Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Elife ; 92020 06 23.
Article in English | MEDLINE | ID: mdl-32573438

ABSTRACT

The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.


Subject(s)
Genetics, Population , Genomic Library , Models, Genetic , Animals , Arabidopsis/genetics , Dogs/genetics , Drosophila melanogaster/genetics , Escherichia coli/genetics , Genetics, Population/methods , Genetics, Population/organization & administration , Genome/genetics , Genome, Human/genetics , Humans , Pongo abelii/genetics
2.
Biol Res ; 53(1): 15, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32299502

ABSTRACT

BACKGROUND: Current South American populations trace their origins mainly to three continental ancestries, i.e. European, Amerindian and African. Individual variation in relative proportions of each of these ancestries may be confounded with socio-economic factors due to population stratification. Therefore, ancestry is a potential confounder variable that should be considered in epidemiologic studies and in public health plans. However, there are few studies that have assessed the ancestry of the current admixed Chilean population. This is partly due to the high cost of genome-scale technologies commonly used to estimate ancestry. In this study we have designed a small panel of SNPs to accurately assess ancestry in the largest sampling to date of the Chilean mestizo population (n = 3349) from eight cities. Our panel is also able to distinguish between the two main Amerindian components of Chileans: Aymara from the north and Mapuche from the south. RESULTS: A panel of 150 ancestry-informative markers (AIMs) of SNP type was selected to maximize ancestry informativeness and genome coverage. Of these, 147 were successfully genotyped by KASPar assays in 2843 samples, with an average missing rate of 0.012, and a 0.95 concordance with microarray data. The ancestries estimated with the panel of AIMs had relative high correlations (0.88 for European, 0.91 for Amerindian, 0.70 for Aymara, and 0.68 for Mapuche components) with those obtained with AXIOM LAT1 array. The country's average ancestry was 0.53 ± 0.14 European, 0.04 ± 0.04 African, and 0.42 ± 0.14 Amerindian, disaggregated into 0.18 ± 0.15 Aymara and 0.25 ± 0.13 Mapuche. However, Mapuche ancestry was highest in the south (40.03%) and Aymara in the north (35.61%) as expected from the historical location of these ethnic groups. We make our results available through an online app and demonstrate how it can be used to adjust for ancestry when testing association between incidence of a disease and nongenetic risk factors. CONCLUSIONS: We have conducted the most extensive sampling, across many different cities, of current Chilean population. Ancestry varied significantly by latitude and human development. The panel of AIMs is available to the community for estimating ancestry at low cost in Chileans and other populations with similar ancestry.


Subject(s)
Ethnicity/genetics , Genetics, Population/organization & administration , Indians, South American/genetics , Polymorphism, Single Nucleotide/genetics , Population Groups/genetics , Chile , Female , Gene Frequency/genetics , Genetic Markers/genetics , Genotype , Genotyping Techniques , Humans , Male , Phylogeography , Saliva
3.
Biol. Res ; 53: 15, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100921

ABSTRACT

BACKGROUND: Current South American populations trace their origins mainly to three continental ancestries, i.e. European, Amerindian and African. Individual variation in relative proportions of each of these ancestries may be confounded with socio-economic factors due to population stratification. Therefore, ancestry is a potential confounder variable that should be considered in epidemiologic studies and in public health plans. However, there are few studies that have assessed the ancestry of the current admixed Chilean population. This is partly due to the high cost of genome-scale technologies commonly used to estimate ancestry. In this study we have designed a small panel of SNPs to accurately assess ancestry in the largest sampling to date of the Chilean mestizo population (n = 3349) from eight cities. Our panel is also able to distinguish between the two main Amerindian components of Chileans: Aymara from the north and Mapuche from the south. RESULTS: A panel of 150 ancestry-informative markers (AIMs) of SNP type was selected to maximize ancestry informativeness and genome coverage. Of these, 147 were successfully genotyped by KASPar assays in 2843 samples, with an average missing rate of 0.012, and a 0.95 concordance with microarray data. The ancestries estimated with the panel of AIMs had relative high correlations (0.88 for European, 0.91 for Amerindian, 0.70 for Aymara, and 0.68 for Mapuche components) with those obtained with AXIOM LAT1 array. The country's average ancestry was 0.53 ± 0.14 European, 0.04 ± 0.04 African, and 0.42 ± 0.14 Amerindian, disaggregated into 0.18 ± 0.15 Aymara and 0.25 ± 0.13 Mapuche. However, Mapuche ancestry was highest in the south (40.03%) and Aymara in the north (35.61%) as expected from the historical location of these ethnic groups. We make our results available through an online app and demonstrate how it can be used to adjust for ancestry when testing association between incidence of a disease and nongenetic risk factors. CONCLUSIONS: We have conducted the most extensive sampling, across many different cities, of current Chilean population. Ancestry varied significantly by latitude and human development. The panel of AIMs is available to the community for estimating ancestry at low cost in Chileans and other populations with similar ancestry.


Subject(s)
Humans , Male , Female , Ethnicity/genetics , Indians, South American/genetics , Polymorphism, Single Nucleotide/genetics , Population Groups/genetics , Genetics, Population/organization & administration , Saliva , Genetic Markers/genetics , Chile , Phylogeography , Genotyping Techniques , Gene Frequency/genetics , Genotype
5.
Annu Rev Nurs Res ; 25: 191-217, 2007.
Article in English | MEDLINE | ID: mdl-17958293

ABSTRACT

This chapter describes common genomic and proteomic methods and their application to the study of vulnerable population groups. The International HapMap project is discussed in relation to unique Haplotype single nucleotide polymorphisms (htSNPs) in population groups. In addition, studies, which have used these methods to investigate aging, ethnic, and racial specific conditions, as well as psychiatric diseases, are reviewed. Advantages and limitations of various genomic and proteomic approaches are discussed in relation to population admixture and sample selection.


Subject(s)
Genomics/organization & administration , Nursing Research/organization & administration , Proteomics/organization & administration , Vulnerable Populations , Aging/ethnology , Aging/genetics , Asthma/ethnology , Asthma/genetics , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/genetics , Chromosome Mapping , Databases, Genetic , Diffusion of Innovation , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genetics, Population/organization & administration , Haplotypes/genetics , Health Policy , Humans , Mental Disorders/ethnology , Mental Disorders/genetics , Neoplasms/ethnology , Neoplasms/genetics , Obesity/ethnology , Obesity/genetics , Pharmacogenetics/organization & administration , Polymorphism, Single Nucleotide/genetics , Research Design , Vulnerable Populations/ethnology , Vulnerable Populations/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...