Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.050
Filter
1.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831142

ABSTRACT

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Subject(s)
Aquaculture , Bacteria , Denitrification , Microbiota , Nitrogen , Nitrous Oxide , Penaeidae , Ponds , Nitrogen/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Ponds/microbiology , Animals , Penaeidae/microbiology , Nitrous Oxide/metabolism , Nitrous Oxide/analysis , Geologic Sediments/microbiology , Oxidation-Reduction , Ammonium Compounds/metabolism
2.
Microbiologyopen ; 13(3): e13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825966

ABSTRACT

The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.


Subject(s)
Bacteria , Gastrointestinal Tract , Geologic Sediments , RNA, Ribosomal, 16S , Snails , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Gastrointestinal Tract/microbiology , Animals , Snails/microbiology , Germany , Denmark , Gastrointestinal Microbiome/genetics , Water Microbiology , Biodiversity , Estonia , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA
3.
PeerJ ; 12: e17412, 2024.
Article in English | MEDLINE | ID: mdl-38827283

ABSTRACT

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.


Subject(s)
Metagenomics , Archaea/genetics , Archaea/classification , Mexico , Bacteria/genetics , Bacteria/classification , Ecosystem , Microbiota/genetics , Metagenome , Geologic Sediments/microbiology
4.
Geobiology ; 22(3): e12601, 2024.
Article in English | MEDLINE | ID: mdl-38725142

ABSTRACT

While stromatolites, and to a lesser extent thrombolites, have been extensively studied in order to unravel Precambrian (>539 Ma) biological evolution, studies of clastic-dominated microbially induced sedimentary structures (MISS) are relatively scarce. The lack of a consolidated record of clastic microbialites creates questions about how much (and what) information on depositional and taphonomic settings can be gleaned from these fossils. We used µCT scanning, a non-destructive X-ray-based 3D imaging method, to reconstruct morphologies of ancient MISS and mat textures in two previously described coastal Archaean samples from the ~3.48 Ga Dresser Formation, Pilbara, Western Australia. The aim of this study was to test the ability of µCT scanning to visualize and make 3D measurements that can be used to interpret the biotic-environmental interactions. Fossil MISS including mat laminae with carpet-like textures in one sample and mat rip-up chips in the second sample were investigated. Compiled δ13C and δ34S analyses of specimens from the Dresser Fm. are consistent with a taxonomically diverse community that could be capable of forming such MISS. 3D measurements of fossil microbial mat chips indicate significant biostabilization and suggest formation in flow velocities >25 cm s-1. Given the stratigraphic location of these chips in a low-flow lagoonal layer, we conclude that these chips formed due to tidal influence, as these assumed velocities are consistent with recent modeling of Archaean tides. The success of µCT scanning in documenting these microbialite features validates this technique both as a first step analysis for rare samples prior to the use of more destructive techniques and as a valuable tool for gaining insight into microbialite taphonomy.


Subject(s)
Fossils , Geologic Sediments , Imaging, Three-Dimensional , X-Ray Microtomography , Geologic Sediments/microbiology , Western Australia , Archaea
5.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38709876

ABSTRACT

The microbiomes in macroalgal holobionts play vital roles in regulating macroalgal growth and ocean carbon cycling. However, the virospheres in macroalgal holobionts remain largely underexplored, representing a critical knowledge gap. Here we unveil that the holobiont of kelp (Saccharina japonica) harbors highly specific and unique epiphytic/endophytic viral species, with novelty (99.7% unknown) surpassing even extreme marine habitats (e.g. deep-sea and hadal zones), indicating that macroalgal virospheres, despite being closest to us, are among the least understood. These viruses potentially maintain microbiome equilibrium critical for kelp health via lytic-lysogenic infections and the expression of folate biosynthesis genes. In-situ kelp mesocosm cultivation and metagenomic mining revealed that kelp holobiont profoundly reshaped surrounding seawater and sediment virus-prokaryote pairings through changing surrounding environmental conditions and virus-host migrations. Some kelp epiphytic viruses could even infect sediment autochthonous bacteria after deposition. Moreover, the presence of ample viral auxiliary metabolic genes for kelp polysaccharide (e.g. laminarin) degradation underscores the underappreciated viral metabolic influence on macroalgal carbon cycling. This study provides key insights into understanding the previously overlooked ecological significance of viruses within macroalgal holobionts and the macroalgae-prokaryotes-virus tripartite relationship.


Subject(s)
Bacteria , Kelp , Microbiota , Seawater , Kelp/microbiology , Seawater/microbiology , Seawater/virology , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Metagenomics , Seaweed/microbiology , Seaweed/virology , Geologic Sediments/microbiology , Geologic Sediments/virology , Prokaryotic Cells/virology , Prokaryotic Cells/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/isolation & purification , Virome
6.
PLoS One ; 19(5): e0304061, 2024.
Article in English | MEDLINE | ID: mdl-38787843

ABSTRACT

Erosion poses a significant threat to oceanic beaches worldwide. To combat this threat, management agencies often utilize renourishment, which supplements eroded beaches with offsite sand. This process can alter the physical characteristics of the beach and can influence the presence and abundance of microbial communities. In this study, we examined how an oceanic beach renourishment project may have impacted the presence and abundance of Escherichia coli (E. coli), a common bacteria species, and sand grain size, a sediment characteristic that can influence bacterial persistence. Using an observational field approach, we quantified the presence and abundance of E. coli in sand (from sub-tidal, intertidal, and dune zones on the beach) and water samples at study sites in both renourished and non-renourished sections of Folly Beach, South Carolina, USA in 2014 and 2015. In addition, we also measured how renourishment may have impacted sand grain size by quantifying the relative frequency of grain sizes (from sub-tidal, intertidal, and dune zones on the beach) at both renourished and non-renourished sites. Using this approach, we found that E. coli was present in sand samples in all zones of the beach and at each of our study sites in both years of sampling but never in water samples. Additionally, we found that in comparison to non-renourished sections, renourished sites had significantly higher abundances of E. coli and coarser sand grains in the intertidal zone, which is where renourished sand is typically placed. However, these differences were only present in 2014 and were not detected when we resampled the study sites in 2015. Collectively, our findings show that E. coli can be commonly found in this sandy beach microbial community. In addition, our results suggest that renourishment has the potential to alter both the physical structure of the beach and the microbial community but that these impacts may be short-lived.


Subject(s)
Bathing Beaches , Escherichia coli , Escherichia coli/isolation & purification , Water Microbiology , Sand/microbiology , Geologic Sediments/microbiology , South Carolina , Seawater/microbiology
7.
Sci Data ; 11(1): 456, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710672

ABSTRACT

We present metagenomes of 16 samples of water and sediment from two lakes, collected from eutrophic and non-eutrophic areas, including pooled samples enriched with phosphate and nitrate. Additionally, we assembled 167 bacterial metagenome-assembled genomes (MAGs). These MAGs were de-replicated into 83 unique genomes representing different species found in the lakes. All the MAGs exhibited >70% completeness and <10% contamination, with 79 MAGs being classified as 'nearly complete' (completeness >90%), while 54 falling within 80-90% range and 34 between 75-80% complete. The most abundant MAGs identified across all samples were Proteobacteria (n = 80), Firmicutes_A (n = 35), Firmicutes (n = 13), and Bacteriodota (n = 22). Other groups included Desulfobacteria_I (n = 2), Verrucomicrobiota (n = 4), Campylobacterota (n = 4) and Actinobacteriota (n = 6). Importantly, phylogenomic analysis identified that approximately 50.3% of the MAGs could not be classified to known species, suggesting the presence of potentially new and unknown bacteria in these lakes, warranting further in-depth investigation. This study provides valuable new dataset on the diverse and often unique microbial communities living in polluted lakes, useful in developing effective strategies to manage pollution.


Subject(s)
Eutrophication , Geologic Sediments , Lakes , Metagenome , Metagenomics , Lakes/microbiology , Geologic Sediments/microbiology , South Africa , Bacteria/genetics , Bacteria/classification , Phylogeny , Water Microbiology
8.
Microb Ecol ; 87(1): 68, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722447

ABSTRACT

It is necessary to predict the critical transition of lake ecosystems due to their abrupt, non-linear effects on social-economic systems. Given the promising application of paleolimnological archives to tracking the historical changes of lake ecosystems, it is speculated that they can also record the lake's critical transition. We studied Lake Dali-Nor in the arid region of Inner Mongolia because of the profound shrinking the lake experienced between the 1300 s and the 1600 s. We reconstructed the succession of bacterial communities from a 140-cm-long sediment core at 4-cm intervals and detected the critical transition. Our results showed that the historical trajectory of bacterial communities from the 1200 s to the 2010s was divided into two alternative states: state1 from 1200 to 1300 s and state2 from 1400 to 2010s. Furthermore, in the late 1300 s, the appearance of a tipping point and critical slowing down implied the existence of a critical transition. By using a multi-decadal time series from the sedimentary core, with general Lotka-Volterra model simulations, local stability analysis found that bacterial communities were the most unstable as they approached the critical transition, suggesting that the collapse of stability triggers the community shift from an equilibrium state to another state. Furthermore, the most unstable community harbored the strongest antagonistic and mutualistic interactions, which may imply the detrimental role of interaction strength on community stability. Collectively, our study showed that sediment DNA can be used to detect the critical transition of lake ecosystems.


Subject(s)
Bacteria , DNA, Bacterial , Geologic Sediments , Lakes , Lakes/microbiology , Lakes/chemistry , Geologic Sediments/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , China , DNA, Bacterial/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , Microbiota
9.
Sci Rep ; 14(1): 11996, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38796638

ABSTRACT

Different from the Qaidam basin with about 320 billion m3 microbial gas, only limited microbial gases were found from the Junggar basin with similarly abundant type III kerogen. To determine whether microbial gases have not yet identified, natural gas samples from the Carboniferous to Cretaceous in the Junggar basin have been analyzed for chemical and stable isotope compositions. The results reveal some of the gases from the Mahu sag, Zhongguai, Luliang and Wu-Xia areas in the basin may have mixed with microbial gas leading to straight ethane to butane trends with a "dogleg" light methane in the Chung's plot. Primary microbial gas from degradation of immature sedimentary organic matter is found to occur in the Mahu sag and secondary microbial gas from biodegradation of oils and propane occurred in the Zhongguai, Luliang and Beisantai areas where the associated oils were biodegraded to produce calcites with δ13C values from + 22.10‰ to + 22.16‰ or propane was biodegraded leading to its 13C enrichment. Microbial CH4 in the Mahu sag is most likely to have migrated up from the Lower Wuerhe Formation coal-bearing strata by the end of the Triassic, and secondary microbial gas in Zhongguai and Beisantan uplifts may have generated after the reservoirs were uplifted during the period of the Middle and Late Jurassic. This study suggests widespread distribution of microbial gas and shows the potential to find large microbial gas accumulation in the basin.


Subject(s)
Methane , Natural Gas , Methane/analysis , Methane/metabolism , Natural Gas/analysis , Gases/metabolism , Gases/analysis , China , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Geologic Sediments/analysis , Carbon Isotopes/analysis
10.
Environ Pollut ; 352: 124131, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734049

ABSTRACT

Polyethylene terephthalate (PET) plastic pollution is widely found in deep-sea sediments. Despite being an international environmental issue, it remains unclear whether PET can be degraded through bioremediation in the deep sea. Pelagic sediments obtained from 19 sites across a wide geographic range in the Pacific Ocean were used to screen for bacteria with PET degrading potential. Bacterial consortia that could grow on PET as the sole carbon and energy source were found in 10 of the 19 sites. These bacterial consortia showed PET removal rate of 1.8%-16.2% within two months, which was further confirmed by the decrease of carbonyl and aliphatic hydrocarbon groups using attenuated total reflectance-Fourier-transform infrared analysis (ATR-FTIR). Analysis of microbial diversity revealed that Alcanivorax and Pseudomonas were predominant in all 10 PET degrading consortia. Meanwhile, Thalassospira, Nitratireductor, Nocardioides, Muricauda, and Owenweeksia were also found to possess PET degradation potential. Metabolomic analysis showed that Alcanivorax sp. A02-7 and Pseudomonas sp. A09-2 could turn PET into mono-(2-hydroxyethyl) terephthalate (MHET) even in situ stimulation (40 MPa, 10 °C) conditions. These findings widen the currently knowledge of deep-sea PET biodegrading process with bacteria isolates and degrading mechanisms, and indicating that the marine environment is a source of biotechnologically promising bacterial isolates and enzymes.


Subject(s)
Bacteria , Biodegradation, Environmental , Geologic Sediments , Polyethylene Terephthalates , Water Pollutants, Chemical , Polyethylene Terephthalates/metabolism , Pacific Ocean , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/isolation & purification , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Seawater/microbiology , Pseudomonas/metabolism
11.
Article in English | MEDLINE | ID: mdl-38695865

ABSTRACT

A novel Gram-staining-positive actinobacterium with antimicrobial activity, designated CFH 90308T, was isolated from the sediment of a salt lake in Yuncheng, Shanxi, south-western China. The isolate exhibited the highest 16S rRNA gene sequence similarities to Microbacterium yannicii G72T, Microbacterium hominis NBRC 15708T and Microbacterium xylanilyticum S3-ET (98.5, 98.4 and 98.2 %, respectively), and formed a separate clade with M. xylanilyticum S3-ET in phylogenetic trees. The strain grew at 15-40 ºC, pH 6.0-8.0 and could tolerate NaCl up to a concentration of 15 % (w/v). The whole genome of strain CFH 90308T consisted of 4.33 Mbp and the DNA G+C content was 69.6 mol%. The acyl type of the peptidoglycan was glycolyl and the whole-cell sugars were galactose and mannose. The cell-wall peptidoglycan mainly contained alanine, glycine and lysine. The menaquinones of strain CFH 90308T were MK-12, MK-13 and MK-11. Strain CFH 90308T contained anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C15:0 as the predominant fatty acids. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between CFH 90308T and the other species of the genus Microbacterium were found to be low (ANIb <81.3 %, dDDH <25.6 %). The secondary metabolite produced by strain CFH 90308T showed antibacterial activities against Bacillus subtilis, Pseudomonas syringae, Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus. Based on genotypic, phenotypic and chemotaxonomic results, the isolate is considered to represent a novel species of the genus Microbacterium, for which the name Microbacterium salsuginis sp. nov. is proposed. The type strain is CFH 90308T (=DSM 105964T=KCTC 49052T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Microbacterium , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Vitamin K 2/analogs & derivatives , Geologic Sediments/microbiology , Peptidoglycan , Lakes/microbiology , Nucleic Acid Hybridization , Sodium Chloride/metabolism , Genome, Bacterial
12.
Geobiology ; 22(3): e12594, 2024.
Article in English | MEDLINE | ID: mdl-38700397

ABSTRACT

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Subject(s)
Bacteria , Caves , Minerals , Caves/microbiology , Minerals/analysis , Bacteria/classification , Bacteria/metabolism , Nevada , Archaea/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Parks, Recreational , RNA, Ribosomal, 16S/genetics , Sulfuric Acids , Phylogeny , Microbiota , Calcium Sulfate/chemistry , Microscopy, Electron, Scanning
13.
PLoS One ; 19(5): e0301605, 2024.
Article in English | MEDLINE | ID: mdl-38739592

ABSTRACT

Oxygen minimum zones (OMZ) represent ~8% of the ocean, with the Pacific as the largest and top expanding area. These regions influence marine ecosystems, promoting anaerobic microbial communities. Nevertheless, only a fraction of microbial diversity has been studied, with fungi being the less explored component. So, herein we analyzed fungal diversity patterns in surface and subsurface sediments along a bathymetric transect using metabarcoding of the ITS1 region in the OMZ of the Mexican Pacific off Mazatlán. We identified 353 amplicon sequence variants (ASV), within the Ascomycota, Basidiomycota, and Rozellomycota. Spatial patterns evidenced higher alpha diversity in nearshore and subsurface subsamples, probably due to temporal fluctuations in organic matter inputs. Small-scale heterogeneity characterized the community with the majority of ASV (269 ASV) occurring in a single subsample, hinting at the influence of local biogeochemical conditions. This baseline data evidenced a remarkable fungal diversity presenting high variation along a bathymetric and vertical transects.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Fungi , Geologic Sediments , Oxygen , Geologic Sediments/microbiology , Oxygen/metabolism , Oxygen/analysis , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Pacific Ocean , Phylogeny
14.
Article in English | MEDLINE | ID: mdl-38743481

ABSTRACT

A Gram-stain-negative, yellow-pigmented, strictly aerobic, non-flagellated, motile by gliding, rod-shaped bacterium, designated strain YSD2104T, was isolated from a coastal sediment sample collected from the southeastern part of the Yellow Sea. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain YSD2104T was closely related to three type strains, Lutimonas vermicola IMCC1616T (97.4 %), Lutimonas saemankumensis SMK-142T (96.9 %), and Lutimonas halocynthiae RSS3-C1T (96.8 %). Strain YSD2104T has a single circular chromosome of 3.54 Mbp with a DNA G+C content of 38.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain YSD2104T and the three type strains (L. vermicola IMCC1616 T, L. saemankumensis SMK-142T, and L. halocynthiae RSS3-C1T) were 74.0, 86.2 and 73.6 %, and 17.9, 30.3 and 17.8 %, respectively. Growth was observed at 20-30 °C (optimum, 30 °C), at pH 6.5-8.5 (optimum, pH 7.0), and with NaCl concentrations of 1.5-3.5 % (optimum, 2.5 %). The major carotenoid was zeaxanthin, and flexirubin-type pigment was not produced. The major respiratory quinone was menaquinone-6. The major fatty acids (>10 %) were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, two unidentified aminolipids, and eight unidentified lipids. Conclusively, based on this polyphasic approach, we classified strain YSD2104T (=KCTC 102008T=JCM 36287T) as representing a novel species of the genus Lutimonas and proposed the name Lutimonas zeaxanthinifaciens sp. nov.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , Zeaxanthins , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Seawater/microbiology , China
15.
Article in English | MEDLINE | ID: mdl-38747701

ABSTRACT

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Seawater , Sequence Analysis, DNA , Vitamin K 2 , China , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , Fatty Acids/analysis , Seawater/microbiology , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Phosphatidylethanolamines , Molecular Sequence Data
16.
Article in English | MEDLINE | ID: mdl-38752995

ABSTRACT

A novel actinobacterium, strain ZYX-F-186T, was isolated from marine sediment sampled on Yongxing Island, Hainan Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain ZYX-F-186T belongs to the genus Phytohabitans, with high similarity to Phytohabitans kaempferiae KK1-3T (98.3 %), Phytohabitans rumicis K11-0047T (98.1 %), Phytohabitans flavus K09-0627T (98.1 %), Phytohabitans houttuyneae K11-0057T (97.9 %), Phytohabitans suffuscus K07-0523T (97.7 %), and Phytohabitans aurantiacus RD004123T (97.7 %). Phylogenetic analysis of 16S rRNA gene sequences showed that the strain formed a single subclade in the genus Phytohabitans. The novel isolate contained meso-diaminopimelic acid, d-glutamic acid, glycine, d-alanine, and l-lysine in the cell wall. The whole-cell sugars were xylose, arabinose, ribose, and rhamnose. The predominant menaquinones were MK-9(H8), MK-9(H6), and MK-9(H4). The characteristic phospholipids were phosphatidylethanolamine, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylglycerol, and an unknown phospholipid. The major fatty acids (>5 %) were iso-C16 : 0, anteiso-C17 : 0, and iso-C18 : 0. Genome sequencing showed a DNA G+C content of 71.9 mol%. Low average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values demonstrated that strain ZYX-F-186T could be readily distinguished from its closely related species. Based on its phylogenetic, chemotaxonomic, and physiological characteristics, strain ZYX-F-186T represents a novel species of the genus Phytohabitans, for which the name Phytohabitans maris sp. nov. is proposed. The type strain is ZYX-F-186T (=CGMCC 4.8025T=CCTCC AA 2023025T=JCM 36507T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Geologic Sediments/microbiology , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , Vitamin K 2/chemistry , Nucleic Acid Hybridization , Cell Wall/chemistry
17.
Environ Microbiol ; 26(5): e16622, 2024 May.
Article in English | MEDLINE | ID: mdl-38757466

ABSTRACT

Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.


Subject(s)
Bacteria , Nitrous Oxide , Rivers , Nitrous Oxide/metabolism , Rivers/microbiology , Rivers/chemistry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeography , Phylogeny , Microbiota
18.
Sci Total Environ ; 932: 173059, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723976

ABSTRACT

Microbial extracellular polymeric substances (EPS) are an important component in sediment ecology. However, most research is highly skewed towards the northern hemisphere and in more permanent systems. This paper investigates EPS (i.e., carbohydrates and proteins) dynamics in arid Austral zone temporary pans sediments. Colorimetric methods and sequence-based metagenomics techniques were employed in a series of small temporary pan ecosystems characterised by alternating wet and dry hydroperiods. Microbial community patterns of distribution were evaluated between seasons (hot-wet and cool-dry) and across depths (and inferred inundation period) based on estimated elevation. Carbohydrates generally occurred in relatively higher proportions than proteins; the carbohydrate:protein ratio was 2.8:1 and 1.6:1 for the dry and wet season respectively, suggesting that EPS found in these systems was largely diatom produced. The wet- hydroperiods (Carbohydrate mean 102 µg g-1; Protein mean 65 µg g-1) supported more EPS production as compared to the dry- hydroperiods (Carbohydrate mean 73 µg g-1; Protein mean 26 µg g-1). A total of 15,042 Unique Amplicon Sequence Variants (ASVs) were allocated to 51 bacterial phyla and 1127 genera. The most abundant genera had commonality in high temperature tolerance, with Firmicutes, Actinobacteria and Proteobacteria in high abundances. Microbial communities were more distinct between seasons compared to within seasons which further suggested that the observed metagenome functions could be seasonally driven. This study's findings implied that there were high levels of denitrification by mostly nitric oxide reductase and nitrite reductase enzymes. EPS production was high in the hot-wet season as compared to relatively lower rates of nitrification in the cool-dry season by ammonia monooxygenases. Both EPS quantities and metagenome functions were highly associated with availability of water, with high rates being mainly associated with wet- hydroperiods compared to dry- hydroperiods. These data suggest that extended dry periods threaten microbially mediated processes in temporary wetlands, with implications to loss of biodiversity by desiccation.


Subject(s)
Ecosystem , Extracellular Polymeric Substance Matrix , Microbiota , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/classification , Bacteria/genetics , Seasons , Environmental Monitoring
19.
Sci Total Environ ; 932: 173134, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734096

ABSTRACT

Methane (CH4) is a potent greenhouse gas, with lake ecosystems significantly contributing to its global emissions. Denitrifying anaerobic methane oxidation (DAMO) process, mediated by NC10 bacteria and ANME-2d archaea, links global carbon and nitrogen cycles. However, their potential roles in mitigating methane emissions and removing nitrogen from lake ecosystems remain unclear. This study explored the spatial variations in activities of nitrite- and nitrate-DAMO and their functional microbes in Changdanghu Lake sediments (Jiangsu Province, China). The results showed that although the average abundance of ANME-2d archaea (5.0 × 106 copies g-1) was significantly higher than that of NC10 bacteria (2.1 × 106 copies g-1), the average potential rates of nitrite-DAMO (4.59 nmol 13CO2 g-1 d-1) and nitrate-DAMO (5.01 nmol 13CO2 g-1 d-1) showed no significant difference across all sampling sites. It is estimated that nitrite- and nitrate-DAMO consumed approximately 6.46 and 7.05 mg CH4 m-2 d-1, respectively, which accordingly achieved 15.07-24.95 mg m-2 d-1 nitrogen removal from the studied lake sediments. Statistical analyses found that nitrite- and nitrate-DAMO activities were both significantly related to sediment nitrate contents and ANME-2d archaeal abundance. In addition, NC10 bacterial and ANME-2d archaeal community compositions showed significant correlations with sediment organic carbon content and water depth. Overall, this study underscores the dual roles of nitrite- and nitrate-DAMO processes in CH4 mitigation and nitrogen elimination and their key environmental impact factors (sediment organic carbon and inorganic nitrogen contents, and water depth) in shallow lake, enhancing the understanding of carbon and nitrogen cycles in freshwater aquatic ecosystems.


Subject(s)
Denitrification , Geologic Sediments , Lakes , Methane , Nitrogen , Oxidation-Reduction , Methane/metabolism , Methane/analysis , Lakes/chemistry , Lakes/microbiology , Geologic Sediments/chemistry , Geologic Sediments/microbiology , China , Nitrogen/analysis , Anaerobiosis , Archaea/metabolism , Bacteria/metabolism , Water Pollutants, Chemical/analysis
20.
Fungal Biol ; 128(3): 1742-1750, 2024 May.
Article in English | MEDLINE | ID: mdl-38796258

ABSTRACT

Even though the records of Tetraploa spores from Mesozoic and Cenozoic sedimentary strata along with spore-pollen assemblages are numerous and well documented, no foliicolus Tetraploa macroconidia have been reported to date. Here, we report the first occurrence of conidia assignable to modern Tetraploa Berk. & Broome (Tetraplosphaeriaceae: Pleosporales: Dothideomycetes) on cuticular fragments of compressed monocot leaf recovered from the middle Siwalik sediments (Late Miocene; 12-8 Ma) of Himachal Himalaya, India. We determine their taxonomic position based on detailed macromorphological comparison with similar modern and fossil taxa and discuss their palaeoecological significance in terms of the present-day ecological conditions of modern analogues. This finding also represents an essential data source for understanding Tetraploa's evolution and diversification in deep time.


Subject(s)
Fossils , Plant Leaves , Plant Leaves/microbiology , India , Spores, Fungal , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , Phylogeny , Geologic Sediments/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...