Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.355
Filter
1.
Planta ; 260(1): 14, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829418

ABSTRACT

MAIN CONCLUSION: Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.


Subject(s)
Cycadopsida , Genome, Mitochondrial , Genome, Plant , Cycadopsida/genetics , Genome, Plant/genetics , Genome, Mitochondrial/genetics , Genome, Plastid/genetics , Evolution, Molecular , Phylogeny , Biological Evolution
2.
BMC Genomics ; 25(1): 546, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824587

ABSTRACT

BACKGROUND: Purple flowering stalk (Brassica rapa var. purpuraria) is a widely cultivated plant with high nutritional and medicinal value and exhibiting strong adaptability during growing. Mitochondrial (mt) play important role in plant cells for energy production, developing with an independent genetic system. Therefore, it is meaningful to assemble and annotate the functions for the mt genome of plants independently. Though there have been several reports referring the mt genome of in Brassica species, the genome of mt in B. rapa var. purpuraria and its functional gene variations when compared to its closely related species has not yet been addressed. RESULTS: The mt genome of B. rapa var. purpuraria was assembled through the Illumina and Nanopore sequencing platforms, which revealed a length of 219,775 bp with a typical circular structure. The base composition of the whole B. rapa var. purpuraria mt genome revealed A (27.45%), T (27.31%), C (22.91%), and G (22.32%). 59 functional genes, composing of 33 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes, were annotated. The sequence repeats, codon usage, RNA editing, nucleotide diversity and gene transfer between the cp genome and mt genome were examined in the B. rapa var. purpuraria mt genome. Phylogenetic analysis show that B. rapa var. Purpuraria was closely related to B. rapa subsp. Oleifera and B. juncea. Ka/Ks analysis reflected that most of the PCGs in the B. rapa var. Purpuraria were negatively selected, illustrating that those mt genes were conserved during evolution. CONCLUSIONS: The results of our findings provide valuable information on the B.rapa var. Purpuraria genome, which might facilitate molecular breeding, genetic variation and evolutionary researches for Brassica species in the future.


Subject(s)
Brassica rapa , Genome, Mitochondrial , Phylogeny , Brassica rapa/genetics , Molecular Sequence Annotation , Genome, Plant , RNA, Transfer/genetics , Base Composition
3.
PeerJ ; 12: e17480, 2024.
Article in English | MEDLINE | ID: mdl-38827288

ABSTRACT

Background: Barbronia, a genus of freshwater macrophagous leeches, belongs to Erpobdelliformes (Salifidae: Clitellata: Annelida), and B. weberi, a well-known leech within this genus, has a worldwide distribution. However, the systematics of Barbronia have not yet been adequately investigated, primarily due to a few molecular markers, and only 20 Barbronia sequences available in the GenBank database. This gap significantly limits our understanding of the Barbronia species identification, as well as the phylogenetic placement of the genus Barbronia within Salifidae. Methods: Next-generation sequencing (NGS) was used to simultaneously capture the entire mitochondrial genome and the full-length 18S/28S rDNA sequences. The species boundary of Barbronia species was estimated using bGMYC and bPTP methods, based on all available Barbronia COI sequences. Uncorrected COI p-distance was calculated in MEGA. A molecular data matrix consisting of four loci (COI, 12S, 18S, and 28S rDNA) for outgroups (three Haemopis leeches) and 49 erpobdellid leeches, representing eight genera within the Suborder Erpobdelliformes was aligned using MAFFT and LocARNA. This matrix was used to reconstruct the phylogenetic relationship of Barbronia via Bayesian inference (BI) and the maximum likelihood (ML) method. Results: The full lengths of the mitochondrial genome, 18S and 28S rDNAs of B. cf. gwalagwalensis, are 14847 bp, 1876 bp 1876 bp, and 2863 bp, respectively. Both bGMYC and bPTP results based on COI data are generally congruent, suggesting that the previously proposed taxa (B. arcana, B. weberi formosana, and B. wuttkei or Erpobdella wuttkei) are synonyms of B. weberi. The specimens listed in the B. gwalagwalensis group, however, are split into at least two Primary Species Hypotheses (PSHs). The p-distance of the first PSH is less than 1.3% but increased to 4.5% when including the secondary PSH (i.e., B. cf. gwalagwalensis). In comparison, the interspecific p-distance between the B. weberi group and the B. gwalagwalensis group ranged from 6.4% to 8.7%, and the intraspecific p-distance within the B. weberi group is less than 0.8%. Considering the species delimitation results and the sufficient large p-distance, the specimen sampled in China is treated as B. cf. gwalagwalensis. The monophyly of the four Erpobdelliformes families Salifidae, Orobdellidae, Gastrostomobdellidae sensu stricto and Erpobdellidae is well supported in ML and BI analysis based on a data of four markers. Within the Salifidae, a well-supported Barbronia is closely related to a clade containing Odontobdella and Mimobdella, and these three genera are sister to a clade consisted of Salifa and Linta. According to the results of this study, the strategy of simultaneous obtaining both whole mitochondria and nuclear markers from extensively sampled Salifids species using NGS is expected to fathom both the species diversity of B. gwalagwalensis and the evolutionary relationship of Salifidae.


Subject(s)
Phylogeny , Animals , Genome, Mitochondrial/genetics , Leeches/genetics , Leeches/classification , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 28S/genetics
4.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831648

ABSTRACT

We present here the complete mitochondrial sequence of the critically endangered Malaysian giant turtle, Orlitia borneensis. The assembled mitochondrial genome includes 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes (rRNAs), and one control region. This mitochondrial genome has been archived in the NCBI GenBank with accession number OQ808845. The Batagur control region is relatively smaller than O. borneensis and closer to Aldabrachelys gigantea, which suggests potentially that O. borneensis has undergone an expansion in the control region.


Subject(s)
Endangered Species , Genome, Mitochondrial , RNA, Transfer , Turtles , Animals , Turtles/genetics , RNA, Transfer/genetics , Phylogeny , Malaysia , RNA, Ribosomal/genetics , DNA, Mitochondrial/genetics
5.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38831649

ABSTRACT

The mitogenome is an important tool for taxonomic and evolutionary investigation. Here, a few complete mitogenomes of red algae have been reported. We have reported the complete mitogenome sequences of Grateloupia cornea Okamura, 1913 (Rhodophyta, Halymeniales). The genome is 30,595 bp in circumference, and has a strongly biased [AT] = 66.9%. Like most other Grateloupia species, it has a group II intron in the cox1 gene. Maximum likelihood and maximum parsimony analyses showed that G. cornea is more closely related to G. asiatica. This shows that the group II intron in the cox1 ORF present in most species of Grateloupia was present in their common ancestor, and uniquely lost in G. asiatica. The seven Grateloupia species with known mitogenome sequences remain monophyletic, with the genus Polyopes as sister taxon. The complete mitochondrial genome data will be valuable for future research on comparative mitochondrial genome analysis, an extensive understanding of gene content and organization, evolution of the cox1 intron in Rhodophyta as well as phylogenetic analysis.


Subject(s)
Genome, Mitochondrial , Phylogeny , Rhodophyta , Rhodophyta/genetics , Rhodophyta/classification , Introns/genetics , Evolution, Molecular
6.
Physiol Plant ; 176(3): e14363, 2024.
Article in English | MEDLINE | ID: mdl-38837786

ABSTRACT

Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.


Subject(s)
Agaricales , Genome, Mitochondrial , Phylogeny , Genome, Mitochondrial/genetics , Agaricales/genetics , Agaricales/classification , Evolution, Molecular , Genome, Fungal/genetics
7.
Sci Rep ; 14(1): 12861, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834792

ABSTRACT

The mitochondrial genomes of D. melacanthus and D. furcatus were sequenced and used to investigate the phylogenetic relationships with 54 species of Pentatomidae. Their mitogenomes are 17,197 and 15,444 bp-long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22/21 transfer RNA genes, with conserved gene arrangement. Leu, Lys, and Ser were the most common amino acids in their PCGs. PCGs evolutionary analysis indicated their mitogenomes are under purifying selection, and the most conserved genes are from the cytochrome complex, reinforcing their suitability as markers for molecular taxonomy. We identified 490 mtSSRs in 56 Pentatomidae species, with large variation and a positive correlation between mtSSR number and genome size. Three mtSSRs were identified in each Diceraeus species. Only the mtSSR in the nad6 (D. melacanthus) and nad4 (D. furcatus) appear to have application as molecular markers for species characterization. Phylogenetic analysis confirmed the monophyly of Pentatomidae. However, our analysis challenged the monophyly of Pentatominae and Podopinae. We also detected unexpected relationships among some tribes and genera, highlighting the complexity of the internal taxonomic structure of Pentatomidae. Both Diceraeus species were grouped in the same clade with the remaining Carpocorini analyzed.


Subject(s)
Evolution, Molecular , Genome, Mitochondrial , Phylogeny , Animals , Genome, Mitochondrial/genetics , Hemiptera/genetics , Hemiptera/classification , RNA, Transfer/genetics , RNA, Ribosomal/genetics
8.
Planta ; 260(1): 23, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850310

ABSTRACT

MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.


Subject(s)
Genome, Mitochondrial , Setaria Plant , Setaria Plant/genetics , Genome, Mitochondrial/genetics , Phylogeny , RNA, Transfer/genetics , Genome, Plant/genetics , Codon Usage , RNA, Ribosomal/genetics , Codon/genetics
9.
BMC Plant Biol ; 24(1): 361, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702620

ABSTRACT

BACKGROUND: Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS: PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS: We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.


Subject(s)
Genome, Mitochondrial , Phylogeny , RNA Editing , Solanum , Solanum/genetics , Genome, Plant
10.
Zool Res ; 45(4): 711-723, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38766761

ABSTRACT

The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.


Subject(s)
Catfishes , Phylogeny , Phylogeography , Animals , Catfishes/genetics , Catfishes/classification , Genome, Mitochondrial , Genetic Variation , Animal Distribution
11.
Malar J ; 23(1): 134, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704592

ABSTRACT

BACKGROUND: Studies on haemosporidian diversity, including origin of human malaria parasites, malaria's zoonotic dynamic, and regional biodiversity patterns, have used target gene approaches. However, current methods have a trade-off between scalability and data quality. Here, a long-read Next-Generation Sequencing protocol using PacBio HiFi is presented. The data processing is supported by a pipeline that uses machine-learning for analysing the reads. METHODS: A set of primers was designed to target approximately 6 kb, almost the entire length of the haemosporidian mitochondrial genome. Amplicons from different samples were multiplexed in an SMRTbell® library preparation. A pipeline (HmtG-PacBio Pipeline) to process the reads is also provided; it integrates multiple sequence alignments, a machine-learning algorithm that uses modified variational autoencoders, and a clustering method to identify the mitochondrial haplotypes/species in a sample. Although 192 specimens could be studied simultaneously, a pilot experiment with 15 specimens is presented, including in silico experiments where multiple data combinations were tested. RESULTS: The primers amplified various haemosporidian parasite genomes and yielded high-quality mt genome sequences. This new protocol allowed the detection and characterization of mixed infections and co-infections in the samples. The machine-learning approach converged into reproducible haplotypes with a low error rate, averaging 0.2% per read (minimum of 0.03% and maximum of 0.46%). The minimum recommended coverage per haplotype is 30X based on the detected error rates. The pipeline facilitates inspecting the data, including a local blast against a file of provided mitochondrial sequences that the researcher can customize. CONCLUSIONS: This is not a diagnostic approach but a high-throughput method to study haemosporidian sequence assemblages and perform genotyping by targeting the mitochondrial genome. Accordingly, the methodology allowed for examining specimens with multiple infections and co-infections of different haemosporidian parasites. The pipeline enables data quality assessment and comparison of the haplotypes obtained to those from previous studies. Although a single locus approach, whole mitochondrial data provide high-quality information to characterize species pools of haemosporidian parasites.


Subject(s)
Genome, Mitochondrial , Haemosporida , High-Throughput Nucleotide Sequencing , High-Throughput Nucleotide Sequencing/methods , Haemosporida/genetics , Haemosporida/classification , Biodiversity , Machine Learning
12.
PeerJ ; 12: e17076, 2024.
Article in English | MEDLINE | ID: mdl-38708350

ABSTRACT

Although genome-scale data generation is becoming more tractable for phylogenetics, there are large quantities of single gene fragment data in public repositories and such data are still being generated. We therefore investigated whether single mitochondrial genes are suitable proxies for phylogenetic reconstruction as compared to the application of full mitogenomes. With near complete taxon sampling for the southern African dwarf chameleons (Bradypodion), we estimated and compared phylogenies for the complete mitogenome with topologies generated from individual mitochondrial genes and various combinations of these genes. Our results show that the topologies produced by single genes (ND2, ND4, ND5, COI, and COIII) were analogous to the complete mitogenome, suggesting that these genes may be reliable markers for generating mitochondrial phylogenies in lieu of generating entire mitogenomes. In contrast, the short fragment of 16S commonly used in herpetological systematics, produced a topology quite dissimilar to the complete mitogenome and its concatenation with ND2 weakened the resolution of ND2. We therefore recommend the avoidance of this 16S fragment in future phylogenetic work.


Subject(s)
Genome, Mitochondrial , Lizards , Phylogeny , Animals , Genome, Mitochondrial/genetics , Lizards/genetics , Genes, Mitochondrial/genetics
13.
Mol Biol Rep ; 51(1): 659, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748061

ABSTRACT

BACKGROUND: Mitochondrial DNA (mtDNA) has become a significant tool for exploring genetic diversity and delineating evolutionary links across diverse taxa. Within the group of cold-water fish species that are native to the Indian Himalayan region, Schizothorax esocinus holds particular importance due to its ecological significance and is potentially vulnerable to environmental changes. This research aims to clarify the phylogenetic relationships within the Schizothorax genus by utilizing mitochondrial protein-coding genes. METHODS: Standard protocols were followed for the isolation of DNA from S. esocinus. For the amplification of mtDNA, overlapping primers were used, and then subsequent sequencing was performed. The genetic features were investigated by the application of bioinformatic approaches. These approaches covered the evaluation of nucleotide composition, codon usage, selective pressure using nonsynonymous substitution /synonymous substitution (Ka/Ks) ratios, and phylogenetic analysis. RESULTS: The study specifically examined the 13 protein-coding genes of Schizothorax species which belongs to the Schizothoracinae subfamily. Nucleotide composition analysis showed a bias towards A + T content, consistent with other cyprinid fish species, suggesting evolutionary conservation. Relative Synonymous Codon Usage highlighted leucine as the most frequent (5.18%) and cysteine as the least frequent (0.78%) codon. The positive AT-skew and the predominantly negative GC-skew indicated the abundance of A and C. Comparative analysis revealed significant conservation of amino acids in multiple genes. The majority of amino acids were hydrophobic rather than polar. The purifying selection was revealed by the genetic distance and Ka/Ks ratios. Phylogenetic study revealed a significant genetic divergence between S. esocinus and other Schizothorax species with interspecific K2P distances ranging from 0.00 to 8.87%, with an average of 5.76%. CONCLUSION: The present study provides significant contributions to the understanding of mitochondrial genome diversity and genetic evolution mechanisms in Schizothoracinae, hence offering vital insights for the development of conservation initiatives aimed at protecting freshwater fish species.


Subject(s)
Phylogeny , Animals , Mitochondrial Proteins/genetics , Base Composition/genetics , DNA, Mitochondrial/genetics , Codon Usage/genetics , Trout/genetics , Trout/classification , Codon/genetics , Genome, Mitochondrial/genetics , Evolution, Molecular , Fish Proteins/genetics , Genomics/methods , Genetic Variation/genetics , Cyprinidae/genetics , Cyprinidae/classification
14.
Invertebr Syst ; 382024 May.
Article in English | MEDLINE | ID: mdl-38740060

ABSTRACT

Mitochondrial DNA gene organisation is an important source of phylogenetic information for various metazoan taxa at different evolutionary timescales, though this has not been broadly tested for all insect groups nor within a phylogenetic context. The cosmopolitan subfamily Doryctinae is a highly diverse group of braconid wasps mainly represented by ectoparasitoids of xylophagous beetle larvae. Previous molecular studies based on Sanger and genome-wide (ultraconserved elements, UCE; and mitochondrial genomes) sequence data have recovered a non-monophyletic Doryctinae, though the relationships involved have always been weakly supported. We characterised doryctine mitogenomes and conducted separate phylogenetic analyses based on mitogenome and UCE sequence data of ~100 representative doryctine genera to assess the monophyly and higher-level classification of the subfamily. We identified rearrangements of mitochondrial transfer RNAs (tRNAs) that support a non-monophyletic Doryctinae consisting of two separate non-related clades with strong geographic structure ('New World' and 'Old World' clades). This geographic structure was also consistently supported by the phylogenetic analyses preformed with mitogenome and UCE sequence data. These results highlight the utility of the mitogenome gene rearrangements as a potential source of phylogenetic information at different evolutionary timescales.


Subject(s)
Genome, Mitochondrial , Phylogeny , Wasps , Animals , Wasps/genetics , Genome, Mitochondrial/genetics , Genome, Insect
15.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741159

ABSTRACT

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


Subject(s)
G-Quadruplexes , Mitochondria , G-Quadruplexes/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Genome, Mitochondrial , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Platinum/pharmacology , Animals
16.
Sci Rep ; 14(1): 11480, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769390

ABSTRACT

This study focuses on exploring the uniparental genetic lineages of Hungarian-speaking minorities residing in rural villages of Baranja (Croatia) and the Zobor region (Slovakia). We aimed to identify ancestral lineages by examining genetic markers distributed across the entire mitogenome and on the Y-chromosome. This allowed us to discern disparities in regional genetic structures within these communities. By integrating our newly acquired genetic data from a total of 168 participants with pre-existing Eurasian and ancient DNA datasets, our goal was to enrich the understanding of the genetic history trajectories of Carpathian Basin populations. Our findings suggest that while population-based analyses may not be sufficiently robust to detect fine-scale uniparental genetic patterns with the sample sizes at hand, phylogenetic analysis of well-characterized Y-chromosomal Short Tandem Repeat (STR) data and entire mitogenome sequences did uncover multiple lineage ties to far-flung regions and eras. While the predominant portions of both paternal and maternal DNA align with the East-Central European spectrum, rarer subhaplogroups and lineages have unveiled ancient ties to both prehistoric and historic populations spanning Europe and Eastern Eurasia. This research augments the expansive field of phylogenetics, offering critical perspectives on the genetic constitution and heritage of the communities in East-Central Europe.


Subject(s)
Chromosomes, Human, Y , Genome, Mitochondrial , Phylogeny , Humans , Chromosomes, Human, Y/genetics , Hungary , Male , Genetics, Population , Female , DNA, Mitochondrial/genetics , DNA, Ancient/analysis , Microsatellite Repeats/genetics , Haplotypes
17.
BMC Ecol Evol ; 24(1): 66, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773381

ABSTRACT

BACKGROUND: Dorcus stag beetles in broad sense are one of the most diverse group in Lucanidae and important saproxylic insects playing a crucial role in nutrient recycling and forest biomonitoring. However, the dazzling morphological differentiations have caused numerous systematic confusion within the big genus, especially the puzzlingly generic taxonomy. So far, there is lack of molecular phylogenetic study to address the chaotic situation. In this study, we undertook mitochondrial genome sequencing of 42 representative species including 18 newly-sequenced ones from Eastern Asia and reconstructed the phylogenetic framework of stag beetles in Dorcus sensu lato for the first time. RESULTS: The mitogenome datasets of Dorcus species have indicated the variable mitogenomic lengths ranged from 15,785 to 19,813 bp. Each mitogenome contained 13 PCGs, 2 rRNAs, 22 tRNAs, and a control region, and all PCGs were under strong purifying selection (Ka/Ks < 1). Notably, we have identified the presence of a substantial intergenic spacer (IGS) between the trnAser (UCN) and NAD1 genes, with varying lengths ranging from 129 bp (in D. hansi) to 158 bp (in D. tityus). The mitogenomic phylogenetic analysis of 42 species showed that Eastern Asia Dorcus was monophyletic, and divided into eight clades with significant genetic distance. Four of them, Clade VIII, VII, VI and I are clustered by the representative species of Serrognathus Motschulsky, Kirchnerius Schenk, Falcicornis Séguy and Dorcus s.s. respectively, which supported their fully generic positions as the previous morphological study presented. The topology also showed the remaining clades were distinctly separated from the species of Dorcus sensu lato, which implied that each of them might demonstrate independent generic status. The Linnaeus nomenclatures were suggested as Eurydorcus Didier stat. res., Eurytrachellelus Didier stat. res., Hemisodorcus Thomson stat. res. and Velutinodorcus Maes stat. res. For Clade V, IV, III and II respectively. CONCLUSION: This study recognized the monophyly of Dorcus stag beetles and provided a framework for the molecular phylogeny of this group for the first time. The newly generated mitogenomic data serves as a valuable resource for future investigations on lucanid beetles. The generic relationship would facilitate the systematics of Dorcus stag beetles and thus be useful for exploring their evolutionary, ecological, and conservation aspects.


Subject(s)
Coleoptera , Genome, Mitochondrial , Phylogeny , Animals , Coleoptera/genetics , Coleoptera/classification , Genome, Mitochondrial/genetics , Asia, Eastern
18.
Nat Genet ; 56(5): 889-899, 2024 May.
Article in English | MEDLINE | ID: mdl-38741018

ABSTRACT

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.


Subject(s)
Cell Nucleus , DNA Copy Number Variations , DNA, Mitochondrial , Genome, Mitochondrial , Neoplasms , Single-Cell Analysis , Humans , DNA, Mitochondrial/genetics , Single-Cell Analysis/methods , DNA Copy Number Variations/genetics , Cell Nucleus/genetics , Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Animals , Mitochondria/genetics , Whole Genome Sequencing/methods , Mice , Heteroplasmy/genetics
19.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732163

ABSTRACT

The Chinese giant salamander (Andrias davidianus), listed as an endangered species under "secondary protection" in China, faces significant threats due to ecological deterioration and the expansion of human activity. Extensive field investigations are crucial to ascertain the current status in the wild and to implement effective habitat protection measures to safeguard this species and support its population development. Traditional survey methods often fall short due to the elusive nature of the A. davidianus, presenting challenges that are time-consuming and generally ineffective. To overcome these obstacles, this study developed a real-time monitoring method that uses environmental DNA (eDNA) coupled with recombinase polymerase amplification and lateral flow strip (RPA-LFD). We designed five sets of species-specific primers and probes based on mitochondrial genome sequence alignments of A. davidianus and its close relatives. Our results indicated that four of these primer/probe sets accurately identified A. davidianus, distinguishing it from other tested caudata species using both extracted DNA samples and water samples from a tank housing an individual. This method enables the specific detection of A. davidianus genomic DNA at concentrations as low as 0.1 ng/mL within 50 min, without requiring extensive laboratory equipment. Applied in a field survey across four sites in Huangshan City, Anhui Province, where A. davidianus is known to be distributed, the method successfully detected the species at three of the four sites. The development of these primer/probe sets offers a practical tool for field surveying and monitoring, facilitating efforts in population recovery and resource conservation for A. davidianus.


Subject(s)
Urodela , Animals , Urodela/genetics , China , Endangered Species , DNA, Environmental/genetics , DNA, Environmental/analysis , DNA, Mitochondrial/genetics , Genome, Mitochondrial
20.
BMC Genomics ; 25(1): 456, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730418

ABSTRACT

In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.


Subject(s)
Codon Usage , Genome, Mitochondrial , Pleurotus , Pleurotus/genetics , Codon/genetics , Base Composition , Species Specificity , Selection, Genetic , Evolution, Molecular , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...