Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.502
Filter
1.
BMC Genomics ; 25(1): 552, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825700

ABSTRACT

BACKGROUND: The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS: The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS: This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.


Subject(s)
Genome, Chloroplast , Orchidaceae , Phylogeny , Orchidaceae/genetics , Orchidaceae/classification , Base Composition , Molecular Sequence Annotation
2.
BMC Genomics ; 25(1): 556, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831327

ABSTRACT

BACKGROUND: Melilotus, a member of the Fabaceae family, is a pivotal forage crop that is extensively cultivated in livestock regions globally due to its notable productivity and ability to withstand abiotic stress. However, the genetic attributes of the chloroplast genome and the evolutionary connections among different Melilotus species remain unresolved. RESULTS: In this study, we compiled the chloroplast genomes of 18 Melilotus species and performed a comprehensive comparative analysis. Through the examination of protein-coding genes, we successfully established a robust phylogenetic tree for these species. This conclusion is further supported by the phylogeny derived from single-nucleotide polymorphisms (SNPs) across the entire chloroplast genome. Notably, our findings revealed that M. infestus, M. siculus, M. sulcatus, and M. speciosus formed a distinct subgroup within the phylogenetic tree. Additionally, the chloroplast genomes of these four species exhibit two shared inversions. Moreover, inverted repeats were observed to have reemerged in six species within the IRLC. The distribution patterns of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) within protein-coding genes indicated that ycf1 and ycf2 accumulated nonconservative alterations during evolutionary development. Furthermore, an examination of the evolutionary rate of protein-coding genes revealed that rps18, rps7, and rpl16 underwent positive selection specifically in Melilotus. CONCLUSIONS: We present a comparative analysis of the complete chloroplast genomes of Melilotus species. This study represents the most thorough and detailed exploration of the evolution and variability within the genus Melilotus to date. Our study provides valuable chloroplast genomic information for improving phylogenetic reconstructions and making biogeographic inferences about Melilotus and other Papilionoideae species.


Subject(s)
Genome, Chloroplast , Melilotus , Phylogeny , Polymorphism, Single Nucleotide , Melilotus/genetics , Melilotus/classification , Genetic Variation , Evolution, Molecular , Genomics/methods
3.
Sci Rep ; 14(1): 11820, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783007

ABSTRACT

Aglaonema commutatum is a famous species in the Aglaonema genus, which has important ornamental and economic value. However, its chloroplast genome information and phylogenetic relationships among popular green cultivars of Aglaonema in southern China have not been reported. Herein, chloroplast genomes of one variety of A. commutatum and seven green cultivars of Aglaonema, namely, A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Sapphire', 'Silver Queen', 'Snow White', 'White Gem', and 'White Horse Prince', were sequenced and assembled for comparative analysis and phylogeny. These eight genomes possessed a typical quadripartite structure that consisted of a LSC region (90,799-91,486 bp), an SSC region (20,508-21,137 bp) and a pair of IR regions (26,661-26,750 bp). Each genome contained 112 different genes, comprising 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The gene orders, GC contents, codon usage frequency, and IR/SC boundaries were highly conserved among these eight genomes. Long repeats, SSRs, SNPs and indels were analyzed among these eight genomes. Comparative analysis of 15 Aglaonema chloroplast genomes identified 7 highly variable regions, including trnH-GUG-exon1-psbA, trnS-GCU-trnG-UCC-exon1, trnY-GUA-trnE-UUC, psbC-trnS-UGA, trnF-GAA-ndhJ, ccsA-ndhD, and rps15-ycf1-D2. Reconstruction of the phylogenetic trees based on chloroplast genomes, strongly supported that Aglaonema was a sister to Anchomanes, and that the Aglaonema genus was classified into two sister clades including clade I and clade II, which corresponded to two sections, Aglaonema and Chamaecaulon, respectively. One variety and five cultivars, including A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Silver Queen', 'Snow White', and 'White Horse Prince', were classified into clade I; and the rest of the two cultivars, including 'Sapphire' and 'White Gem', were classified into clade II. Positive selection was observed in 34 protein-coding genes at the level of the amino acid sites among 77 chloroplast genomes of the Araceae family. Based on the highly variable regions and SSRs, 4 DNA markers were developed to differentiate the clade I and clade II in Aglaonema. In conclusion, this study provided chloroplast genomic resources for Aglaonema, which were useful for its classification and phylogeny.


Subject(s)
Genome, Chloroplast , Phylogeny , Genomics/methods , Genetic Markers , Chloroplasts/genetics , Base Composition , Microsatellite Repeats/genetics
4.
BMC Plant Biol ; 24(1): 456, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789931

ABSTRACT

BACKGROUND: Baolia H.W.Kung & G.L.Chu is a monotypic genus only known in Diebu County, Gansu Province, China. Its systematic position is contradictory, and its morphoanatomical characters deviate from all other Chenopodiaceae. Recent study has regarded Baolia as a sister group to Corispermoideae. We therefore sequenced and compared the chloroplast genomes of this species, and resolved its phylogenetic position based on both chloroplast genomes and marker sequences. RESULTS: We sequenced 18 chloroplast genomes of 16 samples from two populations of Baolia bracteata and two Corispermum species. These genomes of Baolia ranged in size from 152,499 to 152,508 bp. Simple sequence repeats (SSRs) were primarily located in the LSC region of Baolia chloroplast genomes, and most of them consisted of single nucleotide A/T repeat sequences. Notably, there were differences in the types and numbers of SSRs between the two populations of B. bracteata. Our phylogenetic analysis, based on both complete chloroplast genomes from 33 species and a combination of three markers (ITS, rbcL, and matK) from 91 species, revealed that Baolia and Corispermoideae (Agriophyllum, Anthochlamys, and Corispermum) form a well-supported clade and sister to Acroglochin. According to our molecular dating results, a major divergence event between Acroglochin, Baolia, and Corispermeae occurred during the Middle Eocene, approximately 44.49 mya. Ancestral state reconstruction analysis showed that Baolia exhibited symplesiomorphies with those found in core Corispermoideae characteristics including pericarp and seed coat. CONCLUSIONS: Comparing the chloroplast genomes of B. bracteata with those of eleven typical Chenopodioideae and Corispermoideae species, we observed a high overall similarity and a one notable noteworthy case of inversion of approximately 3,100 bp. of DNA segments only in two Atriplex and four Chenopodium species. We suggest that Corispermoideae should be considered in a broader sense, it includes Corispermeae (core Corispermoideae: Agriophyllum, Anthochlamys, and Corispermum), as well as two new monotypic tribes, Acroglochineae (Acroglochin) and Baolieae (Baolia).


Subject(s)
Amaranthaceae , Genome, Chloroplast , Phylogeny , Amaranthaceae/genetics , Amaranthaceae/anatomy & histology , Amaranthaceae/classification , Microsatellite Repeats , China , DNA, Chloroplast/genetics , Sequence Analysis, DNA , Genetic Markers
5.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790173

ABSTRACT

Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.


Subject(s)
Amaranthaceae , Genome, Chloroplast , Introduced Species , Phylogeny , Genome, Chloroplast/genetics , Amaranthaceae/genetics , Plant Weeds/genetics , Chloroplasts/genetics , High-Throughput Nucleotide Sequencing , Evolution, Molecular
6.
Genes (Basel) ; 15(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790180

ABSTRACT

Kohlrabi is an important swollen-stem cabbage variety belonging to the Brassicaceae family. However, few complete chloroplast genome sequences of this genus have been reported. Here, a complete chloroplast genome with a quadripartite cycle of 153,364 bp was obtained. A total of 132 genes were identified, including 87 protein-coding genes, 37 transfer RNA genes and eight ribosomal RNA genes. The base composition analysis showed that the overall GC content was 36.36% of the complete chloroplast genome sequence. Relative synonymous codon usage frequency (RSCU) analysis showed that most codons with values greater than 1 ended with A or U, while most codons with values less than 1 ended with C or G. Thirty-five scattered repeats were identified and most of them were distributed in the large single-copy (LSC) region. A total of 290 simple sequence repeats (SSRs) were found and 188 of them were distributed in the LSC region. Phylogenetic relationship analysis showed that five Brassica oleracea subspecies were clustered into one group and the kohlrabi chloroplast genome was closely related to that of B. oleracea var. botrytis. Our results provide a basis for understanding chloroplast-dependent metabolic studies and provide new insight for understanding the polyploidization of Brassicaceae species.


Subject(s)
Brassica , Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Brassica/genetics , Microsatellite Repeats/genetics , Base Composition/genetics , Codon Usage , Chloroplasts/genetics , Whole Genome Sequencing/methods
7.
Genes (Basel) ; 15(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790176

ABSTRACT

Krascheninnikovia ewersmanniana is a dominant desert shrub in Xinjiang, China, with high economic and ecological value. However, molecular systematics research on K. ewersmanniana is lacking. To resolve the genetic composition of K. ewersmanniana within Amaranthaceae and its systematic relationship with related genera, we used a second-generation Illumina sequencing system to detect the chloroplast genome of K. ewersmanniana and analyze its assembly, annotation, and phylogenetics. Total length of the chloroplast genome of K. ewersmanniana reached 152,287 bp, with 84 protein-coding genes, 36 tRNAs, and eight rRNAs. Codon usage analysis showed the majority of codons ending with base A/U. Mononucleotide repeats were the most common (85.42%) of the four identified simple sequence repeats. A comparison with chloroplast genomes of six other Amaranthaceae species indicated contraction and expansion of the inverted repeat boundary region in K. ewersmanniana, with some genes (rps19, ndhF, ycf1) differing in length and distribution. Among the seven species, the variation in non-coding regions was greater. Phylogenetic analysis revealed Krascheninnikovia ceratoides, Dysphania ambrosioides, Dysphania pumilio, and Dysphania botrys to have a close monophyletic relationship. By sequencing the K. ewersmanniana chloroplast genome, this research resolves the relatedness among 35 Amaranthaceae species, providing molecular insights for germplasm utilization, and theoretical support for studying evolutionary relationships.


Subject(s)
Amaranthaceae , Genome, Chloroplast , Phylogeny , Amaranthaceae/genetics , Codon Usage , Microsatellite Repeats/genetics , Evolution, Molecular , Chloroplasts/genetics , China , Molecular Sequence Annotation
8.
Genes (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790191

ABSTRACT

Galium genus belongs to the Rubiaceae family, which consists of approximately 14,000 species. In comparison to its well-known relatives, the plastomes of the Galium genus have not been explored so far. The plastomes of this genus have a typical, quadripartite structure, but differ in gene content, since the infA gene is missing in Galium palustre and Galium trfidum. An evaluation of the effectiveness of using entire chloroplast genome sequences as superbarcodes for accurate plant species identification revealed the high potential of this method for molecular delimitation within the genus and tribe. The trnE-UUC-psbD region showed the biggest number of diagnostides (diagnostic nucleotides) which might be new potential barcodes, not only in Galium, but also in other closely related genera. Relative synonymous codon usage (RSCU) appeared to be connected with the phylogeny of the Rubiaceae family, showing that during evolution, plants started preferring specific codons over others.


Subject(s)
Codon Usage , Evolution, Molecular , Genome, Chloroplast , Phylogeny , Rubiaceae , Genome, Chloroplast/genetics , Rubiaceae/genetics , Codon/genetics , DNA Barcoding, Taxonomic/methods
9.
PeerJ ; 12: e17335, 2024.
Article in English | MEDLINE | ID: mdl-38818457

ABSTRACT

Background: The chloroplast genome has the potential to be genetically engineered to enhance the agronomic value of major crops. As a crop plant with major economic value, it is important to understand every aspect of the genetic inheritance pattern among Elaeis guineensis individuals to ensure the traceability of agronomic traits. Methods: Two parental E. guineensis individuals and 23 of their F1 progenies were collected and sequenced using the next-generation sequencing (NGS) technique on the Illumina platform. Chloroplast genomes were assembled de novo from the cleaned raw reads and aligned to check for variations. The sequences were compared and analyzed with programming language scripting and relevant bioinformatic softwares. Simple sequence repeat (SSR) loci were determined from the chloroplast genome. Results: The chloroplast genome assembly resulted in 156,983 bp, 156,988 bp, 156,982 bp, and 156,984 bp. The gene content and arrangements were consistent with the reference genome published in the GenBank database. Seventy-eight SSRs were detected in the chloroplast genome, with most located in the intergenic spacer region.The chloroplast genomes of 17 F1 progenies were exact copies of the maternal parent, while six individuals showed a single variation in the sequence. Despite the significant variation displayed by the male parent, all the nucleotide variations were synonymous. This study show highly conserve gene content and sequence in Elaeis guineensis chloroplast genomes. Maternal inheritance of chloroplast genome among F1 progenies are robust with a low possibility of mutations over generations. The findings in this study can enlighten inheritance pattern of Elaeis guineensis chloroplast genome especially among crops' scientists who consider using chloroplast genome for agronomic trait modifications.


Subject(s)
Genome, Chloroplast , Microsatellite Repeats , Genome, Chloroplast/genetics , Microsatellite Repeats/genetics , High-Throughput Nucleotide Sequencing , Inheritance Patterns
10.
BMC Plant Biol ; 24(1): 417, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760756

ABSTRACT

BACKGROUND: The Polygonaceae is a family well-known for its weeds, and edible plants, Fagopyrum (buckwheat) and Rheum (rhubarb), which are primarily herbaceous and temperate in distribution. Yet, the family also contains a number of lineages that are principally distributed in the tropics and subtropics. Notably, these lineages are woody, unlike their temperate relatives. To date, full-genome sequencing has focused on the temperate and herbaceous taxa. In an effort to increase breadth of genetic knowledge of the Polygonaceae, we here present six fully assembled and annotated chloroplast genomes from six of the tropical, woody genera: Coccoloba rugosa (a narrow and endangered Puerto Rican endemic), Gymnopodium floribundum, Neomillspaughia emarginata, Podopterus mexicanus, Ruprechtia coriacea, and Triplaris cumingiana. RESULTS: These assemblies represent the first publicly-available assembled and annotated plastomes for the genera Podopterus, Gymnopodium, and Neomillspaughia, and the first assembled and annotated plastomes for the species Coccoloba rugosa, Ruprechtia coriacea, and Triplaris cumingiana. We found the assembled chloroplast genomes to be above the median size of Polygonaceae plastomes, but otherwise exhibit features typical of the family. The features of greatest sequence variation are found among the ndh genes and in the small single copy (SSC) region of the plastome. The inverted repeats show high GC content and little sequence variation across genera. When placed in a phylogenetic context, our sequences were resolved within the Eriogonoideae. CONCLUSIONS: These six plastomes from among the tropical woody Polygonaceae appear typical within the family. The plastome assembly of Ruprechtia coriacea presented here calls into question the sequence identity of a previously published plastome assembly of R. albida.


Subject(s)
Genome, Chloroplast , Polygonaceae , Polygonaceae/genetics , Polygonaceae/classification , Phylogeny , Molecular Sequence Annotation
11.
BMC Plant Biol ; 24(1): 424, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764045

ABSTRACT

Rutaceae family comprises economically important plants due to their extensive applications in spices, food, oil, medicine, etc. The Rutaceae plants is able to better utilization through biotechnology. Modern biotechnological approaches primarily rely on the heterologous expression of functional proteins in different vectors. However, several proteins are difficult to express outside their native environment. The expression potential of functional genes in heterologous systems can be maximized by replacing the rare synonymous codons in the vector with preferred optimal codons of functional genes. Codon usage bias plays a critical role in biogenetic engineering-based research and development. In the current study, 727 coding sequences (CDSs) obtained from the chloroplast genomes of ten Rutaceae plant family members were analyzed for codon usage bias. The nucleotide composition analysis of codons showed that these codons were rich in A/T(U) bases and preferred A/T(U) endings. Analyses of neutrality plots, effective number of codons (ENC) plots, and correlations between ENC and codon adaptation index (CAI) were conducted, which revealed that natural selection is a major driving force for the Rutaceae plant family's codon usage bias, followed by base mutation. In the ENC vs. CAI plot, codon usage bias in the Rutaceae family had a negligible relationship with gene expression level. For each sample, we screened 12 codons as preferred and high-frequency codons simultaneously, of which GCU encoding Ala, UUA encoding Leu, and AGA encoding Arg were the most preferred codons. Taken together, our study unraveled the synonymous codon usage pattern in the Rutaceae family, providing valuable information for the genetic engineering of Rutaceae plant species in the future.


Subject(s)
Codon Usage , Genome, Chloroplast , Plants, Medicinal , Rutaceae , Plants, Medicinal/genetics , Rutaceae/genetics , Codon/genetics
12.
BMC Genom Data ; 25(1): 49, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816818

ABSTRACT

Oreomecon nudicaulis, commonly known as mountain poppy, is a significant perennial herb. In 2022, the species O. nudicaulis, which was previously classified under the genus Papaver, was reclassified within the genus Oreomecon. Nevertheless, the phylogenetic status and chloroplast genome within the genus Oreomecon have not yet been reported. This study elucidates the chloroplast genome sequence and structural features of O. nudicaulis and explores its evolutionary relationships within Papaveraceae. Using Illumina sequencing technology, the chloroplast genome of O. nudicaulis was sequenced, assembled, and annotated. The results indicate that the chloroplast genome of O. nudicaulis exhibits a typical circular quadripartite structure. The chloroplast genome is 153,903 bp in length, with a GC content of 38.87%, containing 84 protein-coding genes, 8 rRNA genes, 38 tRNA genes, and 2 pseudogenes. The genome encodes 25,815 codons, with leucine (Leu) being the most abundant codon, and the most frequently used codon is AUU. Additionally, 129 microsatellite markers were identified, with mononucleotide repeats being the most abundant (53.49%). Our phylogenetic analysis revealed that O. nudicaulis has a relatively close relationship with the genus Meconopsis within the Papaveraceae family. The phylogenetic analysis supported the taxonomic status of O. nudicaulis, as it did not form a clade with other Papaver species, consistent with the revised taxonomy of Papaveraceae. This is the first report of a phylogenomic study of the complete chloroplast genome in the genus Oreomecon, which is a significant genus worldwide. This analysis of the O. nudicaulis chloroplast genome provides a theoretical basis for research on genetic diversity, molecular marker development, and species identification, enriching genetic information and supporting the evolutionary relationships among Papaveraceae.


Subject(s)
Genome, Chloroplast , Phylogeny , Genome, Chloroplast/genetics , Genomics/methods , Papaveraceae/genetics , Papaveraceae/chemistry , Microsatellite Repeats/genetics , Chloroplasts/genetics , Base Composition/genetics , Evolution, Molecular , RNA, Transfer/genetics
13.
Funct Integr Genomics ; 24(3): 109, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797780

ABSTRACT

For the study of species evolution, chloroplast gene expression, and transformation, the chloroplast genome is an invaluable resource. Codon usage bias (CUB) analysis is a tool that is utilized to improve gene expression and investigate evolutionary connections in genetic transformation. In this study, we analysed chloroplast genome differences, codon usage patterns and the sources of variation on CUB in 14 Annonaceae species using bioinformatics tools. The study showed that there was a significant variation in both gene sizes and numbers between the 14 species, but conservation was still maintained. It's worth noting that there were noticeable differences in the IR/SC sector boundary and the types of SSRs among the 14 species. The mono-nucleotide repeat type was the most common, with A/T repeats being more prevalent than G/C repeats. Among the different types of repeats, forward and palindromic repeats were the most abundant, followed by reverse repeats, and complement repeats were relatively rare. Codon composition analysis revealed that all 14 species had a frequency of GC lower than 50%. Additionally, it was observed that the proteins in-coding sequences of chloroplast genes tend to end with A/T at the third codon position. Among these species, 21 codons exhibited bias (RSCU > 1), and there were 8 high-frequency (HF) codons and 5 optimal codons that were identical across the species. According to the ENC-plot and Neutrality plot analysis, natural selection had less impact on the CUB of A. muricate and A. reticulata. Based on the PR2-plot, it was evident that base G had a higher frequency than C, and T had a higher frequency A. The correspondence analysis (COA) revealed that codon usage patterns different in Annonaceae.


Subject(s)
Annonaceae , Codon Usage , Genome, Chloroplast , Annonaceae/genetics , Codon/genetics , Evolution, Molecular , Microsatellite Repeats , Base Composition , Phylogeny
14.
Genes (Basel) ; 15(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38674391

ABSTRACT

Korean wasabi occurs naturally on the young oceanic, volcanic Ulleung Island off the east coast of the Korean Peninsula. Although the Ulleung Island wasabi is reported as Eutrema japonicum and has been suggested to be morphologically identical to cultivars in Korea, very little is known about its taxonomic identity and relationship with other cultivars. In this study, we sequenced the complete chloroplast DNA sequences of three naturally occurring Ulleung Island wasabi plants and six cultivars ('Daewang', 'Daruma', 'Micado', 'Orochi', 'Green Thumb', and 'Shogun') from continental Korea and determined the taxonomic identity of Korean wasabi on Ulleung Island. The size and organization of the complete chloroplast genomes of the nine accessions were nearly identical to those of previously reported wasabi cultivars. In addition, phylogenetic analysis based on the complete plastomes suggested that Ulleung Island wasabi most likely comprises various wasabi cultivars with three chlorotypes ('Shogun', 'Green Thumb', and a unique Chusan type). Based on the complete plastomes, we identified eight chlorotypes for the major wasabi cultivars and the Ulleung Island wasabi. Two major groups (1-'Mazuma' and 'Daruma', and 2-'Fujidaruma'/'Shimane No. 3'/Ulleung Island wasabi/five cultivars in Korea) were also identified based on mother line genealogical history. Furthermore, different types of variations (mutations, insertions/deletions (indels), mononucleotide repeats, and inversions) in plastomes were identified to distinguish different cultivar lines and five highly divergent hotspots. The nine newly obtained complete plastomes are valuable organelle genomic resources for species identification and infraspecific phylogeographic studies on wild and cultivated wasabi.


Subject(s)
Phylogeny , Republic of Korea , Genome, Chloroplast/genetics , Islands , DNA, Chloroplast/genetics , Chloroplasts/genetics
15.
Genes (Basel) ; 15(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674448

ABSTRACT

The mitochondrial genome (mitogenome) of Actinidia macrosperma, a traditional medicinal plant within the Actinidia genus, remains relatively understudied. This study aimed to sequence the mitogenome of A. macrosperma, determining its assembly, informational content, and developmental expression. The results revealed that the mitogenome of A. macrosperma is circular, spanning 752,501 bp with a GC content of 46.16%. It comprises 63 unique genes, including 39 protein-coding genes (PCGs), 23 tRNA genes, and three rRNA genes. Moreover, the mitogenome was found to contain 63 SSRs, predominantly mono-nucleotides, as well as 25 tandem repeats and 650 pairs of dispersed repeats, each with lengths equal to or greater than 60, mainly comprising forward repeats and palindromic repeats. Moreover, 53 homologous fragments were identified between the mitogenome and chloroplast genome (cp-genome), with the longest segment measuring 4296 bp. This study represents the initial report on the mitogenome of the A. macrosperma, providing crucial genetic materials for phylogenetic research within the Actinidia genus and promoting the exploitation of species genetic resources.


Subject(s)
Actinidia , Genome, Mitochondrial , Phylogeny , Genome, Mitochondrial/genetics , Actinidia/genetics , Genome, Chloroplast/genetics , RNA, Transfer/genetics , Base Composition/genetics
16.
BMC Genomics ; 25(1): 396, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649816

ABSTRACT

BACKGROUND: While the size of chloroplast genomes (cpDNAs) is often influenced by the expansion and contraction of inverted repeat regions and the enrichment of repeats, it is the intergenic spacers (IGSs) that appear to play a pivotal role in determining the size of Pteridaceae cpDNAs. This provides an opportunity to delve into the evolution of chloroplast genomic structures of the Pteridaceae family. This study added five Pteridaceae species, comparing them with 36 published counterparts. RESULTS: Poor alignment in the non-coding regions of the Pteridaceae family was observed, and this was attributed to the widespread presence of overlong IGSs in Pteridaceae cpDNAs. These overlong IGSs were identified as a major factor influencing variations in cpDNA size. In comparison to non-expanded IGSs, overlong IGSs exhibited significantly higher GC content and were rich in repetitive sequences. Species divergence time estimations suggest that these overlong IGSs may have already existed during the early radiation of the Pteridaceae family. CONCLUSIONS: This study reveals new insights into the genetic variation, evolutionary history, and dynamic changes in the cpDNA structure of the Pteridaceae family, providing a fundamental resource for further exploring its evolutionary research.


Subject(s)
Chloroplasts , DNA, Chloroplast , Genome, Chloroplast , Pteridaceae , Pteridaceae/classification , Pteridaceae/genetics , Genome, Chloroplast/genetics , Chloroplasts/genetics , DNA Transposable Elements/genetics , Phylogeny , DNA, Chloroplast/genetics , Evolution, Molecular , Genetic Variation , Microsatellite Repeats/genetics , Time Factors , Species Specificity
17.
Sci Rep ; 14(1): 8523, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609472

ABSTRACT

Herb genomics, at the forefront of traditional Chinese medicine research, combines genomics with traditional practices, facilitating the scientific validation of ancient remedies. This integration enhances public understanding of traditional Chinese medicine's efficacy and broadens its scope in modern healthcare. Stachys species encompass annual or perennial herbs or small shrubs, exhibiting simple petiolate or sessile leaves. Despite their wide-ranging applications across various fields, molecular data have been lacking, hindering the precise identification and taxonomic elucidation of Stachys species. To address this gap, we assembled the complete chloroplast (CP) genome of Stachys geobombycis and conducted reannotation and comparative analysis of seven additional species within the Stachys genus. The findings demonstrate that the CP genomes of these species exhibit quadripartite structures, with lengths ranging from 14,523 to 150,599 bp. Overall, the genome structure remains relatively conserved, hosting 131 annotated genes, including 87 protein coding genes, 36 tRNA genes, and 8 rRNA genes. Additionally, 78 to 98 SSRs and long repeat sequences were detected , and notably, 6 highly variable regions were identified as potential molecular markers in the CP genome through sequence alignment. Phylogenetic analysis based on Bayesian inference and maximum likelihood methods strongly supported the phylogenetic position of the genus Stachys as a member of Stachydeae tribe. Overall, this comprehensive bioinformatics study of Stachys CP genomes lays the groundwork for phylogenetic classification, plant identification, genetic engineering, evolutionary studies, and breeding research concerning medicinal plants within the Stachys genus.


Subject(s)
Genome, Chloroplast , Stachys , Bayes Theorem , Phylogeny , Plant Breeding
18.
BMC Plant Biol ; 24(1): 293, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632540

ABSTRACT

BACKGROUND: Pulsatilla saxatilis, a new species of the genus Pulsatilla has been discovered. The morphological information of this species has been well described, but its chloroplast genome characteristics and comparison with species of the same genus remain to be reported. RESULTS: Our results showed that the total length of chloroplast (cp.) genome of P. saxatilis is 162,659 bp, with a GC content of 37.5%. The cp. genome contains 134 genes, including 90 known protein-coding genes, 36 tRNA genes, and 8 rRNA genes. P. saxatilis demonstrated similar characteristics to other species of genus Pulsatilla. Herein, we compared cp. genomes of 10 species, including P. saxatilis, and found that the cp. genomes of the genus Pulsatilla are extremely similar, with a length of 162,322-163,851 bp. Furthermore, The SSRs of Pulsatilla ranged from 10 to 22 bp in length. Among the four structural regions of the cp. genome, most long repeats and SSRs were detected in the LSC region, followed by that in the SSC region, and least in IRA/ IRB regions. The most common types of long repeats were forward and palindromic repeats, followed by reverse repeats, and only a few complementary repeats were found in 10 cp. genomes. We also analyzed nucleotide diversity and identified ccsA_ndhD, rps16_trnK-UUU, ccsA, and rbcL, which could be used as potential molecular markers for identification of Pulsatilla species. The results of the phylogenetic tree constructed by connecting the sequences of high variation regions were consistent with those of the cp. gene phylogenetic tree, and the species more closely related to P. saxatilis was identified as the P. campanella. CONCLUSION: It was determined that the closest species to P. saxatilis is P. campanella, which is the same as the conclusion based on pollen grain characteristics, but different from the P. chinensis determined based on morphological characteristics. By revealing information on the chloroplast characteristics, development, and evolution of the cp. genome and the potential molecular markers, this study provides effective molecular data regarding the evolution, genetic diversity, and species identification of the genus Pulsatilla.


Subject(s)
Genome, Chloroplast , Pulsatilla , Animals , Phylogeny , Endangered Species , Pulsatilla/genetics , Chloroplasts/genetics
19.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637734

ABSTRACT

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Subject(s)
Genome, Chloroplast , Plants, Medicinal , DNA, Chloroplast/genetics , Plants, Medicinal/genetics , Chloroplasts/genetics , Chromosome Mapping , Phylogeny
20.
BMC Genomics ; 25(1): 384, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637729

ABSTRACT

BACKGROUND: Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS: We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS: These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.


Subject(s)
Cucurbita , Cucurbitaceae , Genome, Chloroplast , Humans , Cucurbita/genetics , Cucurbitaceae/genetics , Phylogeny , China , Chloroplasts/genetics , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...