Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 597
Filter
1.
mBio ; 15(5): e0069024, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717196

ABSTRACT

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Subject(s)
Cytochromes , Ferric Compounds , Geobacter , Oxidation-Reduction , Electron Transport , Geobacter/genetics , Geobacter/metabolism , Cytochromes/metabolism , Cytochromes/genetics , Ferric Compounds/metabolism , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38749675

ABSTRACT

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Subject(s)
Clostridium , Fermentation , Fumarates , Geobacter , Geobacter/metabolism , Geobacter/growth & development , Fumarates/metabolism , Clostridium/metabolism , Clostridium/growth & development , Electron Transport , Glycerol/metabolism , Coculture Techniques , Propylene Glycols/metabolism
3.
Chemosphere ; 359: 142323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735496

ABSTRACT

Anoxygenic phototrophic bacteria is a promising catalyst for constructing bioanode, but the mixed culture with non-photosynthetic bacteria is inevitable in an open environment application. In this study, a Rhodopseudomonas-dominated mixed culture with other electrogenic bacteria was investigated for deciphering the differentiated performance on electricity generation in light or dark conditions. The kinetic study showed that reaction rate of OM degradation was 9 times higher than that under dark condition, demonstrating that OM degradation was enhanced by photosynthesis. However, CE under light condition was lower. It indicated that part of OM was used to provide hydrogen donors for the fixation of CO2 or hydrogen production in photosynthesis, decreasing the OM used for electron transfer. In addition, higher COD concentration was not conducive to electricity generation. EIS analysis demonstrated that higher OM concentration would increase Rct to hinder the transfer of electrons from bacteria to the electrode. Indirect and direct electron transfer were revealed by CV analysis for light and dark biofilm, respectively, and nanowires were also observed by SEM graphs, further revealing the differentiate performance. Microbial community analysis demonstrated Rhodopseudomonas was dominated in light and decreased in dark, but Geobacter increased apparently from light to dark, resulting in different power generation performance. The findings revealed the differentiated performance on electricity generation and pollutant removal by mixed culture of phototrophic bacteria in light or dark, which will improve the power generation from photo-microbial fuel cells.


Subject(s)
Bioelectric Energy Sources , Electricity , Rhodopseudomonas , Rhodopseudomonas/metabolism , Photosynthesis , Light , Electrodes , Biofilms/growth & development , Biological Oxygen Demand Analysis , Electron Transport , Geobacter/metabolism , Geobacter/physiology
4.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659001

ABSTRACT

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Subject(s)
Cerium , Ferrosoferric Oxide , Geobacter , Platinum , Cerium/chemistry , Cerium/metabolism , Geobacter/metabolism , Catalysis , Ferrosoferric Oxide/chemistry , Platinum/chemistry , Oxidation-Reduction , Ferric Compounds/chemistry , Ferric Compounds/metabolism
5.
Ecotoxicol Environ Saf ; 277: 116373, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38653023

ABSTRACT

Cr (VI) is extremely harmful to both the environment and human health, and it can linger in the environment for a very long period. In this research, the Leersia hexandra Swartz constructed wetland-microbial fuel cell (CW-MFC) system was constructed to purify Cr (VI) wastewater. By comparing with the constructed wetland (CW) system, the system electricity generation, pollutants removal, Cr enrichment, and morphological transformation of the system were discussed. The results demonstrated that the L. hexandra CW-MFC system promoted removal of pollutants and production of electricity of the system. The maximum voltage of the system was 499 mV, the COD and Cr (VI) removal efficiency was 93.73% and 97.00%. At the same time, it enhanced the substrate and L. hexandra ability to absorb Cr and change it morphologically transformation. Additionally, the results of XPS and XANES showed that the majority of the Cr in the L. hexandra and substrate was present as Cr (III). In the L. hexandra CW-MFC system, Geobacter also functioned as the primary metal catabolic reducing and electrogenic bacteria. As a result, L. hexandra CW-MFC system possesses the added benefit of removing Cr (VI) while producing energy compared to the traditional CW system.


Subject(s)
Bioelectric Energy Sources , Chromium , Wastewater , Water Pollutants, Chemical , Wetlands , Wastewater/chemistry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Hydrocharitaceae , Geobacter/metabolism , Electricity
6.
Chemosphere ; 358: 142084, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642772

ABSTRACT

The widely-used surfactant Nonylphenol Ethoxylate (NPEO) produces endocrine-disrupting compounds during biodegradation, with these byproducts being more harmful than untreated NPEO. This study investigates the effectiveness of a Fluidized Bed Reactor (FBR) in reducing the production of 4-Nonylphenol (4-NP) during the biodegradation of NPEO. Two identical FBR filled with sand were used to assess the NPEO degradation and to enhance the microbial consortia capable of breaking down the complex byproducts, ethanol and fumarate were introduced as co-substrates. Our findings demonstrate the significant potential of the FBR, especially when coupled with fumarate, for enhancing the surfactant degradation. It outperforms the efficiency achieved with ethanol as the primary electron donor, albeit with a higher rate of byproduct production. Microbial community taxonomy and metabolic prediction revealed the high abundance of Geobacter (1.51-31.71%) and Methanobacterium (1.08-13.81%) in non-conductive sand. This may hint a new metabolic interaction and expand our understanding of Direct Interspecies Electron Transfer (DIET) in bioreactors applied to micropollutants degradation. Such an intricate relationship between facultative and anaerobes working together to simultaneously biodegrade the ethoxy and alkyl chains presents a new perspective on NPEO degradation and can potentially be extended to other micropollutants.


Subject(s)
Biodegradation, Environmental , Bioreactors , Ethylene Glycols , Bioreactors/microbiology , Ethylene Glycols/metabolism , Ethylene Glycols/chemistry , Phenols/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Endocrine Disruptors/metabolism , Microbial Consortia , Geobacter/metabolism
7.
Chemosphere ; 358: 142174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685325

ABSTRACT

Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.


Subject(s)
Cytochromes , Fimbriae, Bacterial , Geobacter , NAD , Oxidation-Reduction , Silver , Transcriptome , Geobacter/metabolism , Geobacter/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Cytochromes/metabolism , Cytochromes/genetics , NAD/metabolism , Metal Nanoparticles/chemistry
8.
Nat Commun ; 15(1): 2434, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509081

ABSTRACT

Extracellular electron transfer (EET) via microbial nanowires drives globally-important environmental processes and biotechnological applications for bioenergy, bioremediation, and bioelectronics. Due to highly-redundant and complex EET pathways, it is unclear how microbes wire electrons rapidly (>106 s-1) from the inner-membrane through outer-surface nanowires directly to an external environment despite a crowded periplasm and slow (<105 s-1) electron diffusion among periplasmic cytochromes. Here, we show that Geobacter sulfurreducens periplasmic cytochromes PpcABCDE inject electrons directly into OmcS nanowires by binding transiently with differing efficiencies, with the least-abundant cytochrome (PpcC) showing the highest efficiency. Remarkably, this defined nanowire-charging pathway is evolutionarily conserved in phylogenetically-diverse bacteria capable of EET. OmcS heme reduction potentials are within 200 mV of each other, with a midpoint 82 mV-higher than reported previously. This could explain efficient EET over micrometres at ultrafast (<200 fs) rates with negligible energy loss. Engineering this minimal nanowire-charging pathway may yield microbial chassis with improved performance.


Subject(s)
Geobacter , Nanowires , Oxidation-Reduction , Periplasm/metabolism , Electrons , Electron Transport , Cytochromes/metabolism , Geobacter/metabolism
9.
Biotechnol Bioeng ; 121(6): 2002-2012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555482

ABSTRACT

The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.


Subject(s)
Cytochromes , Geobacter , Shewanella , Shewanella/genetics , Shewanella/metabolism , Shewanella/enzymology , Geobacter/genetics , Geobacter/metabolism , Cytochromes/metabolism , Cytochromes/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Electron Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Appl Environ Microbiol ; 90(3): e0172923, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38411083

ABSTRACT

Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.


Subject(s)
Antimony , Geobacter , Antimony/pharmacology , Geobacter/genetics , Geobacter/metabolism , Dimethyl Sulfoxide/metabolism , Proteomics , Bacteria/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidation-Reduction , Respiration
11.
Bioresour Technol ; 395: 130350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253242

ABSTRACT

To modulate the electron transfer behavior of hydrogen-producing bacteria (HPB) for enhanced hydrogen production, Geobacter metallireducens culture (GM) was introduced as an electron syntrophy partner and redox balance regulator in dark fermentation systems with hydrogen-producing sludge (HPS) as inoculum. The highest hydrogen yield was 306.5 mL/g-COD at the GM/HPS volatile solids ratio of 0.08, which was 65.2 % higher than the HPS group. The multi-layered extracellular polymeric substances (EPS) of GM played a significant role in promoting hydrogen production, with c-type cytochromes probably serving as electroactive functional components. The addition of GM significantly improved the NADH/NAD+ ratio, electron transport system activity, hydrogenase activity, and electrochemical properties of HPS. Furthermore, the microbial community structure and metabolic functions were optimized due to the potential syntrophic interaction between Clostridium sensu stricto (dominant HPB) and Geobacter, thus promoting hydrogen production. This study provided novel insights into the interactions among exoelectrogens, electroactive EPS, and mixed HPB.


Subject(s)
Extracellular Polymeric Substance Matrix , Geobacter , Extracellular Polymeric Substance Matrix/metabolism , Geobacter/metabolism , Fermentation , Hydrogen/metabolism , Electrons , Electron Transport , Bacteria/metabolism
12.
PLoS One ; 18(10): e0293359, 2023.
Article in English | MEDLINE | ID: mdl-37878651

ABSTRACT

Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgsu1771 biofilm grown on the glass surface exhibited 467 differentially expressed (DE) genes (167 upregulated and 300 downregulated) versus the wild-type biofilm. In contrast, the Δgsu1771 biofilm grown on the graphite electrode exhibited 119 DE genes (79 upregulated and 40 downregulated) versus the wild-type biofilm. Among these DE genes, 67 were also differentially expressed in the Δgsu1771 biofilm grown on glass (56 with the same regulation and 11 exhibiting counter-regulation). Among the upregulated genes in the Δgsu1771 biofilms, we identified potential target genes involved in exopolysaccharide synthesis (gsu1961-63, gsu1959, gsu1972-73, gsu1976-77). RT-qPCR analyses were then conducted to confirm the differential expression of a selection of genes of interest. DNA-protein binding assays demonstrated the direct binding of the GSU1771 regulator to the promoter region of pgcA, pulF, relA, and gsu3356. Furthermore, heme-staining and western blotting revealed an increase in c-type cytochromes including OmcS and OmcZ in Δgsu1771 biofilms. Collectively, our findings demonstrated that GSU1771 is a global regulator that controls extracellular electron transfer and exopolysaccharide synthesis in G. sulfurreducens, which is crucial for electroconductive biofilm development.


Subject(s)
Geobacter , Graphite , Graphite/metabolism , Electron Transport/genetics , Biofilms , Cytochromes/metabolism , Geobacter/metabolism , Electrodes , Oxidation-Reduction
13.
Protein Sci ; 32(11): e4796, 2023 11.
Article in English | MEDLINE | ID: mdl-37779214

ABSTRACT

Electroactive bacteria combine the oxidation of carbon substrates with an extracellular electron transfer (EET) process that discharges electrons to an electron acceptor outside the cell. This process involves electron transfer through consecutive redox proteins that efficiently connect the inner membrane to the cell exterior. In this study, we isolated and characterized the quinone-interacting membrane cytochrome c ImcH from Geobacter sulfurreducens, which is involved in the EET process to high redox potential acceptors. Spectroscopic and electrochemical studies show that ImcH hemes have low midpoint redox potentials, ranging from -150 to -358 mV, and connect the oxidation of the quinol-pool to EET, transferring electrons to the highly abundant periplasmic cytochrome PpcA with higher affinity than to its homologues. Despite the larger number of hemes and transmembrane helices, the ImcH structural model has similarities with the NapC/NirT/NrfH superfamily, namely the presence of a quinone-binding site on the P-side of the membrane. In addition, the first heme, likely involved on the quinol oxidation, has apparently an unusual His/Gln coordination. Our work suggests that ImcH is electroneutral and transfers electrons and protons to the same side of the membrane, contributing to the maintenance of a proton motive force and playing a central role in recycling the menaquinone pool.


Subject(s)
Electrons , Geobacter , Hydroquinones/metabolism , Geobacter/metabolism , Bacterial Proteins/chemistry , Electron Transport , Oxidation-Reduction , Cytochromes c/metabolism , Quinones/metabolism
14.
Environ Sci Pollut Res Int ; 30(49): 108176-108187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37749470

ABSTRACT

Electroactive biofilms (EABs) have aroused wide concern in waste treatment due to their unique capability of extracellular electron transfer with solid materials. The combined effect of different operating conditions on the formation, microbial architecture, composition, and metabolic activity of EABs is still unknown. In this study, the impact of three different factors (anode electrode, substrate concentration, and resistance) on the acclimation and performance of EABs was investigated. The results showed that the shortest start-up time of 127.3 h and highest power density of 0.84 W m-2 were obtained with carbon brush as electrode, low concentration of substrate (1.0 g L-1), and 1000 Ω external resistance (denoted as N1). The EABs under N1 condition also represented strongest redox capacity, lowest internal resistance, and close arrangement of bacteria. Moreover, the EABs cultured under different conditions both showed similar results, with direct electron transfer (DET) dominated from EABs to anode. Microbial community compositions indicated that EABs under N1 condition have lowest diversity and highest abundance of electroactive bacteria (46.68%). Higher substrate concentration (3.0 g L-1) promoted the proliferation of some other bacteria without electroactivity, which was adverse to EABs. The metabolic analysis showed the difference of genes related to electron transfer (cytochrome C and pili) and biofilm formation (xap) of EABs under different conditions, which further demonstrated the higher electroactivity of EABs under N1. These results provided a comprehensive understanding of the effect of different operating conditions on EABs including biofilm formation and electrochemical activity.


Subject(s)
Bioelectric Energy Sources , Geobacter , Geobacter/metabolism , Biofilms , Oxidation-Reduction , Electron Transport , Electrodes , Bacteria , Acclimatization , Bioelectric Energy Sources/microbiology
15.
Sci Total Environ ; 904: 166549, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37633395

ABSTRACT

Biochar was regarded as a promising accelerator for extracellular electron transfer (EET), while the mechanism of biochar facilitating electricity harvest in bioelectrochemical system (BES) was in debates. In this study, sawdust-based biochar with low conductivity but strong redox-based electron exchange capacity was added into BES with two forms, including a suspended form (S-BC) added in anode chamber and a fixed form closely wrapping up the anode (F-BC). Compared with the control group, S-BC and F-BC addition dramatically increased accumulated electricity output by 2.0 and 5.1 times. However, electrochemical analysis characterized the lowest electrochemical property on anode surface in F-BC modified group. A 2nd period conducted by separating F-BC modified group with "aged F-BC + new anode" group and "single aged anode" group demonstrated that F-BC contributed >95 % to the current generation of F-BC modified group, while the anode almost acted as a conductor to transfer the generated electrons to cathode. Microbial community analysis revealed that both heterotrophic and autotrophic exoelectrogens contributed to current generation. The presence of biochar upregulated functional genes encoding cytochrome-c and type IV pilus, thereby boosting electricity harvest efficiency. Interestingly, the heterotrophic exoelectrogens of Geobacter/Desulfovibrio tended to attach on fixed surfaces of both biochar and anode, and the autotrophic exelectrogen of Hydrogenophaga was selectively enriched on biochar surfaces whatever fixed or suspended form. Consequently, a syntrophic partnership between Geobacter/Desulfovibrio and Hydrogenophaga was potentially establishment on F-BC surface for highly-efficient electricity harvest. In this syntrophic EET model, biochar potentially acted as the redox-active mediator, which temporarily accepted electron released by Geobacter/Desulfovibrio via acetate oxidation, and then donated them to Hydrogenophaga attached on biochar surfaces for autotrophic EET. This was distinct from a regular EET conducted by heterotrophic exoelectrogens. These findings provided new insights to understand the mechanisms of biochar facilitating EET by syntrophic metabolism pathway.


Subject(s)
Bioelectric Energy Sources , Geobacter , Electrons , Electron Transport , Geobacter/metabolism , Electrodes
16.
Angew Chem Int Ed Engl ; 62(38): e202309005, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37525962

ABSTRACT

Electrobiocorrosion, the process in which microbes extract electrons from metallic iron (Fe0 ) through direct Fe0 -microbe electrical connections, is thought to contribute to the costly corrosion of iron-containing metals that impacts many industries. However, electrobiocorrosion mechanisms are poorly understood. We report here that electrically conductive pili (e-pili) and the conductive mineral magnetite play an important role in the electron transfer between Fe0 and Geobacter sulfurreducens, the first microbe in which electrobiocorrosion has been rigorously documented. Genetic modification to express poorly conductive pili substantially diminished corrosive pitting and rates of Fe0 -to-microbe electron flux. Magnetite reduced resistance to electron transfer, increasing corrosion currents and intensifying pitting. Studies with mutants suggested that the magnetite promoted electron transfer in a manner similar to the outer-surface c-type cytochrome OmcS. These findings, and the fact that magnetite is a common product of iron corrosion, suggest a potential positive feedback loop of magnetite produced during corrosion further accelerating electrobiocorrosion. The interactions of e-pili, cytochromes, and magnetite demonstrate mechanistic complexities of electrobiocorrosion, but also provide insights into detecting and possibly mitigating this economically damaging process.


Subject(s)
Ferrosoferric Oxide , Geobacter , Oxidation-Reduction , Electrons , Corrosion , Electron Transport , Cytochromes/metabolism , Iron , Geobacter/genetics , Geobacter/metabolism
17.
J Phys Chem B ; 127(32): 7148-7161, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37552847

ABSTRACT

Structural determinants of a 103-fold variation in electrical conductivity for helical homopolymers of tetra-, hexa-, and octa-heme cytochromes (named Omc- E, S, and Z, respectively) from Geobacter sulfurreducens are investigated with the Pathways model for electron tunneling, classical molecular dynamics, and hybrid quantum/classical molecular mechanics. Thermally averaged electronic couplings for through-space heme-to-heme electron transfer in the "nanowires" computed with density functional theory are ≤0.015 eV. Pathways analyses also indicate that couplings match within a factor of 5 for all "nanowires", but some alternative tunneling routes are found involving covalent protein backbone bonds (Omc- S and Z) or propionic acid-ligating His H-bonds on adjacent hemes (OmcZ). Reorganization energies computed from electrostatic vertical energy gaps or a version of the Marcus continuum expression parameterized on the total (donor + acceptor) solvent-accessible surface area typically agree within 20% and fall within the range 0.48-0.98 eV. Reaction free energies in all three "nanowires" are ≤|0.28| eV, even though Coulombic interactions primarily tune the site redox energies by 0.7-1.2 eV. Given the conserved energetic parameters, redox conductivity differs by < 103-fold among the cytochrome "nanowires". Redox currents do not exceed 3.0 × 10-3 pA at a physiologically relevant 0.1 V bias, with the slowest electron transfers being on a (µs) timescale much faster than typical (ms) enzymatic turnovers. Thus, the "nanowires" are proposed to be functionally robust to variations in structure that provide a habitat-customized protein interface. The 30 pA to 30 nA variation in conductivity previously reported from atomic force microscopy experiments is not intrinsic to the structures and/or does not result from the physiologically relevant redox conduction mechanism.


Subject(s)
Geobacter , Nanowires , Oxidation-Reduction , Cytochromes/metabolism , Electron Transport , Heme/chemistry , Geobacter/metabolism
18.
Water Res ; 242: 120279, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37451189

ABSTRACT

Research on electroactive microorganisms (EAM) often focuses either on their physiology and the underlying mechanisms of extracellular electron transfer or on their application in microbial electrochemical technologies (MET). Thermodynamic understanding of energy conversions related to growth and activity of EAM has received only a little attention. In this study, we aimed to prove the hypothesized restricted energy harvest of EAM by determining biomass yields by monitoring growth of acetate-fed biofilms presumably enriched in Geobacter, using optical coherence tomography, at three anode potentials and four acetate concentrations. Experiments were concurrently simulated using a refined thermodynamic model for EAM. Neither clear correlations were observed between biomass yield and anode potential nor acetate concentration, albeit the statistical significances are limited, mainly due to the observed experimental variances. The experimental biomass yield based on acetate consumption (YX/ac = 37 ± 9 mgCODbiomass gCODac-1) was higher than estimated by modeling, indicating limitations of existing growth models to predict yields of EAM. In contrast, the modeled biomass yield based on catabolic energy harvest was higher than the biomass yield from experimental data (YX/cat = 25.9 ± 6.8 mgCODbiomass kJ-1), supporting restricted energy harvest of EAM and indicating a role of not considered energy sinks. This calls for an adjusted growth model for EAM, including, e.g., the microbial electrochemical Peltier heat to improve the understanding and modeling of their energy metabolism. Furthermore, the reported biomass yields are important parameters to design strategies for influencing the interactions between EAM and other microorganisms and allowing more realistic feasibility assessments of MET.


Subject(s)
Bioelectric Energy Sources , Geobacter , Biomass , Electron Transport , Biofilms , Acetates/metabolism , Thermodynamics , Electrodes , Geobacter/metabolism
19.
mBio ; 14(4): e0036023, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37306514

ABSTRACT

Methanothrix is widely distributed in natural and artificial anoxic environments and plays a major role in global methane emissions. It is one of only two genera that can form methane from acetate dismutation and through participation in direct interspecies electron transfer (DIET) with exoelectrogens. Although Methanothrix is a significant member of many methanogenic communities, little is known about its physiology. In this study, transcriptomics helped to identify potential routes of electron transfer during DIET between Geobacter metallireducens and Methanothrix thermoacetophila. Additions of magnetite to cultures significantly enhanced growth by acetoclastic methanogenesis and by DIET, while granular activated carbon (GAC) amendments impaired growth. Transcriptomics suggested that the OmaF-OmbF-OmcF porin complex and the octaheme outer membrane c-type cytochrome encoded by Gmet_0930, were important for electron transport across the outer membrane of G. metallireducens during DIET with Mx. thermoacetophila. Clear differences in the metabolism of Mx. thermoacetophila when grown via DIET or acetate dismutation were not apparent. However, genes coding for proteins involved in carbon fixation, the sheath fiber protein MspA, and a surface-associated quinoprotein, SqpA, were highly expressed in all conditions. Expression of gas vesicle genes was significantly lower in DIET- than acetate-grown cells, possibly to facilitate better contact between membrane-associated redox proteins during DIET. These studies reveal potential electron transfer mechanisms utilized by both Geobacter and Methanothrix during DIET and provide important insights into the physiology of Methanothrix in anoxic environments. IMPORTANCE Methanothrix is a significant methane producer in a variety of methanogenic environments including soils and sediments as well as anaerobic digesters. Its abundance in these anoxic environments has mostly been attributed to its high affinity for acetate and its ability to grow by acetoclastic methanogenesis. However, Methanothrix species can also generate methane by directly accepting electrons from exoelectrogenic bacteria through direct interspecies electron transfer (DIET). Methane production through DIET is likely to further increase their contribution to methane production in natural and artificial environments. Therefore, acquiring a better understanding of DIET with Methanothrix will help shed light on ways to (i) minimize microbial methane production in natural terrestrial environments and (ii) maximize biogas formation by anaerobic digesters treating waste.


Subject(s)
Geobacter , Electron Transport , Geobacter/metabolism , Electrons , Methanosarcinaceae/metabolism , Methane/metabolism , Acetates/metabolism , Anaerobiosis
20.
Sci Total Environ ; 895: 165104, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37356761

ABSTRACT

Electroactive bacteria can display notable plasticity in their response to magnetic field (MF), which prompted bioelectrochemical system as promising candidates for magnetic sensor applications. In this study, we explored the sensing and stimulatory effect of MF on current generation by Geobacter sulfurreducens, and elucidated the related molecular mechanism at the transcriptomic level. MF treatment significantly enhanced electricity generation and overall energy efficiency of G. sulfurreducens by 50 % and 22 %, respectively. The response of current to MFs was instantaneous and reversible. Cyclic voltammetry analysis of the anode biofilm revealed that the redox couples changed from -0.31 to -0.39 V (vs. Ag/AgCl), suggesting that MFs could alter electron transfer related components. Differential gene expression analysis further verified this hypothesis, genes associated with electron transfer were upregulated in G. sulfurreducens under MF treatment relative to the control group, specifically, genes encoding periplasmic c-type cytochromes (ppcA and ppcD), outer membrane cytochrome (omcF, omcZ, omcB), pili (pilA-C, pilM, and pilV2), and ribosome. The enhanced bacterial extracellular electron transfer process was also linked to the overexpression of the NADH dehydrogenase I subunit, the ABC transporter, transcriptional regulation, and ATP synthase. Overall, our findings shed light on the molecular mechanism underlying the effects of magnetic field stimuli on EAB and provide a theoretical basis for its further application in magnetic sensors and other biological system.


Subject(s)
Electrons , Geobacter , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Electron Transport , Oxidation-Reduction , Bacteria/metabolism , Geobacter/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...