Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Kidney Int ; 103(3): 529-543, 2023 03.
Article in English | MEDLINE | ID: mdl-36565808

ABSTRACT

Chronic kidney disease (CKD) is a common cause of morbidity in human immunodeficiency virus (HIV)-positive individuals. HIV infection leads to a wide spectrum of kidney cell damage, including tubular epithelial cell (TEC) injury. Among the HIV-1 proteins, the pathologic effects of viral protein R (Vpr) are well established and include DNA damage response, cell cycle arrest, and cell death. Several in vitro studies have unraveled the molecular pathways driving the cytopathic effects of Vpr in tubular epithelial cells. However, the in vivo effects of Vpr on tubular injury and CKD pathogenesis have not been thoroughly investigated. Here, we use a novel inducible tubular epithelial cell-specific Vpr transgenic mouse model to show that Vpr expression leads to progressive tubulointerstitial damage, interstitial inflammation and fibrosis, and tubular cyst development. Importantly, Vpr-expressing tubular epithelial cells displayed significant hypertrophy, aberrant cell division, and atrophy; all reminiscent of tubular injuries observed in human HIV-associated nephropathy (HIVAN). Single-cell RNA sequencing analysis revealed the Vpr-mediated transcriptomic responses in specific tubular subsets and highlighted the potential multifaceted role of p53 in the regulation of cell metabolism, proliferation, and death pathways in Vpr-expressing tubular epithelial cells. Thus, our study demonstrates that HIV Vpr expression in tubular cells is sufficient to induce HIVAN-like tubulointerstitial damage and fibrosis, independent of glomerulosclerosis and proteinuria. Additionally, as this new mouse model develops progressive CKD with diffuse fibrosis and kidney failure, it can serve as a useful tool to examine the mechanisms of kidney disease progression and fibrosis in vivo.


Subject(s)
AIDS-Associated Nephropathy , Gene Products, vpr , HIV Infections , HIV-1 , Renal Insufficiency, Chronic , Animals , Humans , Mice , AIDS-Associated Nephropathy/genetics , Disease Models, Animal , Gene Products, vpr/genetics , Gene Products, vpr/metabolism , Gene Products, vpr/pharmacology , HIV Infections/complications , HIV-1/genetics , HIV-1/metabolism , Human Immunodeficiency Virus Proteins , Mice, Transgenic , Renal Insufficiency, Chronic/complications
2.
PLoS One ; 17(9): e0273313, 2022.
Article in English | MEDLINE | ID: mdl-36129874

ABSTRACT

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Subject(s)
Gene Products, vpr , HIV-1 , Aldosterone/metabolism , Aldosterone/pharmacology , Animals , Chlorocebus aethiops , Gene Products, vpr/metabolism , HIV-1/genetics , Kidney Tubules, Distal/metabolism , Mice , Mice, Transgenic , Phosphoenolpyruvate , RNA, Messenger/metabolism , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism , Renin/metabolism , Sodium/metabolism , Sodium Chloride/metabolism , Sodium Chloride Symporters/metabolism , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Thiazides
3.
PLoS Pathog ; 17(8): e1009775, 2021 08.
Article in English | MEDLINE | ID: mdl-34339457

ABSTRACT

Viruses have evolved means to manipulate the host's ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle regulation. CRL4DCAF1 specificity modulation by Vpx and Vpr from certain simian immunodeficiency viruses (SIV) leads to recruitment, poly-ubiquitylation and subsequent proteasomal degradation of the host restriction factor SAMHD1, resulting in enhanced virus replication in differentiated cells. To unravel the mechanism of SIV Vpr-induced SAMHD1 ubiquitylation, we conducted integrative biochemical and structural analyses of the Vpr protein from SIVs infecting Cercopithecus cephus (SIVmus). X-ray crystallography reveals commonalities between SIVmus Vpr and other members of the Vpx/Vpr family with regard to DCAF1 interaction, while cryo-electron microscopy and cross-linking mass spectrometry highlight a divergent molecular mechanism of SAMHD1 recruitment. In addition, these studies demonstrate how SIVmus Vpr exploits the dynamic architecture of the multi-subunit CRL4DCAF1 assembly to optimise SAMHD1 ubiquitylation. Together, the present work provides detailed molecular insight into variability and species-specificity of the evolutionary arms race between host SAMHD1 restriction and lentiviral counteraction through Vpx/Vpr proteins.


Subject(s)
Cullin Proteins/chemistry , Gene Products, vpr/metabolism , Proteasome Endopeptidase Complex/chemistry , SAM Domain and HD Domain-Containing Protein 1/chemistry , Ubiquitination , Virus Replication , Amino Acid Sequence , Animals , Cryoelectron Microscopy , Cullin Proteins/metabolism , Gene Products, vpr/genetics , NEDD8 Protein/chemistry , NEDD8 Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , SAM Domain and HD Domain-Containing Protein 1/metabolism , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
4.
Viruses ; 12(1)2020 01 15.
Article in English | MEDLINE | ID: mdl-31952107

ABSTRACT

Viral protein R (Vpr) is an accessory protein found in various primate lentiviruses, including human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) as well as simian immunodeficiency viruses (SIVs). Vpr modulates many processes during viral lifecycle via interaction with several of cellular targets. Previous studies showed that HIV-1 Vpr strengthened degradation of Mini-chromosome Maintenance Protein10 (MCM10) by manipulating DCAF1-Cul4-E3 ligase in proteasome-dependent pathway. However, whether Vpr from other primate lentiviruses are also associated with MCM10 degradation and the ensuing impact remain unknown. Based on phylogenetic analyses, a panel of primate lentiviruses Vpr/x covering main virus lineages was prepared. Distinct MCM10 degradation profiles were mapped and HIV-1, SIVmus and SIVrcm Vprs induced MCM10 degradation in proteasome-dependent pathway. Colocalization and interaction between MCM10 with these Vprs were also observed. Moreover, MCM10 2-7 interaction region was identified as a determinant region susceptible to degradation. However, MCM10 degradation did not alleviate DNA damage response induced by these Vpr proteins. MCM10 degradation by HIV-1 Vpr proteins was correlated with G2/M arrest, while induction of apoptosis and oligomerization formation of Vpr failed to alter MCM10 proteolysis. The current study demonstrated a distinct interplay pattern between primate lentiviruses Vpr proteins and MCM10.


Subject(s)
Gene Products, vpr/metabolism , Lentiviruses, Primate/genetics , Minichromosome Maintenance Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Cycle Checkpoints , DNA Damage , Gene Products, vpr/genetics , HEK293 Cells , HIV-1/genetics , HIV-1/physiology , HeLa Cells , Humans , Lentiviruses, Primate/chemistry , Minichromosome Maintenance Proteins/genetics , Phylogeny , Proteolysis , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology
5.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31776272

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription. Here, we show that a virus without an intact vpr gene is more highly restricted by REAF and, using delivery by virus-like particles (VLPs), that Vpr alone is sufficient for REAF degradation in primary macrophages. REAF is more highly expressed in macrophages than in cycling T cells, and we detected, by coimmunoprecipitation assay, an interaction between Vpr protein and endogenous REAF. Vpr acts quickly during the early phase of replication and induces the degradation of REAF within 30 min of viral entry. Using Vpr F34I and Q65R viral mutants, we show that nuclear localization and interaction with cullin 4A-DBB1 (DCAF1) E3 ubiquitin ligase are required for REAF degradation by Vpr. In response to infection, cells upregulate REAF levels. This response is curtailed in the presence of Vpr. These findings support the hypothesis that Vpr induces the degradation of a factor, REAF, that impedes HIV infection in macrophages.IMPORTANCE For at least 30 years, it has been known that HIV-1 Vpr, a protein carried in the virion, is important for efficient infection of primary macrophages. Vpr is also a determinant of the pathogenic effects of HIV-1 in vivo A number of cellular proteins that interact with Vpr have been identified. So far, it has not been possible to associate these proteins with altered viral replication in macrophages or to explain why Vpr is carried in the virus particle. Here, we show that Vpr mitigates the antiviral effects of REAF, a protein highly expressed in primary macrophages and one that inhibits virus replication during reverse transcription. REAF is degraded by Vpr within 30 min of virus entry in a manner dependent on the nuclear localization of Vpr and its interaction with the cell's protein degradation machinery.


Subject(s)
Antiviral Agents/metabolism , HIV-1/metabolism , Virus Replication/physiology , vpr Gene Products, Human Immunodeficiency Virus/physiology , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Products, vpr/metabolism , Gene Products, vpr/physiology , HEK293 Cells , HIV Infections/virology , HIV-1/physiology , HeLa Cells , Host-Pathogen Interactions , Humans , Macrophages/metabolism , Primary Cell Culture , Ubiquitin-Protein Ligases/metabolism , Virion/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism
6.
Cells ; 8(11)2019 10 24.
Article in English | MEDLINE | ID: mdl-31652959

ABSTRACT

Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.


Subject(s)
Gene Products, vpr/metabolism , Genes, vpr/genetics , Genes, vpr/physiology , Amino Acid Sequence , Cell Line , Humans , Virion/metabolism , Virus Replication/genetics , Virus Replication/physiology , vpr Gene Products, Human Immunodeficiency Virus
7.
Nat Microbiol ; 3(12): 1354-1361, 2018 12.
Article in English | MEDLINE | ID: mdl-30297740

ABSTRACT

Host factors that silence provirus transcription in CD4+ memory T cells help HIV-1 escape eradication by the host immune system and by antiviral drugs1. These same factors, however, must be overcome for HIV-1 to propagate. Here we show that Vpx and Vpr encoded by diverse primate immunodeficiency viruses activate provirus transcription. Vpx and Vpr are adaptor proteins for the DCAF1-CUL4A/B E3 ubiquitin ligase that degrade SAMHD1 and increase reverse transcription2-4. Nonetheless, Vpx and Vpr have effects on reporter gene expression that are not explained by SAMHD1 degradation5-8. A screen for factors that mimic these effects identified the human silencing hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN) and MORC29-13. Vpx associated with the HUSH complex and decreased steady-state level of these proteins in a DCAF1/CUL4A/B/proteasome-dependent manner14,15. Replication kinetics of HIV-1 and SIVMAC was accelerated to a similar extent by vpx or FAM208A knockdown. Finally, vpx increased steady-state levels of LINE-1 ORF1p, as previously described for FAM208A disruption11. These results demonstrate that the HUSH complex represses primate immunodeficiency virus transcription, and that, to counteract this restriction, viral Vpx or Vpr proteins degrade the HUSH complex.


Subject(s)
Gene Products, vpr/metabolism , Lentiviruses, Primate/metabolism , Proviruses/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Antigens, Neoplasm , Carrier Proteins , Cullin Proteins , Gene Products, vpr/genetics , HEK293 Cells , HIV Infections/virology , HIV-1/genetics , Humans , Lentiviruses, Primate/genetics , Nuclear Proteins , Phosphoproteins , Protein Serine-Threonine Kinases , SAM Domain and HD Domain-Containing Protein 1/metabolism , Transcription Factors/genetics , Ubiquitin-Protein Ligases , Viral Regulatory and Accessory Proteins/genetics , vpr Gene Products, Human Immunodeficiency Virus
8.
Molecules ; 23(8)2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30049955

ABSTRACT

HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms. Integrase along with the 96-residue multifunctional accessory protein, viral protein R (Vpr), are both components of the HIV-1 pre-integration complex (PIC). Coordinated interactions within the PIC are important for viral replication. Herein, we report a 7-mer peptide based on the shortened Vpr (69⁻75) sequence containing a biotin group and a photo-reactive benzoylphenylalanyl residue, and which exhibits low micromolar IN inhibitory potency. Photo-crosslinking experiments have indicated that the peptide directly binds IN. The peptide does not interfere with IN-DNA interactions or induce higher-order, aberrant IN multimerization, suggesting a mode of action for the peptide that is distinct from clinically used INSTIs and developmental allosteric IN inhibitors. This compact Vpr-derived peptide may serve as a valuable pharmacological tool to identify a potential new pharmacologic site.


Subject(s)
Gene Products, vpr/chemistry , Gene Products, vpr/metabolism , HIV Infections/virology , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/physiology , Peptides/pharmacology , Amino Acid Sequence , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization
9.
Sci Rep ; 7(1): 13362, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042644

ABSTRACT

HIV patients develop hepatic steatosis. We investigated hepatic steatosis in transgenic mice expressing the HIV-1 accessory protein Vpr (Vpr-Tg) in liver and adipose tissues, and WT mice infused with synthetic Vpr. Vpr-Tg mice developed increased liver triglyceride content and elevated ALT, bilirubin and alkaline phosphatase due to three hepatic defects: 1.6-fold accelerated de novo lipogenesis (DNL), 45% slower fatty acid ß-oxidation, and 40% decreased VLDL-triglyceride export. Accelerated hepatic DNL was due to coactivation by Vpr of liver X receptor-α (LXRα) with increased expression of its lipogenic targets Srebp1c, Chrebp, Lpk, Dgat, Fasn and Scd1, and intranuclear SREBP1c and ChREBP. Vpr enhanced association of LXRα with Lxrα and Srebp1c promoters, increased LXRE-LXRα binding, and broadly altered hepatic expression of LXRα-regulated lipid metabolic genes. Diminished hepatic fatty acid ß-oxidation was associated with decreased mRNA expression of Pparα and its targets Cpt1, Aox, Lcad, Ehhadh, Hsd10 and Acaa2, and blunted VLDL export with decreased expression of Mttp and its product microsomal triglyceride transfer protein. With our previous findings that Vpr circulates in HIV patients (including those with undetectable plasma HIV-1 RNA), co-regulates the glucocorticoid receptor and PPARγ and transduces hepatocytes, these data indicate a potential role for Vpr in HIV-associated fatty liver disease.


Subject(s)
Gene Products, vpr/metabolism , HIV Infections/complications , HIV Infections/genetics , HIV-1/physiology , Liver X Receptors/genetics , Non-alcoholic Fatty Liver Disease/etiology , PPAR alpha/genetics , Animals , Disease Models, Animal , Gene Expression Regulation , HIV Infections/virology , Hepatocytes/metabolism , Lipid Metabolism , Liver Function Tests , Liver X Receptors/metabolism , Male , Mice , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism
10.
J Mol Biol ; 428(13): 2744-57, 2016 07 03.
Article in English | MEDLINE | ID: mdl-27181198

ABSTRACT

Viral protein R (Vpr) is an accessory gene product of human immunodeficiency virus type 1 (HIV-1) that plays multiple important roles associated with viral replication. Structural studies using NMR have revealed that Vpr consists of three α-helices and contains flexible N- and C-termini. However, the molecular mechanisms associated with Vpr function have not been elucidated. To investigate Vpr multifunctionality, we performed an X-ray crystallographic study of Vpr complexes containing importin-α, a known Vpr binding partner present in host cells. Elucidation of the crystal structure revealed that the flexible C-terminus changes its conformation to a twisted ß-turn via an induced-fit mechanism, enabling binding to a minor nuclear localization signal (NLS) site of importin-α. The Vpr C-terminus can also bind with major NLS sites of importin-α in an extended conformation in different ways. These results, which represent the first reported crystallographic analysis of Vpr, demonstrate the multifunctional aspects that enable Vpr interaction with a variety of cellular proteins.


Subject(s)
Gene Products, vpr/metabolism , HIV-1/metabolism , Protein Binding/physiology , alpha Karyopherins/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Humans , Nuclear Localization Signals/metabolism , Virus Replication/physiology
11.
Bioorg Med Chem Lett ; 26(7): 1789-93, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26916438

ABSTRACT

Viral protein R (Vpr), an accessory gene of HIV-1, plays important roles in viral pathogenesis. Screening of Myanmar medicinal plants that are popular as primary treatments for HIV/AIDS and for HIV-related problems revealed the potent anti-Vpr activity of the CHCl3-soluble extract of Kaempferia pulchra rhizomes, in comparison with that of the positive control, damnacanthal. Fractionation of the active CHCl3-soluble extract led to the identification of 30 isopimarane diterpenoids, including kaempulchraols A-W (1-23). All isolates were assayed for anti-Vpr activity against TREx-HeLa-Vpr cells, in which Vpr expression is tightly regulated by tetracycline. Kaempulchraols B (2), D (4), G (7), Q (17), T (20), U (21), and W (23) exhibited potent anti-Vpr activity, at concentrations ranging from 1.56 to 6.25µM. The structure-activity relationships of the active kaempulchraols suggested that the presence of a hydroxy group at C-14 in an isopimara-8(9),15-diene skeleton and the presence of an acetoxy group at C-1 or C-7 in an isopimara-8(14),15-diene skeleton are the critical factors for the inhibitory effects against TREx-HeLa-Vpr cells.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Gene Products, vpr/antagonists & inhibitors , HIV-1/drug effects , Zingiberaceae/chemistry , Anti-HIV Agents/isolation & purification , Diterpenes/isolation & purification , Gene Products, vpr/metabolism , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/metabolism , HeLa Cells , Humans , Rhizome/chemistry , Structure-Activity Relationship
12.
PLoS One ; 10(8): e0135633, 2015.
Article in English | MEDLINE | ID: mdl-26270987

ABSTRACT

Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis.


Subject(s)
Astrocytes/enzymology , Gene Expression Regulation/physiology , Gene Products, vpr/metabolism , HIV-1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line , Cells, Cultured , Gene Products, vpr/genetics , Humans , Immunohistochemistry , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , NF-kappa B/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
13.
Virology ; 477: 10-17, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25618414

ABSTRACT

Vpr and Vpx are a group of highly related accessory proteins from primate lentiviruses. Despite the high degree of amino acid homology within this group, these proteins can be highly divergent in their functions. In this work, we constructed chimeric and mutant proteins between HIV-1 and SIVagm Vpr in order to better understand the structure-function relationships. We tested these constructs for their abilities to induce G2 arrest in human cells and to degrade agmSAMHD1 and Mus81. We found that the C-terminus of HIV-1 Vpr, when transferred onto SIVagm Vpr, provides the latter with the de novo ability to induce G2 arrest in human cells. We confirmed that HIV-1 Vpr induces degradation of Mus81 although, surprisingly, degradation is independent and genetically separable from Vpr׳s ability to induce G2 arrest.


Subject(s)
Cell Cycle , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Gene Products, vpr/metabolism , HIV-1/physiology , Host-Pathogen Interactions , Monomeric GTP-Binding Proteins/metabolism , Simian Immunodeficiency Virus/physiology , Gene Products, vpr/genetics , HeLa Cells , Humans , Proteolysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SAM Domain and HD Domain-Containing Protein 1
14.
J Virol ; 89(1): 230-40, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25320300

ABSTRACT

UNLABELLED: The accessory gene vpr, common to all primate lentiviruses, induces potent G2/M arrest in cycling cells. A recent study showed that human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) mediates this through activation of the SLX4/MUS81/EME1 exonuclease complex that forms part of the Fanconi anemia DNA repair pathway. To confirm these observations, we have examined the G2/M arrest phenotypes of a panel of simian immunodeficiency virus (SIV) Vpr proteins. We show that SIV Vpr proteins differ in their ability to promote cell cycle arrest in human cells. While this is dependent on the DCAF1/DDB1/CUL4 ubiquitin ligase complex, interaction with human DCAF1 does not predict G2/M arrest activity of SIV Vpr in human cells. In all cases, SIV Vpr-mediated cell cycle arrest in human cells correlated with interaction with human SLX4 (huSLX4) and could be abolished by small interfering RNA (siRNA) depletion of any member of the SLX4 complex. In contrast, all but one of the HIV/SIV Vpr proteins tested, including those that lacked activity in human cells, were competent for G2/M arrest in grivet cells. Correspondingly, here cell cycle arrest correlated with interaction with the grivet orthologues of the SLX4 complex, suggesting a level of host adaptation in these interactions. Phylogenetic analyses strongly suggest that G2/M arrest/SLX4 interactions are ancestral activities of primate lentiviral Vpr proteins and that the ability to dysregulate the Fanconi anemia DNA repair pathway is an essential function of Vpr in vivo. IMPORTANCE: The Vpr protein of HIV-1 and related viruses is essential for the virus in vivo. The ability of Vpr to block the cell cycle at mitotic entry is well known, but the importance of this function for viral replication is unclear. Recent data have shown that HIV-1 Vpr targets the Fanconi anemia DNA repair pathway by interacting with and activating an endonuclease complex, SLX4/MUS81/EME1, that processes interstrand DNA cross-links. Here we show that the ability of a panel of SIV Vpr proteins to mediate cell cycle arrest correlates with species-specific interactions with the SLX4 complex in human and primate cells. The results of these studies suggest that the SLX4 complex is a conserved target of primate lentiviral Vpr proteins and that the ability to dysregulate members of the Fanconi anemia DNA repair pathway is essential for HIV/SIV replication in vivo.


Subject(s)
Cell Cycle Checkpoints , Gene Products, vpr/metabolism , Host-Pathogen Interactions , Recombinases/metabolism , Simian Immunodeficiency Virus/physiology , Animals , Cell Line , Cercopithecinae , Humans
15.
Retrovirology ; 11: 45, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24912525

ABSTRACT

BACKGROUND: The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS: Here, we have identified transforming growth factor-ß-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS: HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.


Subject(s)
Gene Products, vpr/metabolism , HIV-1/physiology , MAP Kinase Kinase Kinases/genetics , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism , Adaptor Proteins, Signal Transducing , Cell Line , Cell Line, Tumor , Gene Products, vpr/genetics , HEK293 Cells , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/genetics , Phosphorylation , Promoter Regions, Genetic , Signal Transduction , Transcription Factor AP-1/genetics , Ubiquitination , Virus Replication
16.
PLoS One ; 8(11): e80414, 2013.
Article in English | MEDLINE | ID: mdl-24282540

ABSTRACT

Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3ß, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.


Subject(s)
14-3-3 Proteins/physiology , B-Lymphocytes/immunology , Immunoglobulin Class Switching/genetics , Recombination, Genetic , 14-3-3 Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytidine Deaminase/metabolism , Gene Products, vpr/metabolism , Humans , Immunoglobulin Switch Region , Models, Genetic , Models, Molecular , Optical Imaging , Protein Isoforms/metabolism , Protein Isoforms/physiology , Uracil-DNA Glycosidase/metabolism
17.
Sci Transl Med ; 5(213): 213ra164, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24285483

ABSTRACT

Viral infections, such as HIV, have been linked to obesity, but mechanistic evidence that they cause adipose dysfunction in vivo is lacking. We investigated a pathogenic role for the HIV-1 accessory protein viral protein R (Vpr), which can coactivate the glucocorticoid receptor (GR) and co-repress peroxisome proliferator-activated receptor γ (PPARγ) in vitro, in HIV-associated adipose dysfunction. Vpr circulated in the blood of most HIV-infected patients tested, including those on antiretroviral therapy (ART) with undetectable viral load. Vpr-mediated mechanisms were dissected in vivo using mouse models expressing the Vpr transgene in adipose tissues and liver (Vpr-Tg) or infused with synthetic Vpr. Both models demonstrated accelerated whole-body lipolysis, hyperglycemia and hypertriglyceridemia, and tissue-specific findings. Fat depots in these mice had diminished mass, macrophage infiltration, and blunted PPARγ target gene expression but increased GR target gene expression. In liver, we observed blunted PPARα target gene expression, steatosis with decreased adenosine monophosphate-activated protein kinase activity, and insulin resistance. Similar to human HIV-infected patients, Vpr circulated in the serum of Vpr-Tg mice. Vpr blocked differentiation in preadipocytes through cell cycle arrest, whereas in mature adipocytes, it increased lipolysis with reciprocally altered association of PPARγ and GR with their target promoters. These results delineate a distinct pathogenic sequence: Vpr, released from HIV-1 in tissue reservoirs after ART, can disrupt PPAR/GR co-regulation and cell cycle control to produce adipose dysfunction and hepatosteatosis. Confirmation of these mechanisms in HIV patients could lead to targeted treatment of the metabolic complications with Vpr inhibitors, GR antagonists, or PPARγ/PPARα agonists.


Subject(s)
Gene Products, vpr/metabolism , HIV-1/metabolism , Receptors, Glucocorticoid/metabolism , 3T3-L1 Cells , Animals , Chromatography, Thin Layer , Enzyme-Linked Immunosorbent Assay , Gene Products, vpr/genetics , HIV-1/genetics , Humans , Immunoblotting , Male , Mice , Mice, Transgenic , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/metabolism , Receptors, Glucocorticoid/agonists
18.
Retrovirology ; 10: 83, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23915234

ABSTRACT

BACKGROUND: Viral protein R (Vpr), a protein of human immunodeficiency virus type-1 (HIV-1) with various biological functions, was shown to be present in the blood of HIV-1-positive patients. However, it remained unclear whether circulating Vpr in patients' blood is biologically active. Here, we examined the activity of blood Vpr using an assay system by which retrotransposition of long interspersed element-1 (L1-RTP) was detected. We also investigated the in vivo effects of recombinant Vpr (rVpr) by administrating it to transgenic mice harboring human L1 as a transgene (hL1-Tg mice). Based on our data, we discuss the involvement of blood Vpr in the clinical symptoms of acquired immunodeficiency syndrome (AIDS). RESULTS: We first discovered that rVpr was active in induction of L1-RTP. Biochemical analyses revealed that rVpr-induced L1-RTP depended on the aryl hydrocarbon receptor, mitogen-activated protein kinases, and CCAAT/enhancer-binding protein ß. By using a sensitive L1-RTP assay system, we showed that 6 of the 15 blood samples from HIV-1 patients examined were positive for induction of L1-RTP. Of note, the L1-RTP-inducing activity was blocked by a monoclonal antibody specific for Vpr. Moreover, L1-RTP was reproducibly induced in various organs, including the kidney, when rVpr was administered to hL1-Tg mice. CONCLUSIONS: Blood Vpr is biologically active, suggesting that its monitoring is worthwhile for clarification of the roles of Vpr in the pathogenesis of AIDS. This is the first report to demonstrate a soluble factor in patients' blood active for L1-RTP activity, and implies the involvement of L1-RTP in the development of human diseases.


Subject(s)
Gene Products, vpr/blood , Gene Products, vpr/metabolism , HIV-1/enzymology , Long Interspersed Nucleotide Elements , Recombination, Genetic , Adult , Animals , Humans , Male , Mice , Mice, Transgenic , Young Adult
19.
Cell Host Microbe ; 14(1): 85-92, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23870316

ABSTRACT

HIV-1 resulted from cross-species transmission of SIVcpz, a simian immunodeficiency virus that naturally infects chimpanzees. SIVcpz, in turn, is a recombinant between two SIV lineages from Old World monkeys. Lentiviral interspecies transmissions are partly driven by the evolution and capacity of viral accessory genes, such as vpx, vpr, and vif, to antagonize host antiviral factors, such as SAMHD1 and the APOBEC3 proteins. We show that vpx, which in other lentiviruses antagonizes SAMHD1, was deleted during the creation of SIVcpz. This genomic deletion resulted in the reconstruction of the overlapping vif gene by "overprinting," creating a unique vif that overlaps in its 3' end with the vpr gene and can antagonize hominid APOBEC3s. Moreover, passage of SIVs through chimpanzees facilitated the subsequent adaptation of HIV-1 to humans. Thus, HIV-1 originated through a series of gene loss and adaptation events that generated its chimpanzee precursor and lowered the species barrier to human infection.


Subject(s)
Evolution, Molecular , Gene Deletion , HIV Infections/virology , HIV-1/genetics , Hominidae/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Amino Acid Sequence , Animals , Gene Products, vif/chemistry , Gene Products, vif/genetics , Gene Products, vif/metabolism , Gene Products, vpr/chemistry , Gene Products, vpr/genetics , Gene Products, vpr/metabolism , HIV-1/chemistry , HIV-1/classification , HIV-1/metabolism , Haplorhini , Humans , Molecular Sequence Data , Pan troglodytes , Phylogeny , Sequence Alignment , Simian Immunodeficiency Virus/chemistry , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/metabolism
20.
Cell Microbiol ; 14(11): 1745-56, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22776683

ABSTRACT

HIV-2 and closely related SIV Vpx proteins are essential for viral replication in macrophages and dendritic cells. Vpx hijacks DCAF1-DDB1-Cul4 E3 ubiquitin ligase to promote viral replication. DCAF1 is essential for cell proliferation and embryonic development and is responsible for the polyubiquitination of poorly defined cellular proteins. How substrate receptors recruit the DCAF1-containing E3 ubiquitin ligase to induce protein degradation is still poorly understood. Here we identify a highly conserved motif (Wx4Φx2Φx3AΦxH) that is present in diverse Vpx and Vpr proteins of primate lentiviruses. We demonstrate that the Wx4Φx2Φx3AΦxH motif in SIVmac Vpx is required for both the Vpx-DCAF1 interaction and/or Vpx-mediated degradation of SAMHD1. DCAF1-binding defective Vpx mutants also have impaired ability to promote SIVΔVpx virus infection of myeloid cells. Critical amino acids in the Wx4Φx2Φx3AΦxH motif of SIV Vpx that are important for DCAF1 interaction maintained the ability to bind SAMHD1, indicating that the DCAF1 and SAMHD1 interactions involve distinctive interfaces in Vpx. Surprisingly, VpxW24A mutant proteins that were still capable of binding DCAF1 and SAMHD1 lost the ability to induce SAMHD1 degradation, suggesting that Vpx is not a simple linker between the DCAF1-DDB1-Cul4 E3 ubiquitin ligase and its substrate, SAMHD1.VpxW24A maintained the ability to accumulate in the nucleus despite the fact that nuclear, but not cytoplasmic, mutant forms of SAMHD1 were more sensitive to Vpx-mediated degradation. The Wx4Φx2Φx3AΦxH motif in HIV-1 Vpr is also required for the Vpr-DCAF1 interaction and Vpr-induced G2 cell cycle arrest. Thus, our data reveal previously unrecognized functional interactions involved in the assembly of virally hijacked DCAF1-DDB1-based E3 ubiquitin ligase complex.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle , Gene Products, vpr/metabolism , Monomeric GTP-Binding Proteins/metabolism , Simian Immunodeficiency Virus/pathogenicity , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication , Amino Acid Motifs , Animals , Binding Sites , Cell Line , Conserved Sequence , Gene Products, vpr/genetics , Humans , Simian Immunodeficiency Virus/physiology , Viral Regulatory and Accessory Proteins/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...