Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.802
Filter
1.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600469

ABSTRACT

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Subject(s)
Genes, MHC Class II , Immunotherapy , Neoplasms , Proprotein Convertase 9 , Proprotein Convertases , Animals , Mice , Histocompatibility Antigens , Lipoproteins, LDL , Neoplasms/genetics , Neoplasms/therapy , Proprotein Convertase 9/metabolism , Proprotein Convertases/antagonists & inhibitors , Receptors, LDL/genetics , Tumor Microenvironment
2.
HLA ; 103(2): e15356, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304958

ABSTRACT

Domestic sheep (Ovis aries) have been an important component of livestock agricultural production for thousands of years. Preserving genetic diversity within livestock populations maintains a capacity to respond to changing environments and rapidly evolving pathogens. MHC genetic diversity can influence immune functionality at individual and population levels. Here, we focus on defining functional MHC class I haplotype diversity in a large cohort of Scottish Blackface sheep pre-selected for high levels of MHC class II DRB1 diversity. Using high-throughput amplicon sequencing with three independent sets of barcoded primers we identified 134 MHC class I transcripts within 38 haplotypes. Haplotypes were identified with between two and six MHC class I genes, plus variable numbers of conserved sequences with very low read frequencies. One or two highly transcribed transcripts dominate each haplotype indicative of two highly polymorphic, classical MHC class I genes. Additional clusters of medium, low, and very low expressed transcripts are described, indicative of lower transcribed classical, non-classical and genes whose function remains to be determined.


Subject(s)
Genes, MHC Class II , Genes, MHC Class I , Humans , Sheep/genetics , Animals , Haplotypes , Genes, MHC Class I/genetics , Alleles
3.
Mol Ecol ; 33(1): e17198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37933583

ABSTRACT

Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.


Subject(s)
Genetic Variation , Microbiota , Animals , Selection, Genetic , Genes, MHC Class II/genetics , Histocompatibility Antigens Class II/genetics , Microbiota/genetics , Amphibians/genetics , Alleles
4.
Front Immunol ; 14: 1250316, 2023.
Article in English | MEDLINE | ID: mdl-38022509

ABSTRACT

MHC-E restricted CD8 T cells show promise in vaccine settings, but their development and specificity remain poorly understood. Here we focus on a CD8 T cell population reactive to a self-peptide (FL9) bound to mouse MHC-E (Qa-1b) that is presented in response to loss of the MHC I processing enzyme ERAAP, termed QFL T cells. We find that mature QFL thymocytes are predominantly CD8αß+CD4-, show signs of agonist selection, and give rise to both CD8αα and CD8αß intraepithelial lymphocytes (IEL), as well as memory phenotype CD8αß T cells. QFL T cells require the MHC I subunit ß-2 microglobulin (ß2m), but do not require Qa1b or classical MHC I for positive selection. However, QFL thymocytes do require Qa1b for agonist selection and full functionality. Our data highlight the relaxed requirements for positive selection of an MHC-E restricted T cell population and suggest a CD8αß+CD4- pathway for development of CD8αα IELs.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell, alpha-beta , Animals , Mice , Peptides/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/metabolism , Genes, MHC Class II
5.
Cell Death Dis ; 14(11): 737, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957143

ABSTRACT

SUMOylation is an evolutionary conserved regulatory mechanism, in which Ubc9 is the only E2 conjugating enzyme. Previous studies demonstrated that SUMOylation is involved in multiple biological processes, but its role in dendritic cells (DCs) remains to be fully addressed. Herein in this report, we found that DCs deficient in Ubc9 protected mice from dextran sulfate sodium (DSS)-induced colitis, as evidenced by the ameliorated weight loss, colon length, and disrupted colon structure. Mechanistically, Ubc9 mediated SUMOylation of RBPJ, by which it stabilized RBPJ from ubiquitin-mediated degradation to enhance its transcriptional activity, while Ciita, a critical transcription factor, is a direct target downstream of RBPJ, which forms an enhanceosome complex to transcribe the expression of MHC II genes. Therefore, loss of Ubc9 abolished RBPJ SUMOylation, which was coupled with reduced Ciita transcription, thereby attenuating the expression of MHC class II genes. As a consequence of defective MHC II expression, Ubc9-/- DCs were featured by the impaired capability to process antigen and to prime effector CD4+ T cells, thereby protecting mice from DSS-induced colitis. Together, our results shed novel insight into the understanding of SUMOylation in the regulation of DC functions in pathological conditions.


Subject(s)
Colitis , Sumoylation , Ubiquitin-Conjugating Enzymes , Animals , Mice , Antigens , Colitis/chemically induced , Colitis/genetics , Dendritic Cells , Gene Expression Regulation , T-Lymphocytes , Ubiquitin-Conjugating Enzymes/genetics , Genes, MHC Class II
6.
PLoS One ; 18(10): e0293347, 2023.
Article in English | MEDLINE | ID: mdl-37878653

ABSTRACT

BACKGROUND: Postoperative immunosuppression has been recognized as an important driver of surgery-related morbidity and mortality. It is characterized by lymphocyte depression and impaired monocyte capability to present foreign antigens to T-cells via Major Histocompatibility Complex, Class II (MHC-II) molecules. In patients with postoperative abdominal sepsis, we previously detected a persisting differential binding of the CCCTC-Binding Factor (CTCF), a superordinate regulator of transcription, inside the MHC-II region with specific impact on human leucocyte antigen (HLA) gene expression. In this prospective exploratory study, we investigated to which extent major surgery affects the MHC-II region of circulating CD14+-monocytes. RESULTS: In non-immunocompromised patients undergoing elective major abdominal surgery, a postoperative loss of monocyte HLA-DR surface receptor density was accompanied by a decline in the transcription levels of the classical MHC-II genes HLA-DRA, HLA-DRB1, HLA-DPA1 and HLA-DPB1. The surgical event decreased the expression of the transcriptional MHC-II regulators CIITA and CTCF and led to a lower CTCF enrichment at an intergenic sequence within the HLA-DR subregion. During the observation period, we found a slow and only incomplete restoration of monocyte HLA-DR surface receptor density as well as a partial recovery of CIITA, HLA-DRA and HLA-DRB1 expression. In contrast, transcription of HLA-DPA1, HLA-DPB1, CTCF and binding of CTCF within the MHC-II remained altered. CONCLUSION: In circulating monocytes, major surgery does not globally affect MHC-II transcription but rather induces specific changes in the expression of selected HLA genes, followed by differential recovery patterns and accompanied by a prolonged reduction of CTCF expression and binding within the MHC-II region. Our results hint toward a long-lasting impact of a major surgical intervention on monocyte functionality, possibly mediated by epigenetic changes that endure the life span of the individual cell.


Subject(s)
Gene Expression Regulation , Monocytes , Humans , CCCTC-Binding Factor/genetics , HLA-DR alpha-Chains/genetics , HLA-DRB1 Chains/genetics , Prospective Studies , Genes, MHC Class II , Histocompatibility Antigens Class II/genetics
8.
Front Immunol ; 14: 1260688, 2023.
Article in English | MEDLINE | ID: mdl-37744379

ABSTRACT

Introduction: Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods: The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results: 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion: Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.


Subject(s)
Aortic Aneurysm , Cancer Vaccines , Aged , Humans , HLA-DR alpha-Chains , Genes, MHC Class II , Computational Biology , Inflammation/genetics
9.
Proc Natl Acad Sci U S A ; 120(39): e2305756120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37722062

ABSTRACT

Mutations in RNA/DNA-binding proteins cause amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain unclear. Here, we report that a set of ALS-associated proteins, namely FUS, EWSR1, TAF15, and MATR3, impact the expression of genes encoding the major histocompatibility complex II (MHC II) antigen presentation pathway. Both subunits of the MHC II heterodimer, HLA-DR, are down-regulated in ALS gene knockouts/knockdown in HeLa and human microglial cells, due to loss of the MHC II transcription factor CIITA. Importantly, hematopoietic progenitor cells (HPCs) derived from human embryonic stem cells bearing the FUSR495X mutation and HPCs derived from C9ORF72 ALS patient induced pluripotent stem cells also exhibit disrupted MHC II expression. Given that HPCs give rise to numerous immune cells, our data raise the possibility that loss of the MHC II pathway results in global failure of the immune system to protect motor neurons from damage that leads to ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Antigen Presentation/genetics , Genes, MHC Class II , Major Histocompatibility Complex , Motor Neurons , RNA-Binding Proteins/genetics , Nuclear Matrix-Associated Proteins
10.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37695524

ABSTRACT

Epithelial cells play a crucial role in barrier defense. Here, Moniruzzaman et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20230106) discovered that interleukin-22 (IL-22) represses MHC class II expression by epithelial cells with an opposite impact on chronic inflammatory disease and viral infection.


Subject(s)
Epithelial Cells , Interleukins , Genes, MHC Class II , Interleukin-22
11.
Cancer Res Commun ; 3(8): 1501-1513, 2023 08.
Article in English | MEDLINE | ID: mdl-37565053

ABSTRACT

Tumor-specific MHC class II (tsMHC-II) expression impacts tumor microenvironmental immunity. tsMHC-II positive cancer cells may act as surrogate antigen-presenting cells and targets for CD4+ T cell-mediated lysis. In colorectal cancer, tsMHC-II negativity is common, in cell lines due to CIITA promoter methylation. To clarify mechanisms of tsMHC-II repression in colorectal cancer, we analyzed colorectal cancer organoids which are epigenetically faithful to tissue of origin. 15 primary colorectal cancer organoids were treated with IFNγ ± epigenetic modifiers: flow cytometry was used for tsMHC-II expression. qRT-PCR, total RNA sequencing, nanopore sequencing, bisulfite conversion/pyrosequencing, and Western blotting was used to quantitate CIITA, STAT1, IRF1, and JAK1 expression, mutations and promoter methylation and chromatin immunoprecipitation to quantitate H3K9ac, H3K9Me2, and EZH2 occupancy at CIITA. We define three types of response to IFNγ in colorectal cancer: strong, weak, and noninducibility. Delayed and restricted expression even with prolonged IFNγ exposure was due to IFNγ-mediated EZH2 occupancy at CIITA. tsMHC-II expression was enhanced by EZH2 and histone deacetylase inhibition in the weakly inducible organoids. Noninducibility is seen in three consensus molecular subtype 1 (CMS1) organoids due to JAK1 mutation. No organoid demonstrates CIITA promoter methylation. Providing IFNγ signaling is intact, most colorectal cancer organoids are class II inducible. Upregulation of tsMHC-II through targeted epigenetic therapy is seen in one of fifteen organoids. Our approach can serve as a blueprint for investigating the heterogeneity of specific epigenetic mechanisms of immune suppression across individual patients in other cancers and how these might be targeted to inform the conduct of future trials of epigenetic therapies as immune adjuvants more strategically in cancer. Significance: Cancer cell expression of MHC class II significantly impacts tumor microenvironmental immunity. Previous studies investigating mechanisms of repression of IFNγ-inducible class II expression using cell lines demonstrate epigenetic silencing of IFN pathway genes as a frequent immune evasion strategy. Unlike cell lines, patient-derived organoids maintain epigenetic fidelity to tissue of origin. In the first such study, we analyze patterns, dynamics, and epigenetic control of IFNγ-induced class II expression in a series of colorectal cancer organoids.


Subject(s)
Colorectal Neoplasms , Genes, MHC Class II , Humans , Interferon-gamma/pharmacology , Methylation , Cell Line , Colorectal Neoplasms/genetics
12.
Genet Res (Camb) ; 2023: 9991613, 2023.
Article in English | MEDLINE | ID: mdl-37575977

ABSTRACT

Immunoregulation is crucial to septic shock (SS) but has not been clearly explained. Our aim was to explore potential biomarkers for SS by pathway and transcriptional analyses of immune-related genes to improve early detection. GSE57065 and GSE95233 microarray data were used to screen differentially expressed genes (DEGs) in SS. Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of DEGs were performed, and correlations between immune cell and pathway enrichment scores were analyzed. The predictive value of candidate genes was evaluated by receiver operating characteristic (ROC) curves. GSE66099, GSE4607, and GSE13904 datasets were used for external validation. Blood samples from six patients and six controls were collected for validation by qRT-PCR and western blotting. In total, 550 DEGs in SS were identified; these genes were involved in the immune response, inflammation, and infection. Immune-related pathways and levels of infiltration of CD4 + TCM, CD8 + T cells, and preadipocytes differed between SS cases and controls. Seventeen genes were identified as potential biomarkers of SS (areas under ROC curves >0.9). The downregulation of CD8A, CD247, CD3G, LCK, and HLA-DRA in SS was experimentally confirmed. We identified several immune-related biomarkers in SS that may improve early identification of disease risk.


Subject(s)
Shock, Septic , Humans , Shock, Septic/diagnosis , Shock, Septic/genetics , Genes, MHC Class II , Biomarkers , Gene Expression Profiling , HLA-DR alpha-Chains , Computational Biology
13.
Cell Rep ; 42(8): 112879, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37537844

ABSTRACT

Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology.


Subject(s)
Neuroblastoma , Opsoclonus-Myoclonus Syndrome , Child , Humans , Autoimmunity , Neuroblastoma/complications , Neuroblastoma/metabolism , Opsoclonus-Myoclonus Syndrome/complications , Opsoclonus-Myoclonus Syndrome/pathology , Autoantibodies , Genes, MHC Class II , Ataxia
14.
Front Immunol ; 14: 1238269, 2023.
Article in English | MEDLINE | ID: mdl-37638053

ABSTRACT

Type 1 diabetes (T1D) is a complex autoimmune disorder that is highly prevalent globally. The interactions between genetic and environmental factors may trigger T1D in susceptible individuals. HLA genes play a significant role in T1D pathogenesis, and specific haplotypes are associated with an increased risk of developing the disease. Identifying risk haplotypes can greatly improve the genetic scoring for early diagnosis of T1D in difficult to rank subgroups. This study employed next-generation sequencing to evaluate the association between HLA class II alleles, haplotypes, and amino acids and T1D, by recruiting 95 children with T1D and 150 controls in the Kuwaiti population. Significant associations were identified for alleles at the HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci, including DRB1*03:01:01, DQA1*05:01:01, and DQB1*02:01:01, which conferred high risk, and DRB1*11:04:01, DQA1*05:05:01, and DQB1*03:01:01, which were protective. The DRB1*03:01:01~DQA1*05:01:01~DQB1*02:01:01 haplotype was most strongly associated with the risk of developing T1D, while DRB1*11:04-DQA1*05:05-DQB1*03:01 was the only haplotype that rendered protection against T1D. We also identified 66 amino acid positions across the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes that were significantly associated with T1D, including novel associations. These results validate and extend our knowledge on the associations between HLA genes and T1D in Kuwaiti children. The identified risk alleles, haplotypes, and amino acid variations may influence disease development through effects on HLA structure and function and may allow early intervention via population-based screening efforts.


Subject(s)
Diabetes Mellitus, Type 1 , Genes, MHC Class II , Humans , Child , Diabetes Mellitus, Type 1/genetics , Alleles , Haplotypes , Amino Acids/genetics , HLA-DRB1 Chains , Kuwait/epidemiology
16.
Proc Natl Acad Sci U S A ; 120(24): e2218955120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279268

ABSTRACT

Major histocompatibility complex (MHC) class I and II molecules play critical roles in the activation and regulation of adaptive immunity through antigen presentation to CD8+ and CD4+ T cells, respectively. Strict regulation of MHC expression is critical for proper immune responses. CIITA (MHC class II transactivator), an NLR (nucleotide-binding domain, leucine-rich-repeat containing) protein, is a master regulator of MHC class II (MHC-II) gene transcription. Although it has been known that CIITA activity is regulated at the transcriptional and protein levels, the mechanism to determine CIITA protein level has not been elucidated. Here, we show that FBXO11 is a bona fide E3 ligase of CIITA and regulates CIITA protein level through ubiquitination-mediated degradation. A nonbiased proteomic approach for CIITA-binding protein identified FBXO11, a member of the Skp1-Cullin-1-F-box E3 ligase complex, as a binding partner of CIITA but not MHC class I transactivator, NLRC5. The cycloheximide chase assay showed that the half-life of CIITA is mainly regulated by FBXO11 via the ubiquitin-proteasome system. The expression of FBXO11 led to the reduced MHC-II at the promoter activity level, transcriptional level, and surface expression level through downregulation of CIITA. Moreover, human and mouse FBXO11-deficient cells display increased levels of MHC-II and related genes. In normal and cancer tissues, FBXO11 expression level is negatively correlated with MHC-II. Interestingly, the expression of FBXO11, along with CIITA, is associated with prognosis of cancer patients. Therefore, FBXO11 is a critical regulator to determine the level of MHC-II, and its expression may serve as a biomarker for cancer.


Subject(s)
F-Box Proteins , Neoplasms , Animals , Humans , Mice , F-Box Proteins/genetics , Genes, MHC Class II , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , HLA Antigens , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proteomics , Trans-Activators/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
17.
Int J Immunogenet ; 50(4): 177-184, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308802

ABSTRACT

Severe combined immunodeficiency (SCID) is an inborn errors of immunity (IEI) disorder characterized by impairment in the development and function of lymphocytes and could be fatal if not treated with hematopoietic stem cell transplant in the first 2 years of life. There are various diagnostic criteria for SCID among different primary immunodeficiency societies. We retrospectively evaluated clinical and laboratory findings of 59 patients followed up with the diagnosis of SCID at our clinic over the past 20 years in order to develop an algorithm that would help diagnosis of SCID for the countries where a high ratio of consanguineous marriage is present because these countries have not launched TREC assay in their newborn screening programs. The mean age at diagnosis was 5.80 ± 4.90 months, and the delay was 3.29 ± 3.99 months. The most common complaint and physical examination findings were cough (29.05%), eczematous rash (63%) and organomegaly (61%). ADA (17%), Artemis (14%), RAG1/2 (15%), MHC Class II (12%) and IL-2R (12%) deficiencies were the most common genetic defects. Lymphopenia (87.5%) was the most frequent abnormal laboratory finding and below 3000/mm3 in 95% of the patients. The CD3+ T cell count was 300/mm3 and below in 83% of the patients. As a result, a combination of low lymphocyte count and CD3 lymphopenia for SCID diagnosis would be more reliable for countries with high rate of consanguineous marriage. Physicians should consider diagnosis of SCID in a patient presenting with severe infections and lymphocyte counts below 3000/mm3 under 2 years of age.


Subject(s)
Lymphopenia , Severe Combined Immunodeficiency , Infant, Newborn , Humans , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Retrospective Studies , Lymphopenia/diagnosis , Lymphopenia/genetics , Lymphocytes , Genes, MHC Class II
18.
Genome Biol Evol ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37314153

ABSTRACT

The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.


Subject(s)
Cichlids , Animals , Cichlids/genetics , Major Histocompatibility Complex/genetics , Polymorphism, Genetic , Histocompatibility Antigens Class II/genetics , Phylogeny , Alleles , Genes, MHC Class II , Selection, Genetic
19.
Nat Commun ; 14(1): 3461, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308510

ABSTRACT

Recent interest in targeted therapies has been sparked by the study of MHC-associated peptides (MAPs) that undergo post-translational modifications (PTMs), particularly glycosylation. In this study, we introduce a fast computational workflow that merges the MSFragger-Glyco search algorithm with a false discovery rate control for glycopeptide analysis from mass spectrometry-based immunopeptidome data. By analyzing eight large-scale publicly available studies, we find that glycosylated MAPs are predominantly presented by MHC class II. Here, we present HLA-Glyco, a comprehensive resource containing over 3,400 human leukocyte antigen (HLA) class II N-glycopeptides from 1,049 distinct protein glycosylation sites. This resource provides valuable insights, including high levels of truncated glycans, conserved HLA-binding cores, and differences in glycosylation positional specificity between HLA allele groups. We integrate the workflow within the FragPipe computational platform and provide HLA-Glyco as a free web resource. Overall, our work provides a valuable tool and resource to aid the nascent field of glyco-immunopeptidomics.


Subject(s)
Algorithms , Protein Processing, Post-Translational , Humans , Glycosylation , Genes, MHC Class II , Glycopeptides
20.
Nat Commun ; 14(1): 2616, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147290

ABSTRACT

The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.


Subject(s)
Receptors, Antigen, T-Cell , Signal Transduction , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation , Genes, MHC Class II , Mutagenesis , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...