Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.625
Filter
1.
Arch Virol ; 169(6): 132, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822903

ABSTRACT

Orpheoviruses, cedratviruses, and pithoviruses are large DNA viruses that cluster together taxonomically within the order Pimascovirales of the phylum Nucleocytoviricota. However, they were not classified previously by the International Committee on Taxonomy of Viruses (ICTV). Here, we present a comprehensive analysis of the gene content, morphology, and phylogenomics of these viruses, providing data that underpinned the recent proposal to establish new taxa for their initial classification. The new taxonomy, which has now been ratified by the ICTV, includes the family Orpheoviridae and genus Alphaorpheovirus, the family Pithoviridae and genus Alphapithovirus, and the family Cedratviridae and genus Alphacedratvirus, aiming to formally catalogue the isolates covered in this study. Additionally, as per the newly adopted rules, we applied standardized binomial names for the virus species created to classify isolates with complete genome sequences available in public databases at the time of the proposal. The specific epithet of each virus species was chosen as a reference to the location where the exemplar virus was isolated.


Subject(s)
DNA Viruses , Genome, Viral , Phylogeny , Genome, Viral/genetics , DNA Viruses/genetics , DNA Viruses/classification , DNA, Viral/genetics
2.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829112

ABSTRACT

The construction of gene expression vectors is an important component of laboratory work in experimental biology. With technical advancements like Gibson Assembly, vector construction becomes relatively simple and efficient. However, when the full-length genome of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) cannot be easily amplified by a single polymerase chain reaction (PCR) from cDNA, or it is difficult to acquire a full-length gene expression vector by homologous recombination of multiple inserts in vitro, the current Gibson Assembly technique fails to achieve this goal. Consequently, we aimed to divide the PRRSV genome into several fragments and introduce appropriate restriction sites into the reverse primer for obtaining PCR-amplified fragments. After joining the previous DNA fragment into the vector by homologous recombination technology, the new vector acquired the restriction enzyme cleavage site. Thus, we can linearize the vector by using the newly added enzyme cleavage site and introduce the next DNA fragment downstream of the upstream DNA fragment. The introduced restriction enzyme cleavage site at the 3' end of the upstream DNA fragment will be eliminated, and a new cleavage site will be introduced into the 3' end of the downstream DNA fragment. In this way, we can join DNA fragments to the vector one by one. This method is applicable to successfully construct the PRRSV expression vector and is an effective method for assembling a large number of fragments into the expression vector.


Subject(s)
Cloning, Molecular , Genetic Vectors , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Genetic Vectors/genetics , Cloning, Molecular/methods , Animals , Polymerase Chain Reaction/methods , Swine , Genome, Viral/genetics
3.
J Med Virol ; 96(5): e29658, 2024 May.
Article in English | MEDLINE | ID: mdl-38727043

ABSTRACT

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.


Subject(s)
Echovirus Infections , Enterovirus B, Human , Genome, Viral , Genotype , Phylogeny , Recombination, Genetic , Humans , Infant, Newborn , Genome, Viral/genetics , Enterovirus B, Human/genetics , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Echovirus Infections/virology , Echovirus Infections/epidemiology , Genetic Variation , Whole Genome Sequencing , Evolution, Molecular , Italy/epidemiology
4.
J Med Virol ; 96(5): e29664, 2024 May.
Article in English | MEDLINE | ID: mdl-38727137

ABSTRACT

The causative agent of coronavirus disease 2019 (COVID-19), known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread accumulatively to 240 countries and continues to evolve. To gain a comprehensive understanding of the epidemiological characteristics of imported variants in China and their correlation with global circulating variants, genomic surveillance data from 11 139 imported COVID-19 cases submitted by Chinese provincial CDC laboratories between 2021 and 2022 were analyzed. Consensus sequences underwent rigorous quality checks, followed by amino acid mutations analysis using Nextclade. Sequences with satisfactory quality control status were classified according to the Pango nomenclature. The results showed that the dominant variants in imported cases reflected the global epidemic trend. An increase in the number of imported SARS-CoV-2 lineages monitored in China in the second half of 2022, and the circulating Omicron subvariants changed from the ancestral lineages of BA.5 and BA.2 into the lineages containing key amino acid mutations of spike protein. There was significant variation in the detection of Omicron subvariants among continents (χ2 = 321.968, p < 0.001) in the second half of 2022, with four lineages (BA.2.3.7, BA.2.2, BA.5.2.7, and XBB.1.2) identified through imported surveillance mainly prevalent respectively in Taiwan, China, Hong Kong SAR, China, Russian Federation, and Singapore. These findings revealed the alterations in circulating imported variants from 2021 to 2022 in China, reflecting the higher diversity of lineages in the second half of 2022, and revealed the predominant lineages of countries or regions that are in close contacts to China, providing new insights into the global prevalence of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , China/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/classification , Prevalence , Spike Glycoprotein, Coronavirus/genetics , Phylogeny , Mutation , Genome, Viral/genetics , Genetic Variation
5.
BMC Genom Data ; 25(1): 42, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711021

ABSTRACT

BACKGROUND: Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS: Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION: This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.


Subject(s)
Genome, Viral , Phylogeny , Whole Genome Sequencing , India/epidemiology , Genome, Viral/genetics , Selection, Genetic , Recombination, Genetic , Flexiviridae/genetics , Flexiviridae/isolation & purification , Plant Diseases/virology
6.
PeerJ ; 12: e17321, 2024.
Article in English | MEDLINE | ID: mdl-38708355

ABSTRACT

The Akoya pearl oyster (Pinctada fucata (Gould)) is the most important species for pearl cultivation in Japan. Mass mortality of 0-year-old juvenile oysters and anomalies in adults, known as summer atrophy, have been observed in major pearl farming areas during the season when seawater temperatures exceed about 20 °C since 2019. In this study, we identified a novel birnavirus as the pathogen of summer atrophy and named it Pinctada birnavirus (PiBV). PiBV was first presumed to be the causative agent when it was detected specifically and frequently in the infected oysters in a comparative metatranscriptomics of experimentally infected and healthy pearl oysters. Subsequently, the symptoms of summer atrophy were reproduced by infection tests using purified PiBV. Infection of juvenile oysters with PiBV resulted in an increase in the PiBV genome followed by the atrophy of soft body and subsequent mortality. Immunostaining with a mouse antiserum against a recombinant PiBV protein showed that the virus antigen was localized mainly in the epithelial cells on the outer surface of the mantle. Although the phylogenetic analysis using maximum likelihood method placed PiBV at the root of the genus Entomobirnavirus, the identity of the bi-segmented, genomic RNA to that of known birnaviruses at the full-length amino acid level was low, suggesting that PiBV forms a new genus. The discovery of PiBV will be the basis for research to control this emerging disease.


Subject(s)
Birnaviridae , Pinctada , Animals , Pinctada/virology , Pinctada/genetics , Birnaviridae/genetics , Birnaviridae/isolation & purification , Phylogeny , Japan , Seasons , Genome, Viral/genetics , Atrophy/virology
7.
Arch Virol ; 169(6): 124, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753064

ABSTRACT

Allamanda cathartica is an ornamental medicinal plant that grows widely in the tropics. In the present study, two novel viruses, Allamanda chlorotic virus A (AlCVA) and Allamanda chlorotic virus B (AlCVB), were identified in an A. cathartica plant with interveinal chlorosis by ribosomal RNA-depleted total-RNA sequencing. Phylogenetic analysis and sequence comparisons confirmed that AlCVA and AlCVB belong to the families Closteroviridae and Betaflexiviridae, respectively. Long, flexuous, filamentous virus particles approximately 12 nm in diameter and 784-2291 nm in length were observed using transmission electron microscopy. A specific RT-PCR assay was used to demonstrate a consistent association of viral infection with symptoms.


Subject(s)
Closteroviridae , Flexiviridae , Phylogeny , Plant Diseases , RNA, Viral , Plant Diseases/virology , China , RNA, Viral/genetics , Closteroviridae/genetics , Closteroviridae/isolation & purification , Closteroviridae/classification , Flexiviridae/genetics , Flexiviridae/isolation & purification , Flexiviridae/classification , Genome, Viral/genetics , Plants, Medicinal/virology
8.
Arch Virol ; 169(6): 125, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753082

ABSTRACT

Bovine rhinitis B virus (BRBV) (genus Aphthovirus, family Picornaviridae) is a significant etiological agent of the bovine respiratory disease complex. Despite global reports on BRBV, genomic data for Japanese strains are not available. In this study, we aimed to obtain genomic information on BRBV in Japan and analyze its genetic characteristics. In nasal swabs from 66 cattle, BRBV was detected in 6 out of 10 symptomatic and 4 out of 56 asymptomatic cattle. Using metagenomic sequencing and Sanger sequencing, the nearly complete genome sequences of two Japanese BRBV strains, IBA/2211/2 and LAV/238002, from symptomatic and asymptomatic cattle, respectively, were determined. These viruses shared significant genetic similarity with known BRBV strains and exhibited unique mutations and recombination events, indicating dynamic evolution, influenced by regional environmental and biological factors. Notably, the leader gene was only approximately 80% and 90% identical in its nucleotide and amino acid sequence, respectively, to all of the BRBV strains with sequences in the GenBank database, indicating significant genetic divergence in the Japanese BRBV leader gene. These findings provide insights into the genetic makeup of Japanese BRBV strains, enriching our understanding of their genetic diversity and evolutionary mechanisms.


Subject(s)
Aphthovirus , Cattle Diseases , Genome, Viral , Phylogeny , Cattle , Japan/epidemiology , Animals , Genome, Viral/genetics , Cattle Diseases/virology , Aphthovirus/genetics , Aphthovirus/isolation & purification , Aphthovirus/classification , Genetic Variation , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Metagenomics
9.
Arch Virol ; 169(6): 123, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753216

ABSTRACT

Chinese bayberry is a fruit that is appreciated for its taste. A novel totivirus associated with rolling, disfiguring, chlorotic and vein-clearing symptoms on the leaf apices of Chinese bayberry was identified by transcriptome sequencing and reverse transcription PCR (RT-PCR). The complete genome of the virus was determined to be 4959 nucleotides long, and it contains two open reading frames (ORFs). Its genomic organization is similar to that of previously reported totiviruses. ORF1 encodes a putative coat protein (CP) of 765 aa, and ORF2 encodes an RNA-dependent RNA polymerase (RdRp) of 815 aa. These two putative proteins share 55.1% and 62.6%, amino acid sequence identity, respectively, with the corresponding proteins of Panax notoginseng virus A, respectively. According to the demarcation criteria for totivirus species established by the International Committee on Taxonomy of Viruses (ICTV), the new virus should be considered a member of a new species in the genus totivirus, family Orthototiviridae, which we have tentatively named ''Myrica rubra-associated totivirus'' (MRaTV).


Subject(s)
Genome, Viral , Myrica , Open Reading Frames , Phylogeny , Plant Diseases , Plant Leaves , Totivirus , Whole Genome Sequencing , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Myrica/virology , Myrica/genetics , Totivirus/genetics , Totivirus/isolation & purification , Totivirus/classification , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics
10.
Arch Virol ; 169(6): 120, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753261

ABSTRACT

Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.


Subject(s)
Bird Diseases , Circoviridae Infections , Genome, Viral , Gyrovirus , Phylogeny , Animals , Arizona , Genome, Viral/genetics , Gyrovirus/genetics , Gyrovirus/classification , Gyrovirus/isolation & purification , Bird Diseases/virology , Circoviridae Infections/virology , Circoviridae Infections/veterinary , Anseriformes/virology , Ducks/virology , DNA, Viral/genetics
11.
BMC Microbiol ; 24(1): 159, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724926

ABSTRACT

The Hyphomicrobiales bacterial order (previously Rhizobiales) exhibits a wide range of lifestyle characteristics, including free-living, plant-association, nitrogen-fixing, and association with animals (Bartonella and Brucella). This study explores the diversity and evolutionary strategies of bacteriophages within the Hyphomicrobiales order, comparing animal-associated (AAB) with non-animal-associated bacteria (NAAB). We curated 560 high-quality complete genomes of 58 genera from this order and used the PHASTER server for prophage annotation and classification. For 19 genera with representative genomes, we curated 96 genomes and used the Defense-Finder server to summarize the type of anti-phage systems (APS) found in this order. We analyzed the genetic repertoire and length distributions of prophages, estimating evolutionary rates and comparing intact, questionable, and incomplete prophages in both groups. Analyses of best-fit parameters and bootstrap sensitivity were used to understand the evolutionary processes driving prophage gene content. A total of 1860 prophages distributed in Hyphomicrobiales were found, 695 in AAB and 1165 in the NAAB genera. The results revealed a similar number of prophages per genome in AAB and NAAB and a similar length distribution, suggesting shared mechanisms of genetic acquisition of prophage genes. Changes in the frequency of specific gene classes were observed between incomplete and intact prophages, indicating preferential loss or enrichment in both groups. The analysis of best-fit parameters and bootstrap sensitivity tests indicated a higher selection coefficient, induction rate, and turnover in NAAB genomes. We found 68 types of APS in Hyphomicrobiales; restriction modification (RM) and abortive infection (Abi) were the most frequent APS found for all Hyphomicrobiales, and within the AAB group. This classification of APS showed that NAAB genomes have a greater diversity of defense systems compared to AAB, which could be related to the higher rates of prophage induction and turnover in the latter group. Our study provides insights into the distributions of both prophages and APS in Hyphomicrobiales genomes, demonstrating that NAAB carry more defense systems against phages, while AAB show increased prophage stability and an increased number of incomplete prophages. These results suggest a greater role for domesticated prophages within animal-associated bacteria in Hyphomicrobiales.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Prophages , Prophages/genetics , Animals , Genome, Bacterial/genetics , Phylogeny , Genome, Viral/genetics , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Genetic Variation
12.
Nat Commun ; 15(1): 4089, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744831

ABSTRACT

Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.


Subject(s)
Bacteriophages , Metagenome , Metagenomics , Oceans and Seas , Seawater , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Seawater/virology , Seawater/microbiology , Metagenome/genetics , Genome, Viral/genetics , Phylogeny , Prochlorococcus/virology , Prochlorococcus/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/virology , Bacteria/classification , Bacteria/isolation & purification
13.
Arch Virol ; 169(5): 115, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709425

ABSTRACT

Porcine circoviruses (PCVs) are a significant cause of concern for swine health, with four genotypes currently recognized. Two of these, PCV3 and PCV4, have been detected in pigs across all age groups, in both healthy and diseased animals. These viruses have been associated with various clinical manifestations, including porcine dermatitis and nephropathy syndrome (PDNS) and respiratory and enteric signs. In this study, we detected PCV3 and PCV4 in central China between January 2022 and February 2023. We tested fecal swabs and tissue samples from growing-finishing and suckling pigs with or without respiratory and systemic manifestations and found the prevalence of PCV3 to be 15.15% (15/99) and that of PCV3/PCV4 coinfection to be 4.04% (4/99). This relatively low prevalence might be attributed to the fact that most of the clinical samples were collected from pigs exhibiting respiratory signs, with only a few samples having been obtained from pigs with diarrhea. In some cases, PCV2 was also detected, and the coinfection rates of PCV2/3, PCV2/4, and PCV2/3/4 were 6.06% (6/99), 5.05% (5/99), and 3.03% (3/99), respectively. The complete genomic sequences of four PCV3 and two PCV4 isolates were determined. All four of the PCV3 isolates were of subtype PCV3b, and the two PCV4 isolates were of subtype PCV4b. Two mutations (A24V and R27K) were found in antibody recognition domains of PCV3, suggesting that they might be associated with immune escape. This study provides valuable insights into the molecular epidemiology and evolution of PCV3 and PCV4 that will be useful in future investigations of genotyping, immunogenicity, and immune evasion strategies.


Subject(s)
Circoviridae Infections , Circovirus , Genotype , Phylogeny , Swine Diseases , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Animals , Swine , China/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/epidemiology , Coinfection/virology , Coinfection/veterinary , Coinfection/epidemiology , Genome, Viral/genetics , Feces/virology
14.
Virol J ; 21(1): 121, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816844

ABSTRACT

BACKGROUND: During the pandemic, whole genome sequencing was critical to characterize SARS-CoV-2 for surveillance, clinical and therapeutical purposes. However, low viral loads in specimens often led to suboptimal sequencing, making lineage assignment and phylogenetic analysis difficult. We propose an alternative approach to sequencing these specimens that involves sequencing in triplicate and concatenation of the reads obtained using bioinformatics. This proposal is based on the hypothesis that the uncovered regions in each replicate differ and that concatenation would compensate for these gaps and recover a larger percentage of the sequenced genome. RESULTS: Whole genome sequencing was performed in triplicate on 30 samples with Ct > 32 and the benefit of replicate read concatenation was assessed. After concatenation: i) 28% of samples reached the standard quality coverage threshold (> 90% genome covered > 30x); ii) 39% of samples did not reach the coverage quality thresholds but coverage improved by more than 40%; and iii) SARS-CoV-2 lineage assignment was possible in 68.7% of samples where it had been impaired. CONCLUSIONS: Concatenation of reads from replicate sequencing reactions provides a simple way to access hidden information in the large proportion of SARS-CoV-2-positive specimens eliminated from analysis in standard sequencing schemes. This approach will enhance our potential to rule out involvement in outbreaks, to characterize reinfections and to identify lineages of concern for surveillance or therapeutical purposes.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2 , Viral Load , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Viral Load/methods , Genome, Viral/genetics , Whole Genome Sequencing/methods , Computational Biology/methods , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods
15.
Methods Mol Biol ; 2802: 427-453, 2024.
Article in English | MEDLINE | ID: mdl-38819567

ABSTRACT

Bacterial viruses (bacteriophages or phages) are the most abundant and diverse biological entities on Earth. There is a renewed worldwide interest in phage-centered research motivated by their enormous potential as antimicrobials to cope with multidrug-resistant pathogens. An ever-growing number of complete phage genomes are becoming available, derived either from newly isolated phages (cultivated phages) or recovered from metagenomic sequencing data (uncultivated phages). Robust comparative analysis is crucial for a comprehensive understanding of genotypic variations of phages and their related evolutionary processes, and to investigate the interaction mechanisms between phages and their hosts. In this chapter, we present a protocol for phage comparative genomics employing tools selected out of the many currently available, focusing on complete genomes of phages classified in the class Caudoviricetes. This protocol provides accurate identification of similarities, differences, and patterns among new and previously known complete phage genomes as well as phage clustering and taxonomic classification.


Subject(s)
Bacteriophages , Genome, Viral , Genomics , Genome, Viral/genetics , Bacteriophages/genetics , Bacteriophages/classification , Genomics/methods , Phylogeny , Computational Biology/methods , Metagenomics/methods
16.
Nat Commun ; 15(1): 4545, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806450

ABSTRACT

Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.


Subject(s)
COVID-19 , Genome, Viral , Mutation , SARS-CoV-2 , Wastewater , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Wastewater/virology , COVID-19/virology , COVID-19/epidemiology , COVID-19/diagnosis , Humans , Genome, Viral/genetics , Computational Biology/methods
17.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38723628

ABSTRACT

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Subject(s)
Hepatitis B virus , Reverse Transcription , Humans , Genome, Viral/genetics , Hepatitis B virus/genetics , Mutation , Ribosomes/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Cell Line
18.
Sci Rep ; 14(1): 10660, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724525

ABSTRACT

Influenza Like Illness (ILI) and Severe Acute Respiratory Infection (SARI) cases are more prone to Influenza and SARS-CoV-2 infection. Accordingly, we genetically characterized Influenza and SARS-CoV-2 in 633 ILI and SARI cases by rRT-PCR and WGS. ILI and SARI cases showed H1N1pdm09 prevalence of 20.9% and 23.2% respectively. 135 (21.3%) H1N1pdm09 and 23 (3.6%) H3N2 and 5 coinfection (0.78%) of H1N1pdm09 and SARS-CoV-2 were detected. Phylogenetic analysis revealed H1N1pdm09 resemblance to clade 6B.1A.5a.2 and their genetic relatedness to InfA/Perth/34/2020, InfA/Victoria/88/2020 and InfA/Victoria/2570/2019. Pan 24 HA and 26 NA nonsynonymous mutations and novel HA (G6D, Y7F, Y78H, P212L, G339R, T508K and S523T) and NA (S229A) mutations were observed. S74R, N129D, N156K, S162N, K163Q and S164T alter HA Cb and Sa antibody recognizing site. Similarly, M19T, V13T substitution and multiple mutations in transmembrane and NA head domain drive antigenic drift. SARS-CoV-2 strains genetically characterized to Omicron BA.2.75 lineage containing thirty nonsynonymous spike mutations exhibited enhanced virulence and transmission rates. Coinfection although detected very minimal, the mutational changes in H1N1pdm09 and SARS-CoV-2 virus infected individuals could alter antibody receptor binding sites, allowing the viruses to escape immune response resulting in better adaptability and transmission. Thus continuous genomic surveillance is required to tackle any future outbreak.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Phylogeny , SARS-CoV-2 , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , Influenza, Human/virology , Influenza, Human/epidemiology , COVID-19/virology , COVID-19/epidemiology , Adult , Middle Aged , Male , Female , Adolescent , Young Adult , Genome, Viral/genetics , Aged , Coinfection/virology , Coinfection/epidemiology , Child , Child, Preschool , Severe Acute Respiratory Syndrome/virology , Severe Acute Respiratory Syndrome/epidemiology , Mutation , Infant
19.
Virus Genes ; 60(3): 320-324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38722491

ABSTRACT

H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein. The genetic evolution analysis revealed that the NA gene of the isolate originated from North America and exhibited the highest nucleotide identity (99.29%) with a virus recovered from wild bird samples in North America, specifically A/bufflehead/California/4935/2012(H11N2). Additionally, while the HA and PB1 genes belonged to the Eurasian lineage, they displayed frequent genetic interactions with the North American lineage. The remaining genes showed close genetic relationships with Eurasian viruses. The H6N2 isolate possessed a complex genome, indicating it is a multi-gene recombinant virus with genetic material from both Eurasian and North American lineages.


Subject(s)
Animals, Wild , Influenza A virus , Influenza in Birds , Phylogeny , Reassortant Viruses , Animals , China , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/classification , Influenza in Birds/virology , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Birds/virology , Evolution, Molecular , Genome, Viral/genetics , Neuraminidase/genetics , Viral Proteins/genetics
20.
J Med Virol ; 96(6): e29708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804179

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , Retrospective Studies , Male , Female , Spike Glycoprotein, Coronavirus/genetics , Middle Aged , Longitudinal Studies , Genome, Viral/genetics , Aged , Whole Genome Sequencing , Evolution, Molecular , Hospitalization , Nasopharynx/virology , Bayes Theorem , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...