell reprogramming. Here, we showed that the expression of H19 was transiently increased during iPSC reprogramming. H19 knockdown resulted in greater reprogramming efficiency. The genes associated with pluripotency showed enhanced expression during the early reprogramming process, and the Oct4 promoter was demethylated by bisulfite genomic sequencing analysis. Moreover, expression analysis revealed that the mesenchymal master regulators associated with epithelial-to-mesenchymal transition (EMT) were downregulated during reprogramming in H19 knockdown. These findings provide functional insight into the role of H19 as a barrier to the early reprogramming process.


Subject(s)
Cellular Reprogramming , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Induced Pluripotent Stem Cells , RNA, Long Noncoding , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epithelial-Mesenchymal Transition/genetics , Animals , Cellular Reprogramming/genetics , Mice , Gene Knockdown Techniques , Male , DNA Methylation/genetics
15.
Elife ; 122024 May 17.
Article in English | MEDLINE | ID: mdl-38757694

ABSTRACT

The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.


Subject(s)
Cell Movement , Fragile X Mental Retardation Protein , Mice, Knockout , Microtubule-Associated Proteins , Neurons , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Animals , Neurons/metabolism , Neurons/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mice , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Gene Knockdown Techniques
16.
Genome Biol ; 25(1): 131, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773623

ABSTRACT

BACKGROUND: High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS: We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS: This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.


Subject(s)
Gene Editing , Oryza , Plant Proteins , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fertility/genetics , Gene Knockdown Techniques , MutL Protein Homolog 1/genetics , RNA Interference , CRISPR-Cas Systems , Plants, Genetically Modified
17.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700644

ABSTRACT

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Subject(s)
Heart , Regeneration , Syndecan-4 , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Syndecan-4/genetics , Syndecan-4/metabolism , Regeneration/genetics , Heart/physiology , Heart/physiopathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Cell Proliferation/genetics , Myocardium/metabolism , Myocardium/pathology , Gene Knockdown Techniques
18.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732220

ABSTRACT

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Subject(s)
Decision Making , Serotonin , Tryptophan Hydroxylase , Animals , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Serotonin/metabolism , Rats , Male , Social Behavior , Gene Knockdown Techniques , Behavior, Animal , Cognition , Hypothalamus/metabolism
19.
Hepatol Commun ; 8(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38696369

ABSTRACT

BACKGROUND: Human genetic studies have identified several mitochondrial amidoxime-reducing component 1 (MTARC1) variants as protective against metabolic dysfunction-associated steatotic liver disease. The MTARC1 variants are associated with decreased plasma lipids and liver enzymes and reduced liver-related mortality. However, the role of mARC1 in fatty liver disease is still unclear. METHODS: Given that mARC1 is mainly expressed in hepatocytes, we developed an N-acetylgalactosamine-conjugated mouse Mtarc1 siRNA, applying it in multiple in vivo models to investigate the role of mARC1 using multiomic techniques. RESULTS: In ob/ob mice, knockdown of Mtarc1 in mouse hepatocytes resulted in decreased serum liver enzymes, LDL-cholesterol, and liver triglycerides. Reduction of mARC1 also reduced liver weight, improved lipid profiles, and attenuated liver pathological changes in 2 diet-induced metabolic dysfunction-associated steatohepatitis mouse models. A comprehensive analysis of mARC1-deficient liver from a metabolic dysfunction-associated steatohepatitis mouse model by metabolomics, proteomics, and lipidomics showed that Mtarc1 knockdown partially restored metabolites and lipids altered by diet. CONCLUSIONS: Taken together, reducing mARC1 expression in hepatocytes protects against metabolic dysfunction-associated steatohepatitis in multiple murine models, suggesting a potential therapeutic approach for this chronic liver disease.


Subject(s)
Disease Models, Animal , Gene Knockdown Techniques , Hepatocytes , Animals , Mice , Hepatocytes/metabolism , Liver/metabolism , Male , RNA, Small Interfering/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Mice, Inbred C57BL
20.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38742353

ABSTRACT

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Receptors, LDL , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood supply , Receptors, LDL/metabolism , Receptors, LDL/genetics , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Transcriptome , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...