Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 903
Filter
1.
Virulence ; 15(1): 2333562, 2024 12.
Article in English | MEDLINE | ID: mdl-38622757

ABSTRACT

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Subject(s)
Enterovirus , Foot-and-Mouth Disease Virus , Picornaviridae Infections , Animals , Humans , Gene Products, pol/metabolism , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Virus Replication , RNA, Viral/genetics
2.
Front Immunol ; 15: 1352929, 2024.
Article in English | MEDLINE | ID: mdl-38545116

ABSTRACT

Background: HBe-antigen(Ag)-negative chronic hepatitis B virus (HBV) infection is characterized by little liver fibrosis progression and vigorous HBV-multispecific CD8+ T-cell response. Aims: To assess whether HBsAg level could discriminate different HBeAg-negative chronic HBV infection subtypes with dissimilar quality of HBV-specific CD8+ T-cell response. Methods: We recruited 63 HBeAg-negative chronic HBV infection patients in which indirect markers of liver inflammation/fibrosis, portal pressure, viral load (VL), and HBV-specific CD8+ cell effector function were correlated with HBsAg level. Results: A positive linear trend between HBsAg level and APRI, liver stiffness (LS), liver transaminases, and HBV VL, and a negative correlation with platelet count were observed. Frequency of cases with HBV-specific CD8+ T-cell proliferation against at least two HBV epitopes was higher in HBsAg < 1,000 IU/ml group. CD8+ T-cell expansion after HBVpolymerase456-63-specific stimulation was impaired in HBsAg > 1,000 IU/ml group, while the response against HBVcore18-27 was preserved and response against envelope183-91 was nearly abolished, regardless of HBsAg level. Cases with preserved HBVpolymerase456-63 CD8+ cell response had lower LS/duration of infection and APRI/duration of infection rates. HBV-polymerase456-63-specific CD8+ T-cell proliferation intensity was negatively correlated with LS/years of infection ratio. Conclusion: HBsAg > 1,000 IU/ml HBeAg-negative chronic HBV infection group shows indirect data of higher degree of inflammation, liver stiffness, and fibrosis progression speed, which are related to an impaired HBV-polymerase-specific CD8+ T-cell response.


Subject(s)
Gene Products, pol , Hepatitis B, Chronic , Humans , Hepatitis B virus/physiology , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , Inflammation , Liver Cirrhosis , CD8-Positive T-Lymphocytes , Alanine Transaminase , Phenotype
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339086

ABSTRACT

Acquired immunodeficiency syndrome (AIDS) is caused by human immunodeficiency virus (HIV). HIV protease, reverse transcriptase, and integrase are targets of current drugs to treat the disease. However, anti-viral drug-resistant strains have emerged quickly due to the high mutation rate of the virus, leading to the demand for the development of new drugs. One attractive target is Gag-Pol polyprotein, which plays a key role in the life cycle of HIV. Recently, we found that a combination of M50I and V151I mutations in HIV-1 integrase can suppress virus release and inhibit the initiation of Gag-Pol autoprocessing and maturation without interfering with the dimerization of Gag-Pol. Additional mutations in integrase or RNase H domain in reverse transcriptase can compensate for the defect. However, the molecular mechanism is unknown. There is no tertiary structure of the full-length HIV-1 Pol protein available for further study. Therefore, we developed a workflow to predict the tertiary structure of HIV-1 NL4.3 Pol polyprotein. The modeled structure has comparable quality compared with the recently published partial HIV-1 Pol structure (PDB ID: 7SJX). Our HIV-1 NL4.3 Pol dimer model is the first full-length Pol tertiary structure. It can provide a structural platform for studying the autoprocessing mechanism of HIV-1 Pol and for developing new potent drugs. Moreover, the workflow can be used to predict other large protein structures that cannot be resolved via conventional experimental methods.


Subject(s)
HIV Infections , HIV-1 , pol Gene Products, Human Immunodeficiency Virus , Humans , Gene Products, pol/genetics , Gene Products, pol/metabolism , HIV Infections/drug therapy , HIV Protease/genetics , HIV Protease/metabolism , HIV-1/genetics , HIV-1/metabolism , Polyproteins/genetics , RNA-Directed DNA Polymerase/metabolism , pol Gene Products, Human Immunodeficiency Virus/chemistry
4.
J Med Virol ; 95(8): e29030, 2023 08.
Article in English | MEDLINE | ID: mdl-37565734

ABSTRACT

Enterovirus A71 (EV-A71) is a highly contagious virus that poses a major threat to global health, representing the primary etiological agent for hand-foot and mouth disease (HFMD) and neurological complications. It has been established that interferon signaling is critical to establishing a robust antiviral state in host cells, mainly mediated through the antiviral effects of numerous interferon-stimulated genes (ISGs). The host restriction factor SHFL is a novel ISG with broad antiviral activity against various viruses through diverse underlying molecular mechanisms. Although SHFL is widely acknowledged for its broad-spectrum antiviral activity, it remains elusive whether SHFL inhibits EV-A71. In this work, we validated that EV-A71 triggers the upregulation of SHFL both in cell lines and in a mouse model. Knockdown and overexpression of SHFL in EVA71-infected cells suggested that this factor could markedly suppress EV-A71 replication. Our findings further revealed an intriguing mechanism of SHFL that it could interact with the nonstructural proteins 3Dpol of EV-A71 and promoted the degradation of 3Dpol through the ubiquitin-proteasome pathway. Furthermore, the zinc-finger domain and the 36 amino acids (164-199) of SHFL were crucial to the interaction between SHFL and EV-A71 3Dpol . Overall, these findings broadened our understanding of the pivotal roles of SHFL in the interaction between the host and EV-A71.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Animals , Mice , Enterovirus A, Human/genetics , Proteasome Endopeptidase Complex , Gene Products, pol , Antigens, Viral/genetics , Antiviral Agents , Interferons , Ubiquitins
5.
J Virol ; 96(9): e0005122, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35412348

ABSTRACT

Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.


Subject(s)
Hepatitis B virus , RNA-Directed DNA Polymerase , Viral Proteins , Gene Products, pol , Genotype , Hepatitis B virus/genetics , Mutation , Protein Domains , RNA-Directed DNA Polymerase/genetics , Viral Proteins/genetics
6.
Retrovirology ; 18(1): 20, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34261506

ABSTRACT

BACKGROUND: Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS: Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS: XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.


Subject(s)
Endogenous Retroviruses/genetics , Gene Expression Regulation, Developmental , Genome, Viral , Open Reading Frames/genetics , Terminal Repeat Sequences/genetics , Xenopus/genetics , Xenopus/virology , Animals , Endogenous Retroviruses/classification , Evolution, Molecular , Gene Products, gag/genetics , Gene Products, pol/genetics , Proviruses/genetics , Retroviridae Infections/virology
7.
Viruses ; 13(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34210073

ABSTRACT

As the global effort to eradicate hepatitis B continues, immune escape mutations (IEMs) and drug resistance mutations (DRMs) affecting its diagnosis, treatment, and prevention are compromising this goal. However, knowledge about the prevalence and circulation of these mutations in Nigeria is scarce. Serum samples (n = 199) from apparently healthy prospective blood donors, pregnant women, and individuals presenting with fever in southwestern Nigeria were analyzed for the presence of IEMs and DRMs by means of nested PCR in the HBV S (HBs) and HBV polymerase (Pol) genes, followed by phylogenetic and mutational analyses. In total, 25.1% (n = 50/199) of samples were positive for HBV, as measured by PCR. In 41 samples (20.6%), both fragments could be amplified, whereas the HBs gene and the Pol gene fragment alone were detected in 0.5% (n = 1/199) and 4% (n = 8/199) of samples, respectively. Sequences were successfully obtained for all 42 HBs gene fragments but for only 31/49 Pol gene fragments (totaling 73 sequences from 44 individuals). All sequences were identified as HBV genotype E. IEMs were present in 18.2% (n = 8/44) of the sequences of HBV-positive individuals with available sequences. IEM Q129H was detected in eight out of the 44 (18.2%) HBV isolates sequenced in this study; however, no DRMs were observed. This study confirms the circulation of HBV IEMs and reports the presence of Q129H IEM for the first time in Nigeria. Intensified research on the dynamics of IEM is necessary in order to enhance the elimination of HBV.


Subject(s)
Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B/epidemiology , Immune Evasion/genetics , Mutation , Adolescent , Adult , Child , DNA, Viral/genetics , Female , Gene Products, pol/genetics , Genotype , Hepatitis B/blood , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/classification , Humans , Male , Middle Aged , Nigeria/epidemiology , Phylogeny , Pregnancy , Prevalence , Prospective Studies , Young Adult
8.
J Virol ; 95(19): e0044421, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287051

ABSTRACT

DDX17 is a member of the DEAD-box helicase family proteins involved in cellular RNA folding, splicing, and translation. It has been reported that DDX17 serves as a cofactor of host zinc finger antiviral protein (ZAP)-mediated retroviral RNA degradation and exerts direct antiviral function against Raft Valley fever virus through binding to specific stem-loop structures of viral RNA. Intriguingly, we have previously shown that ZAP inhibits hepatitis B virus (HBV) replication through promoting viral RNA decay, and the ZAP-responsive element (ZRE) of HBV pregenomic RNA (pgRNA) contains a stem-loop structure, specifically epsilon, which serves as the packaging signal for pgRNA encapsidation. In this study, we demonstrated that the endogenous DDX17 is constitutively expressed in human hepatocyte-derived cells but dispensable for ZAP-mediated HBV RNA degradation. However, DDX17 was found to inhibit HBV replication primarily by reducing the level of cytoplasmic encapsidated pgRNA in a helicase-dependent manner. Immunofluorescence assay revealed that DDX17 could gain access to cytoplasm from nucleus in the presence of HBV RNA. In addition, RNA immunoprecipitation and electrophoretic mobility shift assays demonstrated that the enzymatically active DDX17 competes with HBV polymerase to bind to pgRNA at the 5' epsilon motif. In summary, our study suggests that DDX17 serves as an intrinsic host restriction factor against HBV through interfering with pgRNA encapsidation. IMPORTANCE Hepatitis B virus (HBV) chronic infection, a long-studied but yet incurable disease, remains a major public health concern worldwide. Given that HBV replication cycle highly depends on host factors, deepening our understanding of the host-virus interaction is thus of great significance in the journey of finding a cure. In eukaryotic cells, RNA helicases of the DEAD box family are highly conserved enzymes involved in diverse processes of cellular RNA metabolism. Emerging data have shown that DDX17, a typical member of the DEAD box family, functions as an antiviral factor through interacting with viral RNA. In this study, we, for the first time, demonstrate that DDX17 inhibits HBV through blocking the formation of viral replication complex, which not only broadens the antiviral spectrum of DDX17 but also provides new insight into the molecular mechanism of DDX17-mediated virus-host interaction.


Subject(s)
Capsid/metabolism , DEAD-box RNA Helicases/metabolism , Hepatitis B virus/physiology , RNA, Viral/metabolism , Virus Replication , Cell Line , Cell Line, Tumor , Cytoplasm/metabolism , DEAD-box RNA Helicases/chemistry , Gene Products, pol/metabolism , Hepatitis B virus/genetics , Humans , Nucleic Acid Conformation , Protein Domains , RNA Stability , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins/metabolism
9.
Nat Commun ; 12(1): 3005, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021134

ABSTRACT

Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.


Subject(s)
Cholesterol/biosynthesis , Lens, Crystalline/metabolism , RNA-Binding Proteins/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Animals , Cell Line , Gene Products, pol , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones , RNA, Messenger , RNA-Binding Proteins/genetics , Sterol Regulatory Element Binding Protein 2/genetics
10.
Viruses ; 13(3)2021 03 10.
Article in English | MEDLINE | ID: mdl-33802118

ABSTRACT

Heightened expression of human endogenous retrovirus (HERV) sequences has been associated with a range of malignancies, including prostate cancer, suggesting that they may serve as useful diagnostic or prognostic cancer biomarkers. We analysed the expression of HERV-K (Gag and Env/Np9 regions), HERV-E 4.1 (Pol and Env regions), HERV-H (Pol) and HERV-W (Gag) sequences in prostate cancer cells lines and normal prostate epithelial cells using qRT-PCR. HERV expression was also analysed in matched malignant and benign prostate tissue samples from men with prostate cancer (n = 27, median age 65.2 years (range 47-70)) and compared to prostate cancer-free male controls (n = 11). Prostate cancer epithelial cell lines exhibited a signature of HERV RNA overexpression, with all HERVs analysed, except HERV-E Pol, showing heightened expression in at least two, but more commonly all, cell lines analysed. Analysis of primary prostate material indicated increased expression of HERV-E Pol but decreased expression of HERV-E Env in both malignant and benign regions of the prostate in men with prostate cancer as compared to those without. Expression of HERV-K Gag was significantly higher in malignant regions of the prostate in men with prostate cancer as compared to matched benign regions and prostate cancer-free men (p < 0.001 for both), with 85.2% of prostate cancers donors showing malignancy-associated upregulation of HERV-K Gag RNA. HERV-K Gag protein was detected in 12/18 (66.7%) malignant tissues using immunohistochemistry, but only 1/18 (5.6%) benign tissue sections. Heightened expression of HERV-K Gag RNA and protein appears to be a sensitive and specific biomarker of prostate malignancy in this cohort of men with prostate carcinoma, supporting its potential utility as a non-invasive, adjunct clinical biomarker.


Subject(s)
Endogenous Retroviruses/genetics , Gene Products, env/genetics , Gene Products, gag/genetics , Gene Products, pol/genetics , Prostatic Neoplasms/genetics , Aged , Biomarkers, Tumor/genetics , Cell Line, Tumor , Endogenous Retroviruses/isolation & purification , Gene Expression Regulation, Neoplastic/genetics , Gene Products, env/metabolism , Gene Products, gag/metabolism , Gene Products, pol/metabolism , Humans , Male , Middle Aged , Prostate/metabolism , Prostatic Neoplasms/diagnosis
11.
J Hepatol ; 75(1): 74-85, 2021 07.
Article in English | MEDLINE | ID: mdl-33621634

ABSTRACT

BACKGROUND & AIMS: HBV remains a global threat to human health. It remains incompletely understood how HBV self-restricts in the host during most adult infections. Thus, we performed multi-omics analyses to systematically interrogate HBV-host interactions and the life cycle of HBV. METHODS: RNA-sequencing and ribosome profiling were conducted with cell-based models for HBV replication and gene expression. The novel translational events or products hereby detected were then characterized, and functionally assessed in both cell and mouse models. Moreover, quasi-species analyses of HBV subpopulations were conducted with patients at immune tolerance or activation phases, using next- or third-generation sequencing. RESULTS: We identified EnhI-SL (Enhancer I-stem loop) as a new cis element in the HBV genome; mutations disrupting EnhI-SL were found to elevate viral polymerase expression. Furthermore, while re-discovering HpZ/P', a previously under-explored isoform of HBV polymerase, we also identified HBxZ, a novel short isoform of HBX. Having confirmed their existence, we functionally characterized them as potent suppressors of HBV gene expression and genome replication. Mechanistically, HpZ/P' was found to repress HBV gene expression partially by interacting with, and sequestering SUPV3L1. Activation of the host immune system seemed to reduce the abundance of HBV mutants deficient in HpZ/P' or with disruptions in EnhI-SL. Finally, SRSF2, a host RNA spliceosome protein that is downregulated by HBV, was found to promote the splicing of viral pre-genomic RNA and HpZ/P' biogenesis. CONCLUSION: This study has identified multiple self-restricting HBV-host interactions. In particular, SRSF2-HpZ/P' appeared to constitute another negative feedback mechanism in the HBV life cycle. Targeting host splicing machinery might thus represent a strategy to intervene in HBV-host interactions. LAY SUMMARY: There remain many unknowns about the natural history of HBV infection in adults. Herein, we identified new HBV-host mechanisms which could be responsible for self-restricting infections. Targeting these mechanisms could be a promising strategy for the treatment of HBV infections.


Subject(s)
Gene Products, pol/metabolism , Hepatitis B virus , Hepatitis B, Chronic , Host Microbial Interactions/immunology , Virus Replication , Animals , Drug Discovery , Genome, Viral/physiology , Hepatitis B virus/enzymology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Humans , Mice , Promoter Regions, Genetic , Protein Modification, Translational , RNA, Ribosomal, Self-Splicing/metabolism , RNA-Directed DNA Polymerase/metabolism , Serine-Arginine Splicing Factors/metabolism , Virus Replication/genetics , Virus Replication/immunology
12.
Front Immunol ; 12: 797608, 2021.
Article in English | MEDLINE | ID: mdl-35126361

ABSTRACT

Pig to human xenotransplantation is considered to be a possible approach to alleviate the shortage of human allografts. Porcine endogenous retrovirus (PERV) is the most significant pathogen in xenotransplantation. We screened for pigs that consistently did not transmit human-tropic replication competent PERVs (HTRC PERVs), namely, non-transmitting pigs. Then, we conducted whole-genome resequencing and full-length transcriptome sequencing to further investigate the sequence characteristics of one non-transmitting pig. Using in vitro transmission assays, we found 5 (out of 105) pigs of the Chinese Wuzhishan minipig inbred line that did not transmit PERV to human cells, i.e., non-transmitting pigs. Whole-genome resequencing and full-length transcriptome sequencing of one non-transmitting pig showed that all of the pol genes were defective at both the genome and transcript levels. We speculate that the defective PERV pol genes in this pig might be attributable to the long-term inbreeding process. This discovery is promising for the development of a strain of highly homozygous and genetically stable pigs with defective PERV pol genes as a source animal species for xenotransplantation.


Subject(s)
Endogenous Retroviruses/genetics , Genes, pol/genetics , Genome, Viral/genetics , Genome/genetics , Proviruses/genetics , Swine, Miniature/genetics , Amino Acid Sequence , Animals , Cell Line , Cells, Cultured , China , Gene Expression Profiling/methods , Gene Products, pol/genetics , HEK293 Cells , Humans , Sequence Homology, Amino Acid , Swine , Swine, Miniature/virology , Transcription, Genetic/genetics , Transplantation, Heterologous
13.
J Microbiol Biotechnol ; 31(1): 16-24, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33144545

ABSTRACT

Hepatitis B virus (HBV) genome P-encoded protein HBV DNA polymerase (Pol) has long been known as a reverse transcriptase during HBV replication. In this study, we investigated the impact of HBV Pol on host cellular processes, mainly apoptosis, and the underlying mechanisms. We showed a marked reduction in apoptotic rates in the HBV Pol-expressed HepG2 cells compared to controls. Moreover, a series of assays, i.e., yeast two-hybrid, GST pull-down, co-immunoprecipitation, and confocal laser scanning microscopy, identified the host factor eEF1A2 to be associated with HBV Pol. Furthermore, knockdown of eEF1A2 gene by siRNA abrogated the HBV Pol-mediated anti-apoptotic effect with apoptosis induced by endoplasmatic reticulum (ER) stress-inducer thapsigargin (TG), thus suggesting that the host factor eEF1A2 is essential for HBV Pol's anti-apoptosis properties. Our findings have revealed a novel role for HBV Pol in its modulation of apoptosis through integrating with eEF1A2.


Subject(s)
Carcinoma, Hepatocellular/virology , DNA-Directed DNA Polymerase/metabolism , Hepatitis B virus/enzymology , Liver Neoplasms/virology , Peptide Elongation Factor 1/metabolism , Apoptosis/drug effects , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/pharmacology , Gene Products, pol , Hep G2 Cells , Hepatitis B virus/genetics , Humans , Peptide Elongation Factor 1/genetics , Peptide Elongation Factors/metabolism , RNA, Small Interfering
14.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007262

ABSTRACT

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Subject(s)
Immunization, Passive/methods , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Gene Products, env/immunology , Gene Products, gag/immunology , Gene Products, pol/immunology , HIV-1/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology
15.
Emerg Microbes Infect ; 9(1): 2381-2393, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33124952

ABSTRACT

Background and Aims: The drug resistance of hepatitis B virus (HBV) originates from mutations within HBV reverse transcriptase (RT) region during the prolonged antiviral therapy. So far, the characteristics of how these mutations distribute and evolve in the process of therapy have not been clarified yet. Thus we aimed to investigate these characteristics and discuss their contributing factors. Methods: HBV RT region was direct-sequenced in 285 treatment-naive and 214 post-treatment patients. Mutational frequency and Shannon entropy were calculated to identify the specific mutations differing between genotypes or treatment status. A typical putative resistance mutation rtL229V was further studied using in-vitro susceptibility assays and molecular modeling. Results: The classical resistance mutations were rarely detected among treatment-naive individuals, while the putative resistance mutations were observed at 8 AA sites. rtV191I and rtA181T/V were the only resistance mutations identified as genotype-specific mutation. Selective pressure of drug usage not only contributed to the classical resistance mutations, but also induced the changes at a putative resistance mutation site rt229. rtL229V was the major substitution at the site of rt229. It contributed to the most potent suppression of viral replication and reduced the in-vitro drug susceptibility to entecavir (ETV) when coexisting with rtM204V, consistent with the hypothesis based on the molecular modeling and clinical data analysis. Conclusions: The analysis of mutations in RT region under the different circumstances of genotypes and therapy status might pave the way for a better understanding of resistance evolution, thus providing the basis for a rational administration of antiviral therapy.


Subject(s)
Antiviral Agents/therapeutic use , Drug Resistance, Viral , Gene Products, pol/genetics , Hepatitis B virus/enzymology , Hepatitis B, Chronic/drug therapy , Mutation , Adult , Case-Control Studies , Cell Line , Female , Gene Products, pol/chemistry , Genotype , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Humans , Male , Middle Aged , Models, Molecular , Phenotype , Sequence Analysis, DNA , Young Adult
16.
Viruses ; 12(8)2020 07 31.
Article in English | MEDLINE | ID: mdl-32752057

ABSTRACT

Hepatitis B virus (HBV) polymerase seems to be very hard to express and purify sufficiently, which has long hampered the generation of anti-HBV drugs based on the nature of the polymerase. To date, there has been no useful system developed for drug screening against HBV polymerase. In this study, we successfully obtained a highly purified reverse transcriptase (RT) domain of the polymerase, which has a template/primer and substrate binding activity, and established a novel high-throughput screening (HTS) system using purified RT protein for finding novel polymerase inhibitors. To examine whether the assay system provides reliable results, we tested the small scale screening using pharmacologically active compounds. As a result, the pilot screening identified already-known anti-viral polymerase agents. Then, we screened 20,000 chemical compounds and newly identified four hits. Several of these compounds inhibited not only the HBV RT substrate and/ template/primer binding activity, but also Moloney murine leukemia virus RT activity, which has an elongation activity. Finally, these candidates did show to be effective even in the cell-based assay. Our screening system provides a useful tool for searching candidate inhibitors against HBV.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Gene Products, pol/antagonists & inhibitors , Hepatitis B virus/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Hep G2 Cells , Hepatitis B virus/enzymology , High-Throughput Screening Assays , Humans , Nucleic Acid Synthesis Inhibitors/pharmacology , RNA-Directed DNA Polymerase , Small Molecule Libraries , Virus Replication/drug effects
17.
Genes Cells ; 25(8): 523-537, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32415897

ABSTRACT

Although several nucleo(s)tide analogs are available for treatment of HBV infection, long-term treatment with these drugs can lead to the emergence of drug-resistant viruses. Recent HIV-1 studies suggest that combination therapies using nucleo(s)tide reverse transcriptase inhibitors (NRTIs) and non-nucleo(s)tide reverse transcriptase inhibitors (NNRTIs) could drastically inhibit the viral genome replication of NRTI-resistant viruses. In order to carry out such combinational therapy against HBV, several new NRTIs and NNRTIs should be developed. Here, we aimed to identify novel NNRTIs targeting the HBV polymerase terminal protein (TP)-reverse transcriptase (RT) (TP-RT) domain, which is a critical domain for HBV replication. We expressed and purified the HBV TP-RT with high purity using an Escherichia coli expression system and established an in vitro ε RNA-binding assay system. Then, we used TP-RT in cell-free assays to screen candidate inhibitors from a chemical compound library, and identified two compounds, 6-hydroxy-DL-DOPA and N-oleoyldopamine, which inhibited the binding of ε RNA with the HBV polymerase. Furthermore, these drugs reduced HBV DNA levels in cell-based assays as well by inhibiting packaging of pregenome RNA into capsids. The novel screening system developed herein should open a new pathway the discovery of drugs targeting the HBV TP-RT domain to treat HBV infection.


Subject(s)
Drug Evaluation, Preclinical/methods , Reverse Transcriptase Inhibitors/pharmacology , Virus Replication/drug effects , Carrier Proteins/metabolism , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , Gene Products, pol/genetics , Gene Products, pol/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , Protein Binding , RNA/metabolism , RNA-Binding Motifs/genetics , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Small Molecule Libraries
18.
Microbes Infect ; 22(8): 366-370, 2020 09.
Article in English | MEDLINE | ID: mdl-32035224

ABSTRACT

The human endogenous retroviruses (HERVs) are endogenous retroviruses that are inserted into the germ cell DNA of humans over 30 million years ago. Using real-time RT-PCR we describe HERV modulation by commensal microbes in the human gut. Infants, exclusively or predominant breast milk feeding, less than 12 weeks of age, during bacteria gut colonization, were assessed for eligibility. Our data demonstrate that the colonization with commensal microbes, in particular, Bifidobacterium spp., of the gut causes modulation of HERVs.


Subject(s)
Endogenous Retroviruses/genetics , Gastrointestinal Microbiome/physiology , Transcription, Genetic , Bacteria/classification , Bacteria/isolation & purification , Breast Feeding , Endogenous Retroviruses/classification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gene Products, pol/blood , Gene Products, pol/genetics , Humans , Infant
19.
PLoS One ; 15(2): e0228192, 2020.
Article in English | MEDLINE | ID: mdl-32023284

ABSTRACT

New methods of HIV-1 RNA quantification based on dual-target detection are increasingly used in HIV viral load monitoring, but clinical implications and impact of dual-target detection on HIV-1 infection management are not established. Aptima HIV-1 Quant Dx assay is a last generation HIV viral load method, that uses pol and LTR as simultaneous target, providing quantitative results based mainly on pol target, while LTR target is used to report the results when pol signal is absent. In our laboratory, about 6% of results of all HIV-1 viral load tests performed with this platform in one year period resulted from LTR signal. Interestingly, LTR-based viremia (sometimes exceeding 1,000 copies/mL) was observed in a small proportion (up to 1%) of patients under ART, considered for long time virologically suppressed on the basis of a single target (pol-based) assay. Male gender, >700 vs <200 CD4 cell/mL and dual therapy including NRTI plus either NNRTI, or PI/b or INSTI were independently associated with increased risk of LTR-based HIV-1 viral load detection by multivariable logistic regression. A significant linear correlation was observed between LTR-based HIV-1 RNA levels and PBMC-associated proviral DNA. Moreover, in a small group of patients with HIV-1 RNA levels >200 copies/mL, longitudinal assessments showed parallel kinetics between plasma viremia and proviral DNA. Sequencing of pol region for drug resistance assessment in patients with LTR-based viremia failed on plasma HIV-1 RNA, while it was successful on proviral DNA. The detection/quantification of HIV-1 viremia based only on LTR signal with a dual target assay in samples resulting undetectable with the more conventional target pol needs accurate evaluation; unravelling the biological basis of this phenomenon, here described for the first time, is mandatory to establish relevance and implication by both pathogenetic (i.e. infectivity of LTR-detected viruses, reservoir turnover, immune activation, etc.) and clinical standpoint.


Subject(s)
HIV Infections/virology , HIV-1/genetics , Proviruses/genetics , Viremia/virology , Adult , Anti-Retroviral Agents/therapeutic use , CD4 Lymphocyte Count , DNA, Viral/blood , Drug Resistance, Viral , Female , Gene Products, pol/genetics , Genotype , HIV Infections/drug therapy , HIV Infections/pathology , HIV Long Terminal Repeat/genetics , HIV-1/isolation & purification , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/virology , Logistic Models , Male , Middle Aged , Proviruses/isolation & purification , RNA, Viral/blood , Viral Load , Viremia/pathology
20.
Sci Rep ; 10(1): 263, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937823

ABSTRACT

Koala retrovirus (KoRV) displays features of both an endogenous and exogenous virus and is linked to neoplasia and immunosuppression in koalas. This study explores the apparent differences in the nature and impact of KoRV infection between geographically and genetically separated "northern" and "southern" koala populations, by investigating the disease status, completeness of the KoRV genome and the proviral (DNA) and viral (RNA) loads of 71 northern and 97 southern koalas. All northern animals were positive for all KoRV genes (gag, pro-pol and env) in both DNA and RNA forms, whereas many southern animals were missing one or more KoRV genes. There was a significant relationship between the completeness of the KoRV genome and clinical status in this population. The proviral and viral loads of the northern population were significantly higher than those of the southern population (P < 0.0001), and many provirus-positive southern animals failed to express any detectable KoRV RNA. Across both populations there was a positive association between proviral load and neoplasia (P = 0.009). Potential reasons for the differences in the nature of KoRV infection between the two populations are discussed.


Subject(s)
Retroviridae Infections/pathology , Retroviridae/genetics , Aging/genetics , Animals , Australia/epidemiology , DNA/metabolism , Female , Gene Products, env/genetics , Gene Products, env/metabolism , Gene Products, gag/genetics , Gene Products, gag/metabolism , Gene Products, pol/genetics , Gene Products, pol/metabolism , Male , Phascolarctidae , Proviruses/genetics , RNA, Viral/blood , Retroviridae/isolation & purification , Retroviridae Infections/epidemiology , Retroviridae Infections/veterinary , Retroviridae Infections/virology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...