Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.835
Filter
1.
Nat Commun ; 15(1): 4165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755180

ABSTRACT

The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.


Subject(s)
DNA Copy Number Variations , Gene Expression Profiling , Neoplasms , Humans , Child , Neoplasms/genetics , Neoplasms/therapy , Female , Adolescent , Male , Child, Preschool , Prognosis , Gene Expression Profiling/methods , Infant , Transcriptome , Young Adult , Whole Genome Sequencing , Germ-Line Mutation , Mutation , Genome, Human/genetics , Genetic Predisposition to Disease
2.
Nat Comput Sci ; 4(5): 360-366, 2024 May.
Article in English | MEDLINE | ID: mdl-38745108

ABSTRACT

For many genome-wide association studies, imputing genotypes from a haplotype reference panel is a necessary step. Over the past 15 years, reference panels have become larger and more diverse, leading to improvements in imputation accuracy. However, the latest generation of reference panels is subject to restrictions on data sharing due to concerns about privacy, limiting their usefulness for genotype imputation. In this context, here we propose RESHAPE, a method that employs a recombination Poisson process on a reference panel to simulate the genomes of hypothetical descendants after multiple generations. This data transformation helps to protect against re-identification threats and preserves data attributes, such as linkage disequilibrium patterns and, to some degree, identity-by-descent sharing, allowing for genotype imputation. Our experiments on gold-standard datasets show that simulated descendants up to eight generations can serve as reference panels without substantially reducing genotype imputation accuracy.


Subject(s)
Genome-Wide Association Study , Genotype , Humans , Genome-Wide Association Study/methods , Linkage Disequilibrium , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Information Dissemination/methods , Computer Simulation , Models, Genetic , Algorithms , Genome, Human/genetics , Poisson Distribution
3.
Nature ; 629(8013): 910-918, 2024 May.
Article in English | MEDLINE | ID: mdl-38693263

ABSTRACT

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.


Subject(s)
Carcinoma, Renal Cell , Environmental Exposure , Geography , Kidney Neoplasms , Mutagens , Mutation , Female , Humans , Male , Aristolochic Acids/adverse effects , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/chemically induced , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Genome, Human/genetics , Genomics , Hypertension/epidemiology , Incidence , Japan/epidemiology , Kidney Neoplasms/genetics , Kidney Neoplasms/epidemiology , Kidney Neoplasms/chemically induced , Mutagens/adverse effects , Obesity/epidemiology , Risk Factors , Romania/epidemiology , Serbia/epidemiology , Thailand/epidemiology , Tobacco Smoking/adverse effects , Tobacco Smoking/genetics
4.
Hum Genomics ; 18(1): 53, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802968

ABSTRACT

BACKGROUND: The human lineage has undergone a postcranial skeleton gracilization (i.e. lower bone mass and strength relative to body size) compared to other primates and archaic populations such as the Neanderthals. This gracilization has been traditionally explained by differences in the mechanical load that our ancestors exercised. However, there is growing evidence that gracilization could also be genetically influenced. RESULTS: We have analyzed the LRP5 gene, which is known to be associated with high bone mineral density conditions, from an evolutionary and functional point of view. Taking advantage of the published genomes of archaic Homo populations, our results suggest that this gene has a complex evolutionary history both between archaic and living humans and within living human populations. In particular, we identified the presence of different selective pressures in archaics and extant modern humans, as well as evidence of positive selection in the African and South East Asian populations from the 1000 Genomes Project. Furthermore, we observed a very limited evidence of archaic introgression in this gene (only at three haplotypes of East Asian ancestry out of the 1000 Genomes), compatible with a general erasing of the fingerprint of archaic introgression due to functional differences in archaics compared to extant modern humans. In agreement with this hypothesis, we observed private mutations in the archaic genomes that we experimentally validated as putatively increasing bone mineral density. In particular, four of five archaic missense mutations affecting the first ß-propeller of LRP5 displayed enhanced Wnt pathway activation, of which two also displayed reduced negative regulation. CONCLUSIONS: In summary, these data suggest a genetic component contributing to the understanding of skeletal differences between extant modern humans and archaic Homo populations.


Subject(s)
Evolution, Molecular , Low Density Lipoprotein Receptor-Related Protein-5 , Neanderthals , Humans , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Animals , Neanderthals/genetics , Selection, Genetic/genetics , Hominidae/genetics , Haplotypes/genetics , Bone Density/genetics , Genome, Human/genetics
5.
Hum Genomics ; 18(1): 44, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685113

ABSTRACT

BACKGROUND: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. METHODS: We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. RESULTS: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. CONCLUSIONS: Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.


Subject(s)
Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Genome, Human/genetics , Genetic Variation/genetics , Computational Biology/methods , Phenotype
6.
Database (Oxford) ; 20242024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602506

ABSTRACT

Short Tandem Repeats (STRs) are genetic markers made up of repeating DNA sequences. The variations of the STRs are widely studied in forensic analysis, population studies and genetic testing for a variety of neuromuscular disorders. Understanding polymorphic STR variation and its cause is crucial for deciphering genetic information and finding links to various disorders. In this paper, we present STRIDE-DB, a novel and unique platform to explore STR Instability and its Phenotypic Relevance, and a comprehensive database of STRs in the human genome. We utilized RepeatMasker to identify all the STRs in the human genome (hg19) and combined it with frequency data from the 1000 Genomes Project. STRIDE-DB, a user-friendly resource, plays a pivotal role in investigating the relationship between STR variation, instability and phenotype. By harnessing data from genome-wide association studies (GWAS), ClinVar database, Alu loci, Haploblocks in genome and Conservation of the STRs, it serves as an important tool for researchers exploring the variability of STRs in the human genome and its direct impact on phenotypes. STRIDE-DB has its broad applicability and significance in various research domains like forensic sciences and other repeat expansion disorders. Database URL: https://stridedb.igib.res.in.


Subject(s)
Genome, Human , Genome-Wide Association Study , Humans , Genome, Human/genetics , Phenotype , Microsatellite Repeats/genetics , Databases, Factual
7.
PLoS Genet ; 20(3): e1011144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38507461

ABSTRACT

Across the human genome, there are large-scale fluctuations in genetic diversity caused by the indirect effects of selection. This "linked selection signal" reflects the impact of selection according to the physical placement of functional regions and recombination rates along chromosomes. Previous work has shown that purifying selection acting against the steady influx of new deleterious mutations at functional portions of the genome shapes patterns of genomic variation. To date, statistical efforts to estimate purifying selection parameters from linked selection models have relied on classic Background Selection theory, which is only applicable when new mutations are so deleterious that they cannot fix in the population. Here, we develop a statistical method based on a quantitative genetics view of linked selection, that models how polygenic additive fitness variance distributed along the genome increases the rate of stochastic allele frequency change. By jointly predicting the equilibrium fitness variance and substitution rate due to both strong and weakly deleterious mutations, we estimate the distribution of fitness effects (DFE) and mutation rate across three geographically distinct human samples. While our model can accommodate weaker selection, we find evidence of strong selection operating similarly across all human samples. Although our quantitative genetic model of linked selection fits better than previous models, substitution rates of the most constrained sites disagree with observed divergence levels. We find that a model incorporating selective interference better predicts observed divergence in conserved regions, but overall our results suggest uncertainty remains about the processes generating fitness variation in humans.


Subject(s)
Models, Genetic , Selection, Genetic , Humans , Evolution, Molecular , Gene Frequency/genetics , Mutation , Genome, Human/genetics , Genetic Variation , Genetic Fitness
8.
Biotechniques ; 76(5): 216-223, 2024 May.
Article in English | MEDLINE | ID: mdl-38530148

ABSTRACT

Ancient DNA (aDNA) obtained from human remains is typically fragmented and present in relatively low amounts. Here we investigate a set of optimal methods for producing aDNA data by comparing silica-based DNA extraction and aDNA library preparation protocols. We also test the efficiency of whole-genome enrichment (WGC) on ancient human samples by modifying a number of parameter combinations. We find that the Dabney extraction protocol performs significantly better than alternatives. We further observed a positive trend with the BEST library protocol indicating lower clonality. Notably, our results suggest that WGC is effective at retrieving endogenous DNA, particularly from poorly-preserved human samples, by increasing human endogenous proportions by 5x. Thus, aDNA studies will be most likely to benefit from our results.


Subject(s)
DNA, Ancient , Genome, Human , DNA, Ancient/analysis , DNA, Ancient/isolation & purification , Humans , Genome, Human/genetics , Gene Library , Sequence Analysis, DNA/methods , Silicon Dioxide/chemistry
9.
Comput Biol Chem ; 110: 108062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554501

ABSTRACT

Cancer is one of the wide-ranging diseases which have a high mortality rate impacting globally. This scenario can be switched by early detection and correct precision treatment, a major concern for cancer patients. Clinicians can figure out the best-suited treatments for cancer patients by analyzing the patient's genome, which will treat the patient well and minimize the chances of side effects as well. Therefore, we have developed a fast, robust, and efficient solution as our precision oncology framework based on the whole genome sequencing of the individual's DNA. This platform can perform the entire genomic analysis, starting from the quality assessment of the input file to the variant annotation and functional prediction, followed by a certain level of interpretation. This analysis helps in the molecular profiling of the tumors for the identification of the targetable alterations. It takes in FASTQ or BAM file as an input and provides us with two output reports: a primary report, which consists of the patients' details, a summary of the analysis, and a secondary report, which is an elaborated report comprised of numerous results obtained from the analysis such as base changes, codon changes, amino acid changes, TMB analysis, MSI analysis, the variant frequency with its effects and impacts, affected biomarkers, etc. This framework can be effectively utilized for cancer treatment guidance, identification and validation of novel biomarkers, oncology research & development, genomic analysis, and gene manipulation.


Subject(s)
Neoplasms , Precision Medicine , Whole Genome Sequencing , Humans , Neoplasms/genetics , Cloud Computing , Genome, Human/genetics
10.
Mol Genet Genomics ; 299(1): 37, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494535

ABSTRACT

Identity by descent (IBD) segments, uninterrupted DNA segments derived from the same ancestral chromosomes, are widely used as indicators of relationships in genetics. A great deal of research focuses on IBD segments between related pairs, while the statistical analyses of segments in irrelevant individuals are rare. In this study, we investigated the basic informative features of IBD segments in unrelated pairs in Chinese populations from the 1000 Genome Project. A total of 5922 IBD segments in Chinese interpopulation unrelated individual pairs were detected via IBIS and the average length of IBD was 3.71 Mb in length. It was found that 17.86% of unrelated pairs shared at least one IBD segment in the Chinese cohort. Furthermore, a total of 49 chromosomal regions where IBD segments clustered in high abundance were identified, which might be sharing hotspots in the human genome. Such regions could also be observed in other ancestry populations, which implies that similar IBD backgrounds also exist. Altogether, these results demonstrated the distribution of common background IBD segments, which helps improve the accuracy in pedigree studies based on IBD analysis.


Subject(s)
Asian People , Genome, Human , Humans , Asian People/genetics , Genome, Human/genetics , Pedigree , Research Design , China
11.
Signal Transduct Target Ther ; 9(1): 47, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409199

ABSTRACT

Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , CRISPR-Cas Systems/genetics , Genetic Therapy/methods , Genome, Human/genetics , DNA
12.
Nature ; 627(8003): 340-346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374255

ABSTRACT

Comprehensively mapping the genetic basis of human disease across diverse individuals is a long-standing goal for the field of human genetics1-4. The All of Us Research Program is a longitudinal cohort study aiming to enrol a diverse group of at least one million individuals across the USA to accelerate biomedical research and improve human health5,6. Here we describe the programme's genomics data release of 245,388 clinical-grade genome sequences. This resource is unique in its diversity as 77% of participants are from communities that are historically under-represented in biomedical research and 46% are individuals from under-represented racial and ethnic minorities. All of Us identified more than 1 billion genetic variants, including more than 275 million previously unreported genetic variants, more than 3.9 million of which had coding consequences. Leveraging linkage between genomic data and the longitudinal electronic health record, we evaluated 3,724 genetic variants associated with 117 diseases and found high replication rates across both participants of European ancestry and participants of African ancestry. Summary-level data are publicly available, and individual-level data can be accessed by researchers through the All of Us Researcher Workbench using a unique data passport model with a median time from initial researcher registration to data access of 29 hours. We anticipate that this diverse dataset will advance the promise of genomic medicine for all.


Subject(s)
Datasets as Topic , Genetics, Medical , Genetics, Population , Genome, Human , Genomics , Minority Groups , Racial Groups , Humans , Access to Information , Black People/genetics , Electronic Health Records , Ethnicity/genetics , European People/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome, Human/genetics , Longitudinal Studies , Racial Groups/genetics , Reproducibility of Results , Research Personnel , Time Factors , Vulnerable Populations
13.
Nature ; 627(8004): 586-593, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355797

ABSTRACT

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Subject(s)
Carcinoma, Hepatocellular , Genome, Human , High-Throughput Nucleotide Sequencing , Liver Neoplasms , Mutation , Whole Genome Sequencing , Humans , Aristolochic Acids/metabolism , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , China , Chromothripsis , Disease Progression , DNA, Circular/genetics , East Asian People/genetics , Evolution, Molecular , Genome, Human/genetics , Hepatitis B virus/genetics , INDEL Mutation/genetics , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/virology , Mutation/genetics , Neoplasm Metastasis/genetics , Open Reading Frames/genetics , Reproducibility of Results
14.
Pharmacogenet Genomics ; 34(4): 130-134, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38359167

ABSTRACT

The use of genome-wide genotyping arrays in pharmacogenomics (PGx) research and clinical implementation applications is increasing but it is unclear which arrays are best suited for these applications. Here, we conduct a comparative coverage analysis of PGx alleles included on genome-wide genotyping arrays, with an emphasis on alleles in genes with PGx-based prescribing guidelines. Genomic manifest files for seven arrays including the Axiom Precision Medicine Diversity Array (PMDA), Axiom PMDA Plus, Axiom PangenomiX, Axiom PangenomiX Plus, Infinium Global Screening Array, Infinium Global Diversity Array (GDA) and Infinium GDA with enhanced PGx (GDA-PGx) Array, were evaluated for coverage of 523 star alleles across 19 pharmacogenes included in prescribing guidelines developed by the Clinical Pharmacogenetic Implementation Consortium and Dutch Pharmacogenomics Working Group. Specific attention was given to coverage of the Association of Molecular Pathology's Tier 1 and Tier 2 allele sets for CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, NUDT15, TPMT and VKORC1 . Coverage of the examined PGx alleles was highest for the Infinium GDA-PGx (88%), Axiom PangenomiX Plus (77%), Axiom PangenomiX (72%) and Axiom PMDA Plus (70%). Three arrays (Infinium GDA-PGx, Axiom PangenomiX Plus and Axiom PMDA Plus) fully covered the Tier 1 alleles and the Axiom PangenomiX array provided full coverage of Tier 2 alleles. In conclusion, PGx allele coverage varied by gene and array. A superior array for all PGx applications was not identified. Future comparative analyses of genotype data produced by these arrays are needed to determine the robustness of the reported coverage estimates.


Subject(s)
Alleles , Pharmacogenetics , Humans , Pharmacogenetics/methods , Genotype , Genotyping Techniques/methods , Genome-Wide Association Study/methods , Genome, Human/genetics , Oligonucleotide Array Sequence Analysis , Precision Medicine/methods
15.
PLoS One ; 19(2): e0292479, 2024.
Article in English | MEDLINE | ID: mdl-38349923

ABSTRACT

Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.


Subject(s)
Diatoms , Stramenopiles , Humans , Integrases/genetics , Genome, Human/genetics , DNA , Genomics , Diatoms/genetics , Stramenopiles/genetics , Gene Editing
16.
Nature ; 625(7994): 329-337, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200294

ABSTRACT

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Subject(s)
Genome, Human , Genomics , Human Migration , Scandinavians and Nordic People , Humans , Denmark/ethnology , Emigrants and Immigrants/history , Genotype , Scandinavians and Nordic People/genetics , Scandinavians and Nordic People/history , Human Migration/history , Genome, Human/genetics , History, Ancient , Pollen , Diet/history , Hunting/history , Farmers/history , Culture , Phenotype , Datasets as Topic
17.
Nature ; 625(7994): 312-320, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200293

ABSTRACT

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Subject(s)
Asian , European People , Genome, Human , Selection, Genetic , Humans , Affect , Agriculture/history , Alleles , Alzheimer Disease/genetics , Asia/ethnology , Asian/genetics , Diabetes Mellitus/genetics , Europe/ethnology , European People/genetics , Farmers/history , Genetic Loci/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , History, Ancient , Human Migration , Hunting/history , Multigene Family/genetics , Phenotype , UK Biobank , Multifactorial Inheritance/genetics
18.
Genet Med ; 26(5): 101076, 2024 May.
Article in English | MEDLINE | ID: mdl-38258669

ABSTRACT

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Subject(s)
Exome Sequencing , Exome , Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Male , Female , Exome/genetics , Exome Sequencing/economics , Cohort Studies , Genetic Testing/economics , Genetic Testing/methods , Whole Genome Sequencing/economics , Child , Genome, Human/genetics , DNA Copy Number Variations/genetics , Polymorphism, Single Nucleotide/genetics , Child, Preschool
19.
20.
Life Sci Alliance ; 7(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38167611

ABSTRACT

Bulky DNA damages block transcription and compromise genome integrity and function. The cellular response to these damages includes global transcription shutdown. Still, active transcription is necessary for transcription-coupled repair and for induction of damage-response genes. To uncover common features of a general bulky DNA damage response, and to identify response-related transcripts that are expressed despite damage, we performed a systematic RNA-seq study comparing the transcriptional response to three independent damage-inducing agents: UV, the chemotherapy cisplatin, and benzo[a]pyrene, a component of cigarette smoke. Reduction in gene expression after damage was associated with higher damage rates, longer gene length, and low GC content. We identified genes with relatively higher expression after all three damage treatments, including NR4A2, a potential novel damage-response transcription factor. Up-regulated genes exhibit higher exon content that is associated with preferential repair, which could enable rapid damage removal and transcription restoration. The attenuated response to BPDE highlights that not all bulky damages elicit the same response. These findings frame gene architecture as a major determinant of the transcriptional response that is hardwired into the human genome.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Repair/genetics , DNA Damage/genetics , Benzo(a)pyrene/pharmacology , Benzo(a)pyrene/metabolism , Gene Expression Regulation/genetics , Genome, Human/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...