Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.848
Filter
1.
Sci Rep ; 14(1): 11715, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778164

ABSTRACT

Recent studies have revealed that arginine is the most favorable target of amino acid alteration in most cancer types and it has been suggested that the high preference for arginine mutations reflects the critical roles of this amino acid in the function of proteins. High rates of mutations of arginine residues in cancer, however, might also be due to increased mutability of arginine codons of the CGN family as the CpG dinucleotides of these codons may be methylated. In the present work we have analyzed spectra of single base substitutions of cancer genes (oncogenes, tumor suppressor genes) and passenger genes in cancer tissues to assess the contributions of CpG hypermutability and selection to arginine mutations. Our studies have shown that arginines encoded by the CGN codon family display higher rates of mutation in both cancer genes and passenger genes than arginine codons AGA and AGG that are devoid of CpG dinucleotide, suggesting that the predominance of arginine mutations in cancer is primarily due to CpG hypermutability, rather than selection for arginine replacement. Nevertheless, our results also suggest that CGN codons for arginines may serve as Achilles' heels of cancer genes. CpG hypermutability of key arginines of proto-oncogenes, leading to high rates of recurrence of driver mutations, contributes significantly to carcinogenesis. Similarly, our results indicate that hypermutability of the CpG dinucleotide of CGA codons (converting them to TGA stop codons) contributes significantly to recurrent truncation and inactivation of tumor suppressor genes.


Subject(s)
Arginine , Codon , CpG Islands , Neoplasms , Arginine/genetics , Arginine/chemistry , Humans , Codon/genetics , Neoplasms/genetics , CpG Islands/genetics , Mutation , Oncogenes/genetics , Genes, Tumor Suppressor
2.
BMC Cancer ; 24(1): 624, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778317

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) has a high mortality rate, and the mechanisms underlying tumor development and progression remain unclear. However, inactivated tumor suppressor genes might play key roles. DNA methylation is a critical regulatory mechanism for inactivating tumor suppressor genes in HCC. Therefore, this study investigated methylation-related tumor suppressors in HCC to identify potential biomarkers and therapeutic targets. METHODS: We assessed genome-wide DNA methylation in HCC using whole genome bisulfite sequencing (WGBS) and RNA sequencing, respectively, and identified the differential expression of methylation-related genes, and finally screened phosphodiesterase 7B (PDE7B) for the study. The correlation between PDE7B expression and clinical features was then assessed. We then analyzed the changes of PDE7B expression in HCC cells before and after DNA methyltransferase inhibitor treatment by MassArray nucleic acid mass spectrometry. Furthermore, HCC cell lines overexpressing PDE7B were constructed to investigate its effect on HCC cell function. Finally, GO and KEGG were applied for the enrichment analysis of PDE7B-related pathways, and their effects on the expression of pathway proteins and EMT-related factors in HCC cells were preliminarily explored. RESULTS: HCC exhibited a genome-wide hypomethylation pattern. We screened 713 hypomethylated and 362 hypermethylated mCG regions in HCC and adjacent normal tissues. GO analysis showed that the main molecular functions of hypermethylation and hypomethylation were "DNA-binding transcriptional activator activity" and "structural component of ribosomes", respectively, whereas KEGG analysis showed that they were enriched in "bile secretion" and "Ras-associated protein-1 (Rap1) signaling pathway", respectively. PDE7B expression was significantly down-regulated in HCC tissues, and this low expression was negatively correlated with recurrence and prognosis of HCC. In addition, DNA methylation regulates PDE7B expression in HCC. On the contrary, overexpression of PDE7B inhibited tumor proliferation and metastasis in vitro. In addition, PDE7B-related genes were mainly enriched in the PI3K/ATK signaling pathway, and PDE7B overexpression inhibited the progression of PI3K/ATK signaling pathway-related proteins and EMT. CONCLUSION: PDE7B expression in HCC may be regulated by promoter methylation. PDE7B can regulate the EMT process in HCC cells through the PI3K/AKT pathway, which in turn affects HCC metastasis and invasion.


Subject(s)
Carcinoma, Hepatocellular , Cyclic Nucleotide Phosphodiesterases, Type 7 , DNA Methylation , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/genetics , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Genes, Tumor Suppressor , Male , Cell Proliferation/genetics , Female , Neoplasm Metastasis , Cell Movement/genetics
3.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791246

ABSTRACT

The myocyte enhancer factor 2 (MEF2) gene family play fundamental roles in the genetic programs that control cell differentiation, morphogenesis, proliferation, and survival in a wide range of cell types. More recently, these genes have also been implicated as drivers of carcinogenesis, by acting as oncogenes or tumor suppressors depending on the biological context. Nonetheless, the molecular programs they regulate and their roles in tumor development and progression remain incompletely understood. The present study evaluated whether the MEF2D transcription factor functions as a tumor suppressor in breast cancer. The knockout of the MEF2D gene in mouse mammary epithelial cells resulted in phenotypic changes characteristic of neoplastic transformation. These changes included enhanced cell proliferation, a loss of contact inhibition, and anchorage-independent growth in soft agar, as well as the capacity for tumor development in mice. Mechanistically, the knockout of MEF2D induced the epithelial-to-mesenchymal transition (EMT) and activated several oncogenic signaling pathways, including AKT, ERK, and Hippo-YAP. Correspondingly, a reduced expression of MEF2D was observed in human triple-negative breast cancer cell lines, and a low MEF2D expression in tissue samples was found to be correlated with a worse overall survival and relapse-free survival in breast cancer patients. MEF2D may, thus, be a putative tumor suppressor, acting through selective gene regulatory programs that have clinical and therapeutic significance.


Subject(s)
Breast Neoplasms , Cell Proliferation , Epithelial-Mesenchymal Transition , MEF2 Transcription Factors , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , Animals , Humans , Female , Mice , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Signal Transduction
4.
Pathol Res Pract ; 258: 155329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692083

ABSTRACT

Fibrosarcoma is a challenging cancer originating from fibrous tissues, marked by aggressive growth and limited treatment options. The discovery of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and small interfering RNAs (siRNAs), has opened new pathways for understanding and treating this malignancy. These ncRNAs play crucial roles in gene regulation, cellular processes, and the tumor microenvironment. This review aims to explore the impact of ncRNAs on fibrosarcoma's pathogenesis, progression, and resistance to treatment, focusing on their mechanistic roles and therapeutic potential. A comprehensive review of literature from databases like PubMed and Google Scholar was conducted, focusing on the dysregulation of ncRNAs in fibrosarcoma, their contribution to tumor growth, metastasis, drug resistance, and their cellular pathway interactions. NcRNAs significantly influence fibrosarcoma, affecting cell proliferation, apoptosis, invasion, and angiogenesis. Their function as oncogenes or tumor suppressors makes them promising biomarkers and therapeutic targets. Understanding their interaction with the tumor microenvironment is essential for developing more effective treatments for fibrosarcoma. Targeting ncRNAs emerges as a promising strategy for fibrosarcoma therapy, offering hope to overcome the shortcomings of existing treatments. Further investigation is needed to clarify specific ncRNAs' roles in fibrosarcoma and to develop ncRNA-based therapies, highlighting the significance of ncRNAs in improving patient outcomes in this challenging cancer.


Subject(s)
Fibrosarcoma , RNA, Untranslated , Humans , Fibrosarcoma/genetics , Fibrosarcoma/pathology , RNA, Untranslated/genetics , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Tumor Microenvironment/genetics , Genes, Tumor Suppressor/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals
5.
Anticancer Res ; 44(6): 2459-2470, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821592

ABSTRACT

BACKGROUND/AIM: Gastric cancer, with its high global incidence and mortality rates, poses a significant challenge due to the rapid decline in patient survival upon metastasis. Understanding and combating metastasis are crucial in improving outcomes. The metastasis suppressor gene CD82 has demonstrated efficacy in inhibiting metastasis across various carcinomas but is frequently down-regulated. However, its role and regulatory mechanisms in gastric cancer remain elusive. MATERIALS AND METHODS: Utilizing public data, we assessed patient survival in relation to CD82 expression. CD82 expression in gastric cancer cell lines was evaluated via western blotting, and its impact on cell mobility was assessed through wound healing and Transwell assays. The demethylation of CD82 was induced using 5-aza-deoxycytidine, while methylation levels were detected via methylation-specific PCR. RESULTS: Low CD82 expression correlated with poor prognosis in patients, and down-regulation and over-expression of CD82 significantly affected cell mobility. Treatment with 5-aza-deoxycytidine restored CD82 expression in low-expressing cell lines, highlighting its methylation-dependent regulation. CONCLUSION: CD82 serves as a pivotal regulator of cell mobility in gastric cancer by suppressing metastasis. Its expression is attenuated in gastric cancer cells through promoter hypermethylation.


Subject(s)
Cell Movement , DNA Methylation , Gene Expression Regulation, Neoplastic , Kangai-1 Protein , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Kangai-1 Protein/genetics , Kangai-1 Protein/metabolism , Cell Line, Tumor , Cell Movement/genetics , Promoter Regions, Genetic , Prognosis , Decitabine/pharmacology , Neoplasm Metastasis , Down-Regulation , Genes, Tumor Suppressor
6.
PLoS Genet ; 20(5): e1011236, 2024 May.
Article in English | MEDLINE | ID: mdl-38722825

ABSTRACT

Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.


Subject(s)
Repressor Proteins , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , G-Quadruplexes , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Neoplasm Metastasis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism
7.
Anal Chem ; 96(21): 8534-8542, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743638

ABSTRACT

The detection of DNA methylation at cytosine/guanine dinucleotide (CpG) islands in promoter regions of tumor suppressor genes has great potential for early cancer screening, diagnosis, and prognosis monitoring. Nevertheless, achieving accurate, sensitive, cost-effective, and quantitative detection of target methylated DNA remains challenging. Herein, we propose a novel piezoelectric sensor (series piezoelectric quartz crystal (SPQC)) based on transcription activator-like effectors (TALEs) for detecting DNA methylation of Ras association domain family 1 isoform A (RASSF1A) tumor suppressor genes (R-5mC). The sensor employs TALEs-Ni magnetic beads to specifically recognize and separate the R-5mC, thereby improving the detection selectivity. The TALEs-Ni magnetic beads-R-5mC complex is sheared by a nucleic acid enzyme (DNAzyme) to release the single-stranded DNA (ST). ST initiates a catalyzed hairpin assembly (CHA) reaction on the surface of the electrode, which in turn triggers the hybridization chain reaction (HCR) and silver staining for enhanced detection sensitivity. The strategy exhibits a linear response in the detection of R-5mC in the range of 1 fM to 1 nM with a detection limit of 0.79 fM. R-5mC as low as 0.01% can be detected, even in the presence of large numbers of unmethylated DNA. The detection of R-5mC in circulating cell-free DNA (cfDNA) derived from clinical plasma specimens of lung cancer patients yielded satisfactory results.


Subject(s)
Biosensing Techniques , DNA Methylation , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Electrochemical Techniques , Genes, Tumor Suppressor , Limit of Detection , Electrodes
8.
Sci Rep ; 14(1): 11650, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38773187

ABSTRACT

Cancer is a disease that many multicellular organisms have faced for millions of years, and species have evolved various tumour suppression mechanisms to control oncogenesis. Although cancer occurs across the tree of life, cancer related mortality risks vary across mammalian orders, with Carnivorans particularly affected. Evolutionary theory predicts different selection pressures on genes associated with cancer progression and suppression, including oncogenes, tumour suppressor genes and immune genes. Therefore, we investigated the evolutionary history of cancer associated gene sequences across 384 mammalian taxa, to detect signatures of selection across categories of oncogenes (GRB2, FGL2 and CDC42), tumour suppressors (LITAF, Casp8 and BRCA2) and immune genes (IL2, CD274 and B2M). This approach allowed us to conduct a fine scale analysis of gene wide and site-specific signatures of selection across mammalian lineages under the lens of cancer susceptibility. Phylogenetic analyses revealed that for most species the evolution of cancer associated genes follows the species' evolution. The gene wide selection analyses revealed oncogenes being the most conserved, tumour suppressor and immune genes having similar amounts of episodic diversifying selection. Despite BRCA2's status as a key caretaker gene, episodic diversifying selection was detected across mammals. The site-specific selection analyses revealed that the two apoptosis associated domains of the Casp8 gene of bats (Chiroptera) are under opposing forces of selection (positive and negative respectively), highlighting the importance of site-specific selection analyses to understand the evolution of highly complex gene families. Our results highlighted the need to critically assess different types of selection pressure on cancer associated genes when investigating evolutionary adaptations to cancer across the tree of life. This study provides an extensive assessment of cancer associated genes in mammals with highly representative, and substantially large sample size for a comparative genomic analysis in the field and identifies various avenues for future research into the mechanisms of cancer resistance and susceptibility in mammals.


Subject(s)
Evolution, Molecular , Mammals , Neoplasms , Phylogeny , Animals , Mammals/genetics , Neoplasms/genetics , Humans , Selection, Genetic , Oncogenes/genetics , Genes, Tumor Suppressor , Genetic Predisposition to Disease
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734320

ABSTRACT

Cells of multicellular organisms generate heterogeneity in a controlled and transient fashion during embryogenesis, which can be reactivated in pathologies such as cancer. Although genomic heterogeneity is an important part of tumorigenesis, continuous generation of phenotypic heterogeneity is central for the adaptation of cancer cells to the challenges of tumorigenesis and response to therapy. Here I discuss the capacity of generating heterogeneity, hereafter called cell hetness, in cancer cells both as the activation of hetness oncogenes and inactivation of hetness tumor suppressor genes, which increase the generation of heterogeneity, ultimately producing an increase in adaptability and cell fitness. Transcriptomic high hetness states in therapy-tolerant cell states denote its importance in cancer resistance to therapy. The definition of the concept of hetness will allow the understanding of its origins, its control during embryogenesis, its loss of control in tumorigenesis and cancer therapeutics and its active targeting.


Subject(s)
Carcinogenesis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Genetic Heterogeneity , Oncogenes/genetics , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Genes, Tumor Suppressor , Gene Expression Regulation, Neoplastic
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 13-21, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650161

ABSTRACT

MiRNA 200-c-3p has varying functions in different tumor types, whether tumor suppression or promotion. Comprehensive assessment of its function in non-small cell lung cancer (NSCLC) together with its effect on antitumor immune response have not been declared before. We aimed to explore the effect of replacement and suppression of miRNA 200-c-3p on non-small cell lung cancer and its impact on immune checkpoint function and subsequently antitumor immunity. MiRNA 200-c-3p mimic/inhibitor was transfected into the A549 cells. A 549 non-small cell lung cancer cells viability was done by trypan blue staining and 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flowcytometric analysis was done for apoptosis detection. Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to study its effect on relative gene expression and relative protein level of programmed cell death ligand 1 (PD-L1). Finally, co-culture with isolated and activated T cells was performed. Multiple comparisons were performed using one-way analysis of variance (ANOVA) followed by Tukey's multiple-comparison test. Decreased cell viability, increased apoptosis, reduced PD-L1 relative gene expression and its relative protein level, together with enhanced T cell cytotoxicity towards tumor cells were detected after miRNA 200-c-3p mimic transfection of A549 NSCLC cell line.  However, these results were reversed in miRNA 200-c-3p suppression. MiRNA 200-c-3p had a tumor suppressive effect in non-small cell lung cancer cells which might be through down regulation of PD-L1 relative gene expression, and it may be used as a new target to improve immune checkpoint dysfunction.


Subject(s)
Apoptosis , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Down-Regulation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Apoptosis/genetics , Down-Regulation/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Survival/genetics , Genes, Tumor Suppressor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
Mol Biol Rep ; 51(1): 544, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642153

ABSTRACT

BACKGROUND: Breast cancer is a highly heterogeneous solid tumor, posing challenges in developing targeted therapies effective for all mammary carcinoma subtypes. WT1 emerges as a promising target for breast cancer therapy due to its potential oncogenic role in various cancer types. Previous works have yielded inconsistent results. Therefore, further studies are needed to clarify the behavior of this complex gene in breast cancer. METHODS AND RESULTS: In this study, we examined WT1 expression in both Formalin Fixed Paraffin Embedded breast tumors (n = 41) and healthy adjacent tissues (n = 41) samples from newly diagnosed cases of ductal invasive breast cancer. The fold change in gene expression between the tumor and healthy tissue was determined by calculating 2-∆∆Ct. Disease-free survival analysis was computed using the Kaplan-Meier method. To identify the expression levels of different WT1 isoforms, we explored the ISOexpresso database. Relative quantification of the WT1 gene revealed an overexpression of WT1 in most cases. The percentage of patients surviving free of disease at 8 years of follow-up was lower in the group overexpressing WT1 compared to the group with down-regulated WT1. CONCLUSIONS: Interestingly, this overexpression was observed in all molecular subtypes of invasive breast cancer, underscoring the significance of WT1 as a potential target in all these subtypes. The observed WT1 down-expression in a few cases of invasive breast cancer, associated with better survival outcomes, may correspond to the down-regulation of a particular WT1-KTS (-) isoform: the WT1 A isoform (EX5-/KTS-). The co-expression of this WT1 oncogenic isoform with a regulated WT1- tumor suppressor isoform, such as the major WT1 F isoform (EX5-/KTS +), could also explain such survival outcomes. Due to its capacity to adopt dual roles, it becomes imperative to conduct individual molecular expression profiling of the WT1 gene. Such an approach holds great promise in the development of personalized treatment strategies for breast cancer.


Subject(s)
Breast Neoplasms , WT1 Proteins , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Genes, Tumor Suppressor , Protein Isoforms/genetics , Protein Isoforms/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism
12.
J Exp Clin Cancer Res ; 43(1): 123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654325

ABSTRACT

BACKGROUND: Aberrant fucosylation observed in cancer cells contributes to an augmented release of fucosylated exosomes into the bloodstream, where miRNAs including miR-4732-3p hold promise as potential tumor biomarkers in our pilot study. However, the mechanisms underlying the sorting of miR-4732-3p into fucosylated exosomes during lung cancer progression remain poorly understood. METHODS: A fucose-captured strategy based on lentil lectin-magnetic beads was utilized to isolate fucosylated exosomes and evaluate the efficiency for capturing tumor-derived exosomes using nanoparticle tracking analysis (NTA). Fluorescence in situ hybridization (FISH) and qRT-PCR were performed to determine the levels of miR-4732-3p in non-small cell lung cancer (NSCLC) tissue samples. A co-culture system was established to assess the release of miRNA via exosomes from NSCLC cells. RNA immunoprecipitation (RIP) and miRNA pull-down were applied to validate the interaction between miR-4732-3p and heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein. Cell functional assays, cell derived xenograft, dual-luciferase reporter experiments, and western blot were applied to examine the effects of miR-4732-3p on MFSD12 and its downstream signaling pathways, and the impact of hnRNPK in NSCLC. RESULTS: We enriched exosomes derived from NSCLC cells using the fucose-captured strategy and detected a significant upregulation of miR-4732-3p in fucosylated exosomes present in the serum, while its expression declined in NSCLC tissues. miR-4732-3p functioned as a tumor suppressor in NSCLC by targeting 3'UTR of MFSD12, thereby inhibiting AKT/p21 signaling pathway to induce cell cycle arrest in G2/M phase. NSCLC cells preferentially released miR-4732-3p via exosomes instead of retaining them intracellularly, which was facilitated by the interaction of miR-4732-3p with hnRNPK protein for selective sorting into fucosylated exosomes. Moreover, knockdown of hnRNPK suppressed NSCLC cell proliferation, with the elevated levels of miR-4732-3p in NSCLC tissues but the decreased expression in serum fucosylated exosomes. CONCLUSIONS: NSCLC cells escape suppressive effects of miR-4732-3p through hnRNPK-mediated sorting of them into fucosylated exosomes, thus supporting cell malignant properties and promoting NSCLC progression. Our study provides a promising biomarker for NSCLC and opens a novel avenue for NSCLC therapy by targeting hnRNPK to prevent the "exosome escape" of tumor-suppressive miR-4732-3p from NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exosomes , Fucose , Heterogeneous-Nuclear Ribonucleoprotein K , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glycosylation , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Exosomes/metabolism , MicroRNAs/blood , MicroRNAs/metabolism , Genes, Tumor Suppressor , Fucose/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Down-Regulation , Animals , Mice , Mice, Nude , Cell Proliferation , Cell Cycle Checkpoints , Membrane Proteins/analysis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Prognosis , Signal Transduction , Disease Progression , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood
13.
Oncogene ; 43(21): 1594-1607, 2024 May.
Article in English | MEDLINE | ID: mdl-38565944

ABSTRACT

Prostate cancer (PCa) remains a significant cause of morbidity and mortality among men worldwide. A number of genes have been implicated in prostate tumorigenesis, but the mechanisms underlying their dysregulation are still incompletely understood. Evidence has established the competing endogenous RNA (ceRNA) theory as a novel regulatory mechanism for post-transcriptional alterations. Yet, a comprehensive characterization of ceRNA network in PCa lacks. Here we utilize stringent in-silico methods to construct a large ceRNA network across different PCa stages, and provide experimental demonstration for the competing regulation among protumorigenic SEC23A, PHTF2, and their corresponding ceRNA pairs. Using machine learning, we establish a ceRNA-based signature (ceRNA_sig) predictive of androgen receptor (AR) activity, tumor aggressiveness, and patient outcomes. Importantly, we identify miR-375 as a key node in PCa ceRNA network, which is upregulated in PCa relative to normal tissues. Forced expression of miR-375 significantly inhibits, while its inhibition promotes, aggressive behaviors of both AR+ and AR- PCa cells in vitro and in vivo. Mechanistically, we show that miR-375 predominantly targets genes possessing oncogenic roles (e.g., proliferation, DNA repair, and metastasis), and thus release targets with tumor suppressive functions. This action model well clarifies why an upregulated miRNA plays a tumor suppressive role in PCa. Together, our study provides new insights into understanding of transcriptomic aberrations during PCa evolution, and nominates miR-375 as a potential therapeutic target for combating aggressive PCa.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , MicroRNAs , Prostatic Neoplasms , MicroRNAs/genetics , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Male , Mice , Animals , Up-Regulation/genetics , Cell Line, Tumor , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Genes, Tumor Suppressor , Cell Proliferation/genetics , RNA, Competitive Endogenous
14.
Dev Cell ; 59(10): 1317-1332.e5, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38574733

ABSTRACT

UBE2F, a neddylation E2, neddylates CUL5 to activate cullin-RING ligase-5, upon coupling with neddylation E3 RBX2/SAG. Whether and how UBE2F controls pancreatic tumorigenesis is previously unknown. Here, we showed that UBE2F is essential for the growth of human pancreatic cancer cells with KRAS mutation. In the mouse KrasG12D pancreatic ductal adenocarcinoma (PDAC) model, Ube2f deletion suppresses cerulein-induced pancreatitis, and progression of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia. Mechanistically, Ube2f deletion inactivates the Mapk-c-Myc signals via blocking ubiquitylation of Diras2, a substrate of CRL5Asb11 E3 ligase. Biologically, DIRAS2 suppresses growth and survival of human pancreatic cancer cells harboring mutant KRAS, and Diras2 deletion largely rescues the phenotypes induced by Ube2f deletion. Collectively, Ube2f or Diras2 plays a tumor-promoting or tumor-suppressive role in the mouse KrasG12D PDAC model, respectively. The UBE2F-CRL5ASB11 axis could serve as a valid target for pancreatic cancer, whereas the levels of UBE2F or DIRAS2 may serve as prognostic biomarkers for PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Ubiquitin-Conjugating Enzymes , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation , Genes, Tumor Suppressor , Oncogenes/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
15.
Biochem Biophys Res Commun ; 709: 149829, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38552553

ABSTRACT

The microRNA-200 (miR-200) family is a potent suppressor of epithelial-to-mesenchymal transition (EMT). While its role as a tumor suppressor has been well documented, recent studies suggested that it can promote cancer progression in several stages. In this study, we investigated whether the miR-200 family members play a role in the acquisition of a hybrid epithelial/mesenchymal (E/M) state, which is reported to be associated with cancer malignancy, in mesenchymal MDA-MB-231 cells. Our results demonstrated that the induction of miR-200c-141, a cluster of the miR-200 family member, can induce the expression of epithelial gene and cell-cell junction while mesenchymal markers are retained. Moreover, induction of miR-200c-141 promoted collective migration accompanied by the formation of F-actin cables anchored by adherens junction. These results suggest that the miR-200 family can induce a hybrid E/M state and endows with the ability of collective cell migration in mesenchymal cancer cells.


Subject(s)
MDA-MB-231 Cells , MicroRNAs , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Genes, Tumor Suppressor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
16.
BMC Cancer ; 24(1): 326, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461240

ABSTRACT

BACKGROUND: FLI1 is an oncogenic transcription factor that promotes diverse malignancies through mechanisms that are not fully understood. Herein, FLI1 is shown to regulate the expression of Ubiquitin Associated and SH3 Domain Containing A/B (UBASH3A/B) genes. UBASH3B and UBASH3A are found to act as an oncogene and tumor suppressor, respectively, and their combined effect determines erythroleukemia progression downstream of FLI1. METHODS: Promoter analysis combined with luciferase assays and chromatin immunoprecipitation (ChIP) analysis were applied on the UBASH3A/B promoters. RNAseq analysis combined with bioinformatic was used to determine the effect of knocking-down UBASH3A and UBASH3B in leukemic cells. Downstream targets of UBASH3A/B were inhibited in leukemic cells either via lentivirus-shRNAs or small molecule inhibitors. Western blotting and RT-qPCR were used to determine transcription levels, MTT assays to assess proliferation rate, and flow cytometry to examine apoptotic index. RESULTS: Knockdown of FLI1 in erythroleukemic cells identified the UBASH3A/B genes as potential downstream targets. Herein, we show that FLI1 directly binds to the UBASH3B promoter, leading to its activation and leukemic cell proliferation. In contrast, FLI1 indirectly inhibits UBASH3A transcription via GATA2, thereby antagonizing leukemic growth. These results suggest oncogenic and tumor suppressor roles for UBASH3B and UBASH3A in erythroleukemia, respectively. Mechanistically, we show that UBASH3B indirectly inhibits AP1 (FOS and JUN) expression, and that its loss leads to inhibition of apoptosis and acceleration of proliferation. UBASH3B also positively regulates the SYK gene expression and its inhibition suppresses leukemia progression. High expression of UBASH3B in diverse tumors was associated with worse prognosis. In contrast, UBASH3A knockdown in erythroleukemic cells increased proliferation; and this was associated with a dramatic induction of the HSP70 gene, HSPA1B. Accordingly, knockdown of HSPA1B in erythroleukemia cells significantly accelerated leukemic cell proliferation. Accordingly, overexpression of UBASH3A in different cancers was predominantly associated with good prognosis. These results suggest for the first time that UBASH3A plays a tumor suppressor role in part through activation of HSPA1B. CONCLUSIONS: FLI1 promotes erythroleukemia progression in part by modulating expression of the oncogenic UBASH3B and tumor suppressor UBASH3A.


Subject(s)
Leukemia, Erythroblastic, Acute , Proto-Oncogene Protein c-fli-1 , Humans , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Gene Expression Regulation , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Erythroblastic, Acute/metabolism , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA, Small Interfering/genetics , RNA-Binding Protein EWS/genetics , Protein Tyrosine Phosphatases/metabolism
17.
J Cancer Res Ther ; 20(1): 268-274, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38554332

ABSTRACT

BACKGROUND: Aberrant crypt foci (ACF) are the earliest preneoplastic lesions in human colon, identifiable on chromoendoscopic screening. Our objective was to evaluate the %methylation of APC, CDKN2A, MLH1, RASSF1, MGMT, and WIF1 tumor suppressor genes (TSG) in ACF, corresponding colorectal carcinomas (CRC), and normal colonic mucosal controls. METHODS: In this study, macroscopically normal-appearing mucosal flaps were sampled 5-10 cm away from the tumor mass from 302 fresh colectomy specimens to identify ACF-like lesions. Thirty-five cases with multiple ACFs were selected (n 35) as the main study group, with corresponding sections from CRC (n 35) as disease controls, and mucosal tissue blocks from 20 colectomy specimens (normal controls), operated for non-neoplastic pathologies. Genomic DNA was extracted, and methylation-specific polymerase chain reaction (PCR) was performed on a customized methylation array model. %Methylation data were compared among the groups and with clinicopathological parameters. Selected target mRNA and protein expression studies were performed. RESULTS: %Methylation of TSGs in ACF was intermediate between normal colon and CRC, although a statistically significant difference was observed only for the WIF1 gene (P < 0.01). Also, there was increased nuclear ß-catenin expression and upregulation of CD44-positive cancer-stem cells in ACF and CRCs than in controls. Right-sided ACFs and dysplastic ACFs had a higher %methylation of CDKN2A (P < 0.01), whereas hyperplastic ACFs had a higher %methylation of RASSF1 (P 0.04). The topographic characteristics of ACFs did not correlate with TSG %methylation. CONCLUSIONS: Early epigenetic methylation of WIF1 gene is one of the mechanisms for ACF development in human colon.


Subject(s)
Aberrant Crypt Foci , Colonic Neoplasms , Colorectal Neoplasms , Precancerous Conditions , Humans , Aberrant Crypt Foci/genetics , Aberrant Crypt Foci/diagnosis , Aberrant Crypt Foci/pathology , Colorectal Neoplasms/pathology , Colon/pathology , Hyperplasia/pathology , Methylation , Genes, Tumor Suppressor , Precancerous Conditions/pathology , Colonic Neoplasms/pathology , Intestinal Mucosa/pathology
18.
CNS Neurosci Ther ; 30(3): e14664, 2024 03.
Article in English | MEDLINE | ID: mdl-38516781

ABSTRACT

AIMS: Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS: siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS: SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS: SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.


Subject(s)
Myeloid Differentiation Factor 88 , Neuroblastoma , Child , Humans , Animals , Mice , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Transcription Factors/genetics , Signal Transduction/genetics , Neuroblastoma/pathology , Genes, Tumor Suppressor , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Sestrins/genetics , Sestrins/metabolism
20.
Mol Biol Rep ; 51(1): 394, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446366

ABSTRACT

OBJECTIVE: Tumor suppressor candidate 2 has shown to be deleted in lung, colon, and bladder cancer types. In the present study, we aimed to investigate the expression of TUSC2 in breast cancer. MATERIALS AND METHODS: A total of thirty patients with breast cancer were included in the study. Normal and tumor tissue samples from fresh mastectomy materials were stored at -80 C until the number of cases was completed for gene expression analysis. Histopathological examination was carried out with routine hematoxylin & eosin method. TUSC2 staining was performed for immunohistochemical analysis. RESULTS: The tumors of thirteen patients were Luminal A, fourteen patients were Luminal B, one patient was cerbB2(+), and tumors of two patients were triple-negative. Ki67 proliferation index was less than 14% in fifteen cases and tumor size was less than 2 cm in seven cases. Lymphovascular invasion and lymph node metastasis were present in thirteen cases. Statistically, TUSC2 expression significantly decreased or was lost in breast tumor tissues compared to normal tissues (p < 0.0001). TUSC2 expression decreased as the Ki67 proliferation index increased (p = 0.0003), and TUSC2 expression decreased as tumor size increased (p = 0.0483). The loss or decrease in the TUSC2 expression was significant as the tumor grade increased (p = 0.3740). Gene expression analysis correlated with immunohistochemistry results. CONCLUSION: The results of the present study demonstrated a decrease or loss of TUSC2 expression in breast cancer tissue compared to normal tissue. A correlation was found between TUSC2 expression and Ki67 proliferation index and tumor size.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/genetics , Ki-67 Antigen/genetics , Mastectomy , Genes, Tumor Suppressor , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...