Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.069
Filter
1.
J Nanobiotechnology ; 22(1): 309, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825720

ABSTRACT

Gene therapy aims to modify or manipulate gene expression and change the biological characteristics of living cells to achieve the purpose of treating diseases. The safe, efficient, and stable expression of exogenous genes in cells is crucial for the success of gene therapy, which is closely related to the vectors used in gene therapy. Currently, gene therapy vectors are mainly divided into two categories: viral vectors and non-viral vectors. Viral vectors are widely used due to the advantages of persistent and stable expression, high transfection efficiency, but they also have certain issues such as infectivity, high immunological rejection, randomness of insertion mutation, carcinogenicity, and limited vector capacity. Non-viral vectors have the advantages of non-infectivity, controllable chemical structure, and unlimited vector capacity, but the transfection efficiency is low. With the rapid development of nanotechnology, the unique physicochemical properties of nanomaterials have attracted increasing attention in the field of drug and gene delivery. Among many nanomaterials, iron-based nanomaterials have attracted much attention due to their superior physicochemical properties, such as Fenton reaction, magnetic resonance imaging, magnetothermal therapy, photothermal therapy, gene delivery, magnetically-assisted drug delivery, cell and tissue targeting, and so on. In this paper, the research progress of iron-based nanomaterials in gene delivery and tumor gene therapy is reviewed, and the future application direction of iron-based nanomaterials is further prospected.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Iron , Neoplasms , Genetic Therapy/methods , Humans , Neoplasms/therapy , Animals , Iron/chemistry , Iron/metabolism , Nanostructures/chemistry , Genetic Vectors
2.
Genesis ; 62(3): e23598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727638

ABSTRACT

Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Neoplasms/genetics , Neoplasms/therapy , Animals , Genetic Therapy/methods , Gene Transfer Techniques
3.
Nat Commun ; 15(1): 3780, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710714

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Subject(s)
Choroidal Neovascularization , Dependovirus , Genetic Therapy , Genetic Vectors , Retinal Pigment Epithelium , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Genetic Therapy/methods , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Choroidal Neovascularization/therapy , Choroidal Neovascularization/genetics , Rabbits , Humans , Gene Transfer Techniques , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Disease Models, Animal , Capsid Proteins/genetics , Capsid Proteins/metabolism , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Mice, Inbred C57BL , Retina/metabolism , Retina/virology , Male , HEK293 Cells
4.
J Nanobiotechnology ; 22(1): 223, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702815

ABSTRACT

Cardiac muscle targeting is a notoriously difficult task. Although various nanoparticle (NP) and adeno-associated viral (AAV) strategies with heart tissue tropism have been developed, their performance remains suboptimal. Significant off-target accumulation of i.v.-delivered pharmacotherapies has thwarted development of disease-modifying cardiac treatments, such as gene transfer and gene editing, that may address both rare and highly prevalent cardiomyopathies and their complications. Here, we present an intriguing discovery: cargo-less, safe poly (lactic-co-glycolic acid) particles that drastically improve heart delivery of AAVs and NPs. Our lead formulation is referred to as ePL (enhancer polymer). We show that ePL increases selectivity of AAVs and virus-like NPs (VLNPs) to the heart and de-targets them from the liver. Serotypes known to have high (AAVrh.74) and low (AAV1) heart tissue tropisms were tested with and without ePL. We demonstrate up to an order of magnitude increase in heart-to-liver accumulation ratios in ePL-injected mice. We also show that ePL exhibits AAV/NP-independent mechanisms of action, increasing glucose uptake in the heart, increasing cardiac protein glycosylation, reducing AAV neutralizing antibodies, and delaying blood clearance of AAV/NPs. Current approaches utilizing AAVs or NPs are fraught with challenges related to the low transduction of cardiomyocytes and life-threatening immune responses; our study introduces an exciting possibility to direct these modalities to the heart at reduced i.v. doses and, thus, has an unprecedented impact on drug delivery and gene therapy. Based on our current data, the ePL system is potentially compatible with any therapeutic modality, opening a possibility of cardiac targeting with numerous pharmacological approaches.


Subject(s)
Dependovirus , Genetic Vectors , Myocardium , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Dependovirus/genetics , Animals , Nanoparticles/chemistry , Mice , Myocardium/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Mice, Inbred C57BL , Heart , Genetic Therapy/methods , Gene Transfer Techniques , Liver/metabolism , Viral Tropism , HEK293 Cells
5.
Zool Res ; 45(3): 567-574, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38757224

ABSTRACT

Most viruses and transposons serve as effective carriers for the introduction of foreign DNA up to 11 kb into vertebrate genomes. However, their activity markedly diminishes with payloads exceeding 11 kb. Expanding the payload capacity of transposons could facilitate more sophisticated cargo designs, improving the regulation of expression and minimizing mutagenic risks associated with molecular therapeutics, metabolic engineering, and transgenic animal production. In this study, we improved the Tol2 transposon by increasing protein expression levels using a translational enhancer ( QBI SP163, ST) and enhanced the nuclear targeting ability using the nuclear localization protein H2B (SHT). The modified Tol2 and ST transposon efficiently integrated large DNA cargos into human cell cultures (H1299), comparable to the well-established super PiggyBac system. Furthermore, mRNA from ST and SHT showed a significant increase in transgene delivery efficiency of large DNA payloads (8 kb, 14 kb, and 24 kb) into zebrafish ( Danio rerio). This study presents a modified Tol2 transposon as an enhanced nonviral vector for the delivery of large DNA payloads in transgenic applications.


Subject(s)
DNA Transposable Elements , Transgenes , Zebrafish , Animals , Zebrafish/genetics , DNA Transposable Elements/genetics , Humans , Animals, Genetically Modified , Gene Transfer Techniques
6.
Methods Mol Biol ; 2775: 81-90, 2024.
Article in English | MEDLINE | ID: mdl-38758312

ABSTRACT

Transformation of foreign DNA into Cryptococcus species is a powerful tool for exploring gene functions in these human pathogens. Agrobacterium tumefaciens-mediated transformation (AtMT) has been used for the stable introduction of exogenous DNA into Cryptococcus for over two decades, being particularly impactful for insertional mutagenesis screens to discover new genes involved in fungal biology. A detailed protocol to conduct this transformation method is provided in the chapter. Scope for modifications and the benefits and disadvantages of using AtMT in Cryptococcus species are also presented.


Subject(s)
Agrobacterium tumefaciens , Cryptococcus , Transformation, Genetic , Cryptococcus/genetics , Agrobacterium tumefaciens/genetics , DNA, Bacterial/genetics , Genetic Vectors/genetics , Gene Transfer Techniques
7.
Adv Colloid Interface Sci ; 328: 103182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759449

ABSTRACT

Early disease detection is crucial since it raises the likelihood of treatment and considerably lowers the cost of therapy. Therefore, the improvement of human life and health depends on the development of quick, efficient, and credible biosensing methods. For improving the quality of biosensors, distinct nanostructures have been investigated; among these, carbon dots have gained much interest because of their great performance. Carbon dots, the essential component of fluorescence nanoparticles, having outstanding chemical characteristics, superb biocompatibility, chemical inertness, low toxicity and potential optical characteristics have attracted the researchers from every corner of the globe. Several carbon dots applications have been thoroughly investigated in recent decade, from optoelectronics to biomedical investigations. This review study primarily emphasizes the recent advancements in the field of biomass-derived carbon dots-based drug delivery, gene delivery and bioimaging, and highlights achievements in two major areas: in vivo applications that involve carbon dots absorption in zebrafish and mice, tumour therapeutics, and imaging-guided drug delivery. Additionally, the possible advantages, difficulties, and future possibilities of using carbon dots for biological applications are also explored.


Subject(s)
Biomass , Carbon , Quantum Dots , Carbon/chemistry , Animals , Humans , Quantum Dots/chemistry , Drug Delivery Systems , Neoplasms/drug therapy , Neoplasms/metabolism , Gene Transfer Techniques , Biosensing Techniques/methods
8.
Genome Biol ; 25(1): 135, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783323

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Multiple identified mutations in nexilin (NEXN) have been suggested to be linked with severe DCM. However, the exact association between multiple mutations of Nexn and DCM remains unclear. Moreover, it is critical for the development of precise and effective therapeutics in treatments of DCM. RESULTS: In our study, Nexn global knockout mice and mice carrying human equivalent G645del mutation are studied using functional gene rescue assays. AAV-mediated gene delivery is conducted through systemic intravenous injections at the neonatal stage. Heart tissues are analyzed by immunoblots, and functions are assessed by echocardiography. Here, we identify functional components of Nexilin and demonstrate that exogenous introduction could rescue the cardiac function and extend the lifespan of Nexn knockout mouse models. Similar therapeutic effects are also obtained in G645del mice, providing a promising intervention for future clinical therapeutics. CONCLUSIONS: In summary, we demonstrated that a single injection of AAV-Nexn was capable to restore the functions of cardiomyocytes and extended the lifespan of Nexn knockout and G645del mice. Our study represented a long-term gene replacement therapy for DCM that potentially covers all forms of loss-of-function mutations in NEXN.


Subject(s)
Cardiomyopathy, Dilated , Genetic Therapy , Mice, Knockout , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Mice , Humans , Dependovirus/genetics , Myocytes, Cardiac/metabolism , Disease Models, Animal , Mutation , Genetic Vectors/administration & dosage , Gene Transfer Techniques
9.
Langmuir ; 40(20): 10486-10491, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728233

ABSTRACT

In view of the excellent prospects of gene therapy and the potential safety and immunogenicity issues challenged by viral vectors, it is of great significance to develop a nonviral vector with low toxicity and low cost. In this work, we report a chitosan nanoparticle (CSNP) to be used as a gene vector prepared through a facile solvent-exchange strategy. Chitosan is first dissolved in ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM Ac), and then, the solvent is exchanged with water/phosphate-buffered saline (PBS) to remove ionic liquid, forming a final CSNP dispersion after ultrasonication. The prepared CSNP shows a positive surface charge and can condense green fluorescent protein-encoding plasmid (pGFP) at weight ratios (CSNP/pGFP) of 5/1 or higher. Dynamic light scattering size and ζ-potential characterization and gel retardation results confirm the formation of CSNP/pGFP complexes. Compared with plain pGFP, efficient cellular internalization and significantly enhanced green fluorescent protein (GFP) expression are observed by using CSNP as a plasmid vector. Benefitting from the intrinsic biocompatibility, low cost, low immunogenicity, and abundant sources of chitosan, as well as the facile preparation and the efficient gene transfection capacity of CSNP, it is believed that this CSNP could be used as a nonviral gene vector with great clinical translational potentials.


Subject(s)
Chitosan , Green Fluorescent Proteins , Nanoparticles , Plasmids , Solvents , Chitosan/chemistry , Nanoparticles/chemistry , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Solvents/chemistry , Plasmids/chemistry , Plasmids/genetics , Gene Transfer Techniques , Transfection/methods , Particle Size , HeLa Cells
10.
ACS Appl Mater Interfaces ; 16(20): 25698-25709, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717294

ABSTRACT

Much of current clinical interest has focused on mRNA therapeutics for the treatment of lung-associated diseases, such as infections, genetic disorders, and cancers. However, the safe and efficient delivery of mRNA therapeutics to the lungs, especially to different pulmonary cell types, is still a formidable challenge. In this paper, we proposed a cationic lipid pair (CLP) strategy, which utilized the liver-targeted ionizable lipid and its derived quaternary ammonium lipid as the CLP to improve liver-to-lung tropism of four-component lipid nanoparticles (LNPs) for in vivo mRNA delivery. Interestingly, the structure-activity investigation identified that using liver-targeted ionizable lipids with higher mRNA delivery performance and their derived lipid counterparts is the optimal CLP design for improving lung-targeted mRNA delivery. The CLP strategy was also verified to be universal and suitable for clinically available ionizable lipids such as SM-102 and ALC-0315 to develop lung-targeted LNP delivery systems. Moreover, we demonstrated that CLP-based LNPs were safe and exhibited potent mRNA transfection in pulmonary endothelial and epithelial cells. As a result, we provided a powerful CLP strategy for shifting the mRNA delivery preference of LNPs from the liver to the lungs, exhibiting great potential for broadening the application scenario of mRNA-based therapy.


Subject(s)
Cations , Lipids , Liver , Lung , Nanoparticles , RNA, Messenger , Nanoparticles/chemistry , Lung/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry , Animals , Liver/metabolism , Humans , Cations/chemistry , Mice , Gene Transfer Techniques , Transfection/methods , Liposomes
11.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732235

ABSTRACT

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Subject(s)
Chitosan , Gene Transfer Techniques , Gold , Liver Neoplasms , Metal Nanoparticles , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Hep G2 Cells , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Chitosan/chemistry , HEK293 Cells , Asialoglycoprotein Receptor/metabolism , Asialoglycoprotein Receptor/genetics , Caco-2 Cells , Luciferases/genetics , Luciferases/metabolism , Polyethylene Glycols/chemistry , Plasmids/genetics , Disaccharides/chemistry , Genetic Therapy/methods , Polymers/chemistry , Cell Survival/drug effects
12.
Nat Commun ; 15(1): 4523, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806464

ABSTRACT

Interest in gene therapy medicines is intensifying as the first wave of gene-correcting drugs is now reaching patient populations. However, efficacy and safety concerns, laborious manufacturing protocols, and the high cost of the therapeutics are still significant barriers in gene therapy. Here we describe liquid foam as a vehicle for gene delivery. We demonstrate that embedding gene therapy vectors (nonviral or viral) in a methylcellulose/xanthan gum-based foam formulation substantially boosts gene transfection efficiencies in situ, compared to liquid-based gene delivery. We further establish that our gene therapy foam is nontoxic and retained at the intended target tissue, thus minimizing both systemic exposure and targeting of irrelevant cell types. The foam can be applied locally or injected to fill body cavities so the vector is uniformly dispersed over a large surface area. Our technology may provide a safe, facile and broadly applicable option in a variety of clinical settings.


Subject(s)
Genetic Therapy , Genetic Vectors , Genetic Therapy/methods , Genetic Vectors/genetics , Animals , Humans , Mice , Gene Transfer Techniques , Methylcellulose/chemistry , Transfection/methods , Female , Polysaccharides, Bacterial
13.
Neuroimage ; 294: 120630, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38740226

ABSTRACT

OBJECTIVE: To evaluate the synergistic potential of Focused Ultrasound (FUS) in conjunction with microbubbles (MB) and recombinant adeno-associated virus serotype 9 (rAAV9) vectors for targeted gene delivery to neuronal cells in rats, optimizing gene expression conditions and assessing any adverse effects. METHODS: The parameters for permeability enhancement of the rat's blood-brain barrier (BBB) were established using FUS+MB, with MRI scans and Evans Blue (EB) dye assisting in the evaluation. Rats underwent FUS-mediated transfection using rAAV9-Syn-EGFP vectors produced via a triple-transfection in HEK293T cells. Following this, the uptake and expression of GFP in targeted brain regions were evaluated using confocal fluorescence microscopy at various time intervals. Inflammatory responses post-FUS treatment were tracked by observing levels of GFAP, a marker for astrocytic activation, and TNF-α, a pro-inflammatory cytokine. Motor behavior effects post-intervention were gauged using the Rotarod test across multiple groups over a span of four weeks. RESULTS: FUS+MB affected BBB permeability, with optimal results at 4 W for 200 s showing 85 % permeability and evident Gd-DTPA leakage. Settings beyond these resulted in tissue damage. Control groups exhibited a basal GFP expression of 2 % ± 0.5 %, whereas FUS+MB with rAAV-EGFP injections substantially increased GFP expression to about 67 % ± 6 % in targeted neurons. This GFP expression peaked at three weeks post-treatment and remained evident six months later. Following FUS treatment, both GFAP and TNF-α levels underwent fluctuations before eventually nearing their baseline values. The Rotarod test revealed no significant behavioral differences post-treatments among the groups. CONCLUSIONS: Combining FUS+MB with rAAV offers an innovative approach to enhance therapeutic delivery to the central nervous system (CNS) by transiently adjusting BBB permeability.


Subject(s)
Blood-Brain Barrier , Dependovirus , Gene Transfer Techniques , Genetic Vectors , Green Fluorescent Proteins , Microbubbles , Neurons , Animals , Rats , Blood-Brain Barrier/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Dependovirus/genetics , Humans , Genetic Vectors/administration & dosage , Neurons/metabolism , Rats, Sprague-Dawley , HEK293 Cells , Male , Ultrasonic Waves
14.
ACS Appl Mater Interfaces ; 16(21): 27087-27101, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752799

ABSTRACT

An ideal vehicle with a high transfection efficiency is crucial for gene delivery. In this study, a type of cationic carbon dot (CCD) known as APCDs were first prepared with arginine (Arg) and pentaethylenehexamine (PEHA) as precursors and conjugated with oleic acid (OA) for gene delivery. By tuning the mass ratio of APCDs to OA, APCDs-OA conjugates, namely, APCDs-0.5OA, APCDs-1.0OA, and APCDs-1.5OA were synthesized. All three amphiphilic APCDs-OA conjugates show high affinity to DNA through electrostatic interactions. APCDs-0.5OA exhibit strong binding with small interfering RNA (siRNA). After being internalized by Human Embryonic Kidney (HEK 293) and osteosarcoma (U2OS) cells, they could distribute in both the cytoplasm and the nucleus. With APCDs-OA conjugates as gene delivery vehicles, plasmid DNA (pDNA) that encodes the gene for the green fluorescence protein (GFP) can be successfully delivered in both HEK 293 and U2OS cells. The GFP expression levels mediated by APCDs-0.5OA and APCDs-1.0OA are ten times greater than that of PEI in HEK 293 cells. Furthermore, APCDs-0.5OA show prominent siRNA transfection efficiency, which is proven by the significantly downregulated expression of FANCA and FANCD2 proteins upon delivery of FANCA siRNA and FANCD2 siRNA into U2OS cells. In conclusion, our work demonstrates that conjugation of CCDs with a lipid structure such as OA significantly improves the gene transfection efficiency, providing a new idea about the designation of nonviral carriers in gene delivery systems.


Subject(s)
Carbon , RNA, Small Interfering , Transfection , Humans , HEK293 Cells , Carbon/chemistry , Transfection/methods , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Lipids/chemistry , Cations/chemistry , DNA/chemistry , Quantum Dots/chemistry , Gene Transfer Techniques , Oleic Acid/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Cell Line, Tumor
15.
ACS Appl Mater Interfaces ; 16(21): 26984-26997, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38753459

ABSTRACT

Lipid nanoparticles (LNPs) are clinically advanced nonviral gene delivery vehicles with a demonstrated ability to address viral, oncological, and genetic diseases. However, the further development of LNP therapies requires rapid analytical techniques to support their development and manufacturing. The method developed and described in this paper presents an approach to rapidly and accurately analyze LNPs for optimized therapeutic loading by utilizing an electrophoresis microfluidic platform to analyze the composition of LNPs with different clinical lipid compositions (Onpattro, Comirnaty, and Spikevax) and nucleic acid (plasmid DNA (pDNA) and messenger RNA (mRNA)) formulations. This method enables the high-throughput screening of LNPs using a 96- or 384-well plate with approximate times of 2-4 min per sample using a total volume of 11 µL. The lipid analysis requires concentrations approximately between 109 and 1010 particles/mL and has an average precision error of 10.4% and a prediction error of 19.1% when compared to using a NanoSight, while the nucleic acid analysis requires low concentrations of 1.17 ng/µL for pDNA and 0.17 ng/µL for mRNA and has an average precision error of 4.8% and a prediction error of 9.4% when compared to using a PicoGreen and RiboGreen assay. In addition, our method quantifies the relative concentration of nucleic acid per LNP. Utilizing this approach, we observed an average of 263 ± 62.2 mRNA per LNP and 126.3 ± 21.2 pDNA per LNP for the LNP formulations used in this study, where the accuracy of these estimations is dependent on reference standards. We foresee the utility of this technique in the high-throughput characterization of LNPs during manufacturing and formulation research and development.


Subject(s)
DNA , Lipids , Nanoparticles , Plasmids , RNA, Messenger , RNA, Messenger/genetics , Nanoparticles/chemistry , Plasmids/genetics , DNA/chemistry , Lipids/chemistry , Humans , Microfluidics/methods , Gene Transfer Techniques , Electrophoresis , Liposomes
16.
Viruses ; 16(5)2024 04 23.
Article in English | MEDLINE | ID: mdl-38793540

ABSTRACT

Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.


Subject(s)
Genetic Vectors , Recombination, Genetic , Genetic Vectors/genetics , Humans , Adenoviridae/genetics , Adenoviruses, Human/genetics , Animals , Gene Transfer Techniques , Adenoviruses, Simian/genetics , Cloning, Molecular/methods
17.
Theranostics ; 14(7): 2777-2793, 2024.
Article in English | MEDLINE | ID: mdl-38773978

ABSTRACT

Small extracellular vesicles (sEVs) are naturally occurring vesicles that have the potential to be manipulated to become promising drug delivery vehicles for on-demand in vitro and in vivo gene editing. Here, we developed the modular safeEXO platform, a prototype sEV delivery vehicle that is mostly devoid of endogenous RNA and can efficaciously deliver RNA and ribonucleoprotein (RNP) complexes to their intended intracellular targets manifested by downstream biologic activity. We also successfully engineered producer cells to produce safeEXO vehicles that contain endogenous Cas9 (safeEXO-CAS) to effectively deliver efficient ribonucleoprotein (RNP)-mediated CRISPR genome editing machinery to organs or diseased cells in vitro and in vivo. We confirmed that safeEXO-CAS sEVs could co-deliver ssDNA, sgRNA and siRNA, and efficaciously mediate gene insertion in a dose-dependent manner. We demonstrated the potential to target safeEXO-CAS sEVs by engineering sEVs to express a tissue-specific moiety, integrin alpha-6 (safeEXO-CAS-ITGA6), which increased their uptake to lung epithelial cells in vitro and in vivo. We tested the ability of safeEXO-CAS-ITGA6 loaded with EMX1 sgRNAs to induce lung-targeted editing in mice, which demonstrated significant gene editing in the lungs with no signs of morbidity or detectable changes in immune cell populations. Our results demonstrate that our modular safeEXO platform represents a targetable, safe, and efficacious vehicle to deliver nucleic acid-based therapeutics that successfully reach their intracellular targets. Furthermore, safeEXO producer cells can be genetically manipulated to produce safeEXO vehicles containing CRISPR machinery for more efficient RNP-mediated genome editing. This platform has the potential to improve current therapies and increase the landscape of treatment for various human diseases using RNAi and CRISPR approaches.


Subject(s)
CRISPR-Cas Systems , Extracellular Vesicles , Gene Editing , Gene Transfer Techniques , Gene Editing/methods , Extracellular Vesicles/metabolism , CRISPR-Cas Systems/genetics , Animals , Humans , Mice , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , RNA, Guide, CRISPR-Cas Systems/genetics
18.
Sci Adv ; 10(16): eadl4336, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38630829

ABSTRACT

Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Gene Transfer Techniques , Genetic Therapy , Polymers/chemistry , Ribonucleoproteins/genetics
19.
Nano Lett ; 24(17): 5104-5109, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640421

ABSTRACT

mRNA lipid nanoparticles (LNPs) have emerged as powerful modalities for gene therapies to control cancer and infectious and immune diseases. Despite the escalating interest in mRNA-LNPs over the past few decades, endosomal entrapment of delivered mRNAs vastly impedes therapeutic developments. In addition, the molecular mechanism of LNP-mediated mRNA delivery is poorly understood to guide further improvement through rational design. To tackle these challenges, we characterized LNP-mediated mRNA delivery using a library of small molecules targeting endosomal trafficking. We found that the expression of delivered mRNAs is greatly enhanced via inhibition of endocytic recycling in cells and in live mice. One of the most potent small molecules, endosidine 5 (ES5), interferes with recycling endosomes through Annexin A6, thereby promoting the release and expression of mRNA into the cytoplasm. Together, these findings suggest that targeting endosomal trafficking with small molecules is a viable strategy to potentiate the efficacy of mRNA-LNPs.


Subject(s)
Endosomes , Liposomes , Nanoparticles , RNA, Messenger , Endosomes/metabolism , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nanoparticles/chemistry , Mice , Humans , Lipids/chemistry , Gene Transfer Techniques , Endocytosis/drug effects
20.
Front Endocrinol (Lausanne) ; 15: 1369043, 2024.
Article in English | MEDLINE | ID: mdl-38628583

ABSTRACT

The manipulation of the somatotropic axis, governing growth, has been a focus of numerous transgenic approaches aimed at developing fast-growing fish for research, medicine and aquaculture purposes. However, the excessively high growth hormone (GH) levels in these transgenic fish often result in deformities that impact both fish health and consumer acceptance. In an effort to mitigate these issues and synchronize exogenous GH expression with reproductive processes, we employed a novel transgenic construct driven by a tilapia luteinizing hormone (LH) promoter. This approach was anticipated to induce more localized and lower exogenous GH secretion. In this study, we characterized the growth and reproduction of these transgenic LHp-GH zebrafish using hormonal and physiological parameters. Our findings reveal that LHp-GH fish exhibited accelerated growth in both length and weight, along with a lower feed conversion ratio, indicating more efficient feed utilization, all while maintaining unchanged body proportions. These fish demonstrated higher expression levels of LH and GH in the pituitary and elevated IGF-1 levels in the liver compared to wild-type fish. An examination of reproductive function in LHp-GH fish unveiled lower pituitary LH and FSH contents, smaller follicle diameter in female gonads, and reduced relative fecundity. However, in transgenic males, neither the distribution of spermatogenesis stages nor sperm concentrations differed significantly between the fish lines. These results suggest that coupling exogenous GH expression with endogenous LH expression in females directs resource investment toward somatic growth at the expense of reproductive processes. Consequently, we conclude that incorporating GH under the LH promoter represents a suitable construct for the genetic engineering of commercial fish species, providing accelerated growth while preserving body proportions.


Subject(s)
Growth Hormone , Zebrafish , Animals , Female , Male , Animals, Genetically Modified/metabolism , Gene Transfer Techniques , Growth Hormone/genetics , Growth Hormone/metabolism , Luteinizing Hormone/genetics , Semen/metabolism , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...