Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.830
Filter
1.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831142

ABSTRACT

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Subject(s)
Aquaculture , Bacteria , Denitrification , Microbiota , Nitrogen , Nitrous Oxide , Penaeidae , Ponds , Nitrogen/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Ponds/microbiology , Animals , Penaeidae/microbiology , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Geologic Sediments/microbiology , Oxidation-Reduction , Ammonium Compounds/metabolism
2.
Microbiologyopen ; 13(3): e13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825966

ABSTRACT

The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.


Subject(s)
Bacteria , Gastrointestinal Tract , Geologic Sediments , RNA, Ribosomal, 16S , Snails , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract/microbiology , Animals , Snails/microbiology , Germany , Denmark , Gastrointestinal Microbiome/genetics , Water Microbiology , Biodiversity , Estonia , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA
3.
Sci Rep ; 14(1): 12715, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830984

ABSTRACT

To assess the concentration characteristics and ecological risks of potential toxic elements (PTEs) in water and sediment, 17 water samples and 17 sediment samples were collected in the Xiyu River to analyze the content of Cr, Ni, As, Cu, Zn, Pb, Cd and Hg, and the environmental risks of PTEs was evaluated by single-factor pollution index, Nemerow comprehensive pollution index, potential ecological risk, and human health risk assessment. The results indicated that Hg in water and Pb, Cu, Cd in sediments exceeded the corresponding environmental quality standards. In the gold mining factories distribution river section (X8-X10), there was a significant increase in PTEs in water and sediments, indicating that the arbitrary discharge of tailings during gold mining flotation is the main cause of PTEs pollution. The increase in PTEs concentration at the end of the Xiyu River may be related to the increased sedimentation rate, caused by the slowing of the riverbed, and the active chemical reactions at the estuary. The single-factor pollution index and Nemerow pollution index indicated that the river water was severely polluted by Hg. Potential ecological risk index indicated that the risk of Hg in sediments was extremely high, the risk of Cd was high, and the risk of Pb and Cu was moderate. The human health risk assessment indicated that As in water at point X10 and Hg in water at point X9 may pose non-carcinogenic risk to children through ingestion, and As at X8-X10 and Cd at X14 may pose carcinogenic risk to adults through ingestion. The average HQingestion value of Pb in sediments was 1.96, indicating that the ingestion of the sediments may poses a non-carcinogenic risk to children, As in the sediments at X8-X10 and X15-X17 may pose non-carcinogenic risk to children through ingestion.


Subject(s)
Environmental Monitoring , Geologic Sediments , Gold , Mining , Rivers , Water Pollutants, Chemical , Geologic Sediments/analysis , Geologic Sediments/chemistry , China , Risk Assessment , Rivers/chemistry , Water Pollutants, Chemical/analysis , Humans , Environmental Monitoring/methods , Metals, Heavy/analysis , Metals, Heavy/toxicity
4.
PeerJ ; 12: e17412, 2024.
Article in English | MEDLINE | ID: mdl-38827283

ABSTRACT

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.


Subject(s)
Metagenomics , Archaea/genetics , Archaea/classification , Mexico , Bacteria/genetics , Bacteria/classification , Ecosystem , Microbiota/genetics , Metagenome , Geologic Sediments/microbiology
5.
Harmful Algae ; 135: 102630, 2024 May.
Article in English | MEDLINE | ID: mdl-38830708

ABSTRACT

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Subject(s)
Dinoflagellida , Fresh Water , Introduced Species , Phylogeny , Ships , Dinoflagellida/physiology , Dinoflagellida/genetics , Dinoflagellida/classification , Fresh Water/parasitology , China , Ecosystem , Geologic Sediments , Harmful Algal Bloom
6.
Geobiology ; 22(3): e12601, 2024.
Article in English | MEDLINE | ID: mdl-38725142

ABSTRACT

While stromatolites, and to a lesser extent thrombolites, have been extensively studied in order to unravel Precambrian (>539 Ma) biological evolution, studies of clastic-dominated microbially induced sedimentary structures (MISS) are relatively scarce. The lack of a consolidated record of clastic microbialites creates questions about how much (and what) information on depositional and taphonomic settings can be gleaned from these fossils. We used µCT scanning, a non-destructive X-ray-based 3D imaging method, to reconstruct morphologies of ancient MISS and mat textures in two previously described coastal Archaean samples from the ~3.48 Ga Dresser Formation, Pilbara, Western Australia. The aim of this study was to test the ability of µCT scanning to visualize and make 3D measurements that can be used to interpret the biotic-environmental interactions. Fossil MISS including mat laminae with carpet-like textures in one sample and mat rip-up chips in the second sample were investigated. Compiled δ13C and δ34S analyses of specimens from the Dresser Fm. are consistent with a taxonomically diverse community that could be capable of forming such MISS. 3D measurements of fossil microbial mat chips indicate significant biostabilization and suggest formation in flow velocities >25 cm s-1. Given the stratigraphic location of these chips in a low-flow lagoonal layer, we conclude that these chips formed due to tidal influence, as these assumed velocities are consistent with recent modeling of Archaean tides. The success of µCT scanning in documenting these microbialite features validates this technique both as a first step analysis for rare samples prior to the use of more destructive techniques and as a valuable tool for gaining insight into microbialite taphonomy.


Subject(s)
Fossils , Geologic Sediments , Imaging, Three-Dimensional , X-Ray Microtomography , Geologic Sediments/microbiology , Western Australia , Archaea
7.
Sci Total Environ ; 931: 172908, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697552

ABSTRACT

Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.


Subject(s)
Bacteria , Lakes , Nitrous Oxide , Nitrous Oxide/analysis , Lakes/chemistry , Bacteria/classification , Environmental Monitoring , Nitrogen Cycle , Air Pollutants/analysis , Geologic Sediments/chemistry
8.
Sci Total Environ ; 931: 172925, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697551

ABSTRACT

Subfossil pine and oak tree trunks were excavated during exploitation of the Budwity peatland in Northern Poland. Based on dendrochronological analysis, the woodland successions in peatland were reconstructed and correlated with moisture dynamics of the peatland ecosystem inferred from the high-resolution multi-proxy analysis of the peatland deposits. From the results of dendrochronological analysis and the 14C wiggle matching methods, four floating pine chronologies (5882-5595; 5250-5089; 3702-3546; and 2222-1979 mod. cal BP) and two oak chronologies (4932-4599 and 4042-3726 mod. cal BP) were developed. The organic sediments of the peatland (6 m thick) were deposited over approximately nine thousand years. The lower complex (525-315 cm) comprises minerogenic peat, while the upper complex (315.0-0.0 cm) is composed of ombrogenic peat. Subfossil tree trunks are distributed across various peat horizons, which suggests multiple stages of tree colonisation followed by subsequent dying-off phases. Multiproxy sediment analyses (lithological, geochemical and δ13C stable isotope, pollen, plant macrofossils, Cladocera, diatom, and Diptera analyses) indicate that the two earliest phases of pine colonisation (5882-5595 and 5250-5089 mod. cal BP) and the two stages of oak colonisation (4932-4599 and 4042-3726 mod. cal BP) were associated with periodic drying of the peatland. Conversely, tree dying-off phases occurred during periods of increased water levels in the peatland, coinciding with stages of increasing climate humidity during the Holocene. The two most recent phases of pine colonisation occurred during the ombrogenic stage of mire development. Remnants of the dead forest from these phases, marked by subfossil trunks still rooted in the ground, were preserved and exposed presently during peat exploitation, approximately 2.5 m below ground level. The identified phases of tree colonisation and subsequent dying-off phases show correlation with analogical phenomena observed in the other investigated European peatlands.


Subject(s)
Pinus , Quercus , Soil , Wetlands , Poland , Soil/chemistry , Environmental Monitoring , Hydrology , Ecosystem , Geologic Sediments/chemistry
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38709876

ABSTRACT

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Subject(s)
Bacteria , Kelp , Microbiota , Seawater , Kelp/microbiology , Seawater/microbiology , Seawater/virology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Seaweed/microbiology , Seaweed/virology , Geologic Sediments/microbiology , Geologic Sediments/virology , Prokaryotic Cells/virology , Prokaryotic Cells/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Virome
10.
PLoS One ; 19(5): e0301913, 2024.
Article in English | MEDLINE | ID: mdl-38787834

ABSTRACT

Small lentic water bodies are important emitters of methane (CH4) and carbon dioxide (CO2), but the processes regulating their dynamics and susceptibility to human-induced stressors are not fully understood. Bioturbation by chironomid larvae has been proposed as a potentially important factor controlling the dynamics of both gases in aquatic sediments. Chironomid abundance can be affected by the application of biocides for mosquito control, such as Bti (Bacillus thuringiensis var. israelensis). Previous research has attributed increases in CH4 and CO2 emissions after Bti application to reduced bioturbation by chironomids. In this study, we separately tested the effect of chironomid bioturbation and Bti addition on CH4 production and emission from natural sediments. In a set of 15 microcosms, we compared CH4 and CO2 emission and production rates with high and low densities of chironomid larvae at the bioturbating stage, and standard and five times (5x) standard Bti dose, with control sediments that contained neither chironomid larvae nor Bti. Regardless of larvae density, chironomid larvae did not affect CH4 nor CO2 emission and production of the sediment, although both rates were more variable in the treatments with organisms. 5xBti dosage, however, led to a more than three-fold increase in CH4 and CO2 production rates, likely stimulated by bioavailable dissolved carbon in the Bti excipient and priming effects. Our results suggest weak effects of bioturbating chironomid larvae on the CH4 and CO2 dynamics in aquatic ecosystems. Furthermore, our results point out towards potential functional implications of Bti for carbon cycling beyond those mediated by changes in the macroinvertebrate community.


Subject(s)
Carbon Dioxide , Chironomidae , Fresh Water , Geologic Sediments , Larva , Methane , Animals , Chironomidae/metabolism , Chironomidae/drug effects , Chironomidae/growth & development , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Larva/drug effects , Larva/metabolism , Methane/metabolism , Geologic Sediments/chemistry , Bacillus thuringiensis/metabolism , Disinfectants/pharmacology , Mosquito Control/methods , Culicidae/drug effects , Culicidae/metabolism
11.
PLoS One ; 19(5): e0304061, 2024.
Article in English | MEDLINE | ID: mdl-38787843

ABSTRACT

Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.


Subject(s)
Bathing Beaches , Escherichia coli , Escherichia coli/isolation & purification , Water Microbiology , Sand/microbiology , Geologic Sediments/microbiology , South Carolina , Seawater/microbiology
12.
Sci Rep ; 14(1): 10585, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719868

ABSTRACT

Here, a comprehensive study was designed to estimate the human risk assessment attributed to exposure of polycyclic aromatic hydrocarbons (PAHs)in sediment and fish in most polluted shore area in north of Persian Gulf. To this end, a total of 20 sediment and inhabitual Fish, as one of most commercial fish, samples were randomly collected from 20 different stations along Bushehr Province coastline. The 16 different components of PAHs were extracted from sediment and edible parts of inhabitual fish and measured with high-performance liquid chromatography (HPLC) and gas chromatography (GC), respectively. In addition, dietary daily intake (DDI) values of PAHs via ingestion Indian halibut and the incremental lifetime cancer risk (ILCR) attributed to human exposure to sediments PAHs via (a) inhalation, (b) ingestion, and (c) dermal contact for two groups of ages: children (1-11 years) and adults (18-70 years) were estimated. The results indicated that all individual PAHs except for Benzo(b)flouranthene (BbF) and Benzo(ghi) perylene (BgP) were detected in different sediment sample throughout the study area with average concentration between 2.275 ± 4.993 mg.kg-1 dw. Furthermore, Naphthalene (Nap) with highest average concentration of 3.906 ± 3.039 mg.kg-1 dw was measured at the Indian halibut. In addition, the human risk analysis indicated that excess cancer risk (ECR) attributed to PAHs in sediment and fish in Asaluyeh with high industrial activities on oil and derivatives were higher the value recommended by USEPA (10-6). Therefore, a comprehensive analysis on spatial distribution and human risk assessment of PAHs in sediment and fish can improve the awareness on environmental threat in order to aid authorities and decision maker to find a sustainable solution.


Subject(s)
Fishes , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Geologic Sediments/analysis , Geologic Sediments/chemistry , Indian Ocean , Animals , Risk Assessment , Adult , Water Pollutants, Chemical/analysis , Child , Adolescent , Middle Aged , Young Adult , Child, Preschool , Aged , Infant , Environmental Monitoring
13.
Sci Data ; 11(1): 456, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710672

ABSTRACT

We present metagenomes of 16 samples of water and sediment from two lakes, collected from eutrophic and non-eutrophic areas, including pooled samples enriched with phosphate and nitrate. Additionally, we assembled 167 bacterial metagenome-assembled genomes (MAGs). These MAGs were de-replicated into 83 unique genomes representing different species found in the lakes. All the MAGs exhibited >70% completeness and <10% contamination, with 79 MAGs being classified as 'nearly complete' (completeness >90%), while 54 falling within 80-90% range and 34 between 75-80% complete. The most abundant MAGs identified across all samples were Proteobacteria (n = 80), Firmicutes_A (n = 35), Firmicutes (n = 13), and Bacteriodota (n = 22). Other groups included Desulfobacteria_I (n = 2), Verrucomicrobiota (n = 4), Campylobacterota (n = 4) and Actinobacteriota (n = 6). Importantly, phylogenomic analysis identified that approximately 50.3% of the MAGs could not be classified to known species, suggesting the presence of potentially new and unknown bacteria in these lakes, warranting further in-depth investigation. This study provides valuable new dataset on the diverse and often unique microbial communities living in polluted lakes, useful in developing effective strategies to manage pollution.


Subject(s)
Eutrophication , Geologic Sediments , Lakes , Metagenome , Metagenomics , Lakes/microbiology , Geologic Sediments/microbiology , South Africa , Bacteria/genetics , Bacteria/classification , Phylogeny , Water Microbiology
14.
Microb Ecol ; 87(1): 68, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722447

ABSTRACT

It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.


Subject(s)
Bacteria , DNA, Bacterial , Geologic Sediments , Lakes , Lakes/microbiology , Lakes/chemistry , Geologic Sediments/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , China , DNA, Bacterial/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , Microbiota
15.
Proc Natl Acad Sci U S A ; 121(23): e2319148121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805285

ABSTRACT

Magnetotactic bacteria produce chains of nanoscopic iron minerals used for navigation, which can be preserved over geological timescales in the form of magnetofossils. Micrometer-sized magnetite crystals with unusual shapes suggesting a biologically controlled mineralization have been found in the geological record and termed giant magnetofossils. The biological origin and function of giant magnetofossils remains unclear, due to the lack of modern analogues to giant magnetofossils. Using distinctive Ptychographic nanotomography data of Precambrian (1.88 Ga) rocks, we recovered the morphology of micrometric cuboid grains of iron oxides embedded in an organic filamentous fossil to construct synthetic magnetosomes. Their morphology is different from that of previously found giant magnetofossils, but their occurrence in filamentous microfossils and micromagnetic simulations support the hypothesis that they could have functioned as a navigation aid, akin to modern magnetosomes.


Subject(s)
Fossils , Magnetosomes , Magnetosomes/chemistry , Magnetosomes/metabolism , Ferrosoferric Oxide/chemistry , Geologic Sediments/chemistry
16.
Sci Rep ; 14(1): 11996, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796638

ABSTRACT

Different from the Qaidam basin with about 320 billion m3 microbial gas, only limited microbial gases were found from the Junggar basin with similarly abundant type III kerogen. To determine whether microbial gases have not yet identified, natural gas samples from the Carboniferous to Cretaceous in the Junggar basin have been analyzed for chemical and stable isotope compositions. The results reveal some of the gases from the Mahu sag, Zhongguai, Luliang and Wu-Xia areas in the basin may have mixed with microbial gas leading to straight ethane to butane trends with a "dogleg" light methane in the Chung's plot. Primary microbial gas from degradation of immature sedimentary organic matter is found to occur in the Mahu sag and secondary microbial gas from biodegradation of oils and propane occurred in the Zhongguai, Luliang and Beisantai areas where the associated oils were biodegraded to produce calcites with δ13C values from + 22.10‰ to + 22.16‰ or propane was biodegraded leading to its 13C enrichment. Microbial CH4 in the Mahu sag is most likely to have migrated up from the Lower Wuerhe Formation coal-bearing strata by the end of the Triassic, and secondary microbial gas in Zhongguai and Beisantan uplifts may have generated after the reservoirs were uplifted during the period of the Middle and Late Jurassic. This study suggests widespread distribution of microbial gas and shows the potential to find large microbial gas accumulation in the basin.


Subject(s)
Methane , Natural Gas , Methane/analysis , Methane/metabolism , Natural Gas/analysis , Gases/metabolism , Gases/analysis , China , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Geologic Sediments/analysis , Carbon Isotopes/analysis
17.
J Hazard Mater ; 472: 134463, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723486

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.


Subject(s)
Corbicula , Fluorocarbons , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Corbicula/metabolism , Corbicula/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Geologic Sediments/analysis , Biological Monitoring , Virginia
18.
Mar Pollut Bull ; 203: 116481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733891

ABSTRACT

Risk assessment and pollutant source analysis are crucial tools for the management and protection of coastal ecosystems. The distribution patterns, risk assessment, and potential sources of heavy metals (Cd, Cr, Fe, Ni, Cu, Zn, As, Hg, and Pb) in surface sediment were analyzed in the Qiongzhou Strait, China, in summer and autumn of 2022. Heavy metals in autumn showed higher ecological risk than that in summer. Seasonal shifts in ocean currents may result in variations in heavy metal accumulation and dispersion. Cd and Hg were the priority heavy metals found, and according to the Positive Matrix Factorization results, the study area contains five sources of pollution, with natural sources, shipping-related activities, and industrial activities being the primary contributors. This study indicated that pollutants from adjacent areas should be considered for managing the environmental quality of Qiongzhou Strait.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , China , Geologic Sediments/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Seasons
19.
Environ Pollut ; 352: 124131, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734049

ABSTRACT

Polyethylene terephthalate (PET) plastic pollution is widely found in deep-sea sediments. Despite being an international environmental issue, it remains unclear whether PET can be degraded through bioremediation in the deep sea. Pelagic sediments obtained from 19 sites across a wide geographic range in the Pacific Ocean were used to screen for bacteria with PET degrading potential. Bacterial consortia that could grow on PET as the sole carbon and energy source were found in 10 of the 19 sites. These bacterial consortia showed PET removal rate of 1.8%-16.2% within two months, which was further confirmed by the decrease of carbonyl and aliphatic hydrocarbon groups using attenuated total reflectance-Fourier-transform infrared analysis (ATR-FTIR). Analysis of microbial diversity revealed that Alcanivorax and Pseudomonas were predominant in all 10 PET degrading consortia. Meanwhile, Thalassospira, Nitratireductor, Nocardioides, Muricauda, and Owenweeksia were also found to possess PET degradation potential. Metabolomic analysis showed that Alcanivorax sp. A02-7 and Pseudomonas sp. A09-2 could turn PET into mono-(2-hydroxyethyl) terephthalate (MHET) even in situ stimulation (40 MPa, 10 °C) conditions. These findings widen the currently knowledge of deep-sea PET biodegrading process with bacteria isolates and degrading mechanisms, and indicating that the marine environment is a source of biotechnologically promising bacterial isolates and enzymes.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Polyethylene Terephthalates , Water Pollutants, Chemical , Polyethylene Terephthalates/metabolism , Pacific Ocean , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/isolation & purification , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Seawater/microbiology , Pseudomonas/metabolism
20.
PLoS One ; 19(5): e0302468, 2024.
Article in English | MEDLINE | ID: mdl-38696445

ABSTRACT

In order to further clarify the shale oil accumulation period of the Chang 7 member of the Mesozoic Triassic Yanchang Formation in the Zhijing-Ansai area of the central Ordos Basin, Using fluid inclusion petrography analysis, microscopic temperature measurement, salinity analysis and fluorescence spectrum analysis methods, combined with the burial history-thermal history recovery in the area, the oil and gas accumulation period of the Chang 7 member of the Yanchang Formation in the Zhijing-Ansai area was comprehensively analyzed. Sixteen shale oil reservoir samples of the Mesozoic Triassic Yanchang Formation in seven typical wells in the study area were selected.The results show that the fluid inclusions in the Chang 7 member of Yanchang Formation can be divided into two stages. The first stage inclusions mainly develop liquid hydrocarbon inclusions and a large number of associated brine inclusions, which are mainly beaded in fracture-filled quartz and fracture-filled calcite. The fluorescence color is blue and blue-green, and the homogenization temperature of the associated brine inclusions is between 90-110°C. The second stage inclusions are mainly gas-liquid two-phase hydrocarbon inclusions, gas inclusions and asphalt inclusions. Most of them are distributed in the fracture-filled quartz, and the temperature of the associated brine inclusions is between 120-130°C. Fluid inclusions in Chang 7 member of the Yanchang Formation can be divided into two stages. The CO2 inclusions and high temperature inclusions in the Chang 7 member of the Yanchang Formation are mainly derived from deep volcanic activity in the crust.


Subject(s)
Oil and Gas Fields , China , Geologic Sediments/analysis , Temperature , Petroleum/analysis , Hydrocarbons/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...