Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
Add more filters










Publication year range
2.
Genes (Basel) ; 14(1)2023 01 07.
Article in English | MEDLINE | ID: mdl-36672907

ABSTRACT

Genomic resources are essential to understanding the evolution and functional biology of organisms. Nevertheless, generating genomic resources from endangered species may be challenging due to the scarcity of available specimens and sampling difficulties. In this study, we compare the transcriptomes of the sporophyte and the gametophyte of the endangered fern Vandenboschia speciosa. After Illumina sequencing and de novo transcriptome assembly of the gametophyte, annotation proved the existence of cross-species contamination in the gametophyte sample. Thus, we developed an in silico decontamination step for the gametophyte sequences. Once the quality check of the decontaminated reads passed, we produced a de novo assembly with the decontaminated gametophyte reads (with 43,139 contigs) and another combining the sporophyte and in silico decontaminated gametophyte reads (with 42,918 contigs). A comparison of the enriched GO terms from the top 1000 most expressed transcripts from both tissues showed that the gametophyte GO term set was enriched in sequences involved in development, response to stress, and plastid organization, while the sporophyte GO term set had a larger representation of more general metabolic functions. This study complements the available genomic resources on the life cycle of the endangered fern Vandenboschia speciosa.


Subject(s)
Ferns , Ferns/genetics , Transcriptome/genetics , Germ Cells, Plant/physiology , Genomics , High-Throughput Nucleotide Sequencing
3.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35216096

ABSTRACT

In living organisms, sexual reproduction relies on the successful development of the gametes. Flowering plants produce gametes in the specialized organs of the flower, the gametophytes. The female gametophyte (FG), a multicellular structure containing female gametes (egg cell and central cell), is often referred to as an embryo sac. Intriguingly, several protein complexes, molecular and genetic mechanisms participate and tightly regulate the female gametophyte development. Recent evidence indicates that small RNA (sRNA) mediated pathways play vital roles in female gametophyte development and specification. Here, we present an insight into our understanding and the recent updates on the molecular mechanism of different players of small RNA-directed regulatory pathways during ovule formation and growth.


Subject(s)
Germ Cells, Plant/physiology , RNA/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Magnoliopsida/genetics , Ovule/genetics
4.
Science ; 375(6579): 424-429, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35084965

ABSTRACT

Flowering plants alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. Pollen actively transcribes its haploid genome, providing phenotypic diversity even among pollen grains from a single plant. In this study, we used allele-specific RNA sequencing of single pollen precursors to follow the shift to haploid expression in maize pollen. We observed widespread biallelic expression for 11 days after meiosis, indicating that transcripts synthesized by the diploid sporophyte persist long into the haploid phase. Subsequently, there was a rapid and global conversion to monoallelic expression at pollen mitosis I, driven by active new transcription from the haploid genome. Genes showed evidence of increased purifying selection if they were expressed after (but not before) pollen mitosis I. This work establishes the timing during which haploid selection may act in pollen.


Subject(s)
Genome, Plant , Germ Cells, Plant/physiology , Pollen/genetics , Zea mays/genetics , Diploidy , Gene Expression Regulation, Plant , Genes, Plant , Haploidy , Meiosis , Mitosis , Pollen/growth & development , RNA, Plant/genetics , RNA, Plant/metabolism , RNA-Seq , Transcription, Genetic , Zea mays/growth & development
5.
Plant Cell ; 34(1): 579-596, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34735009

ABSTRACT

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Subject(s)
Biological Evolution , Germ Cells, Plant/physiology , Magnoliopsida/physiology , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics
6.
Plant J ; 107(3): 760-774, 2021 08.
Article in English | MEDLINE | ID: mdl-33977586

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs), which transfer either monomer or polymer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+ ) onto target proteins, are required for multiple processes in DNA damage repair, cell cycle, development, and abiotic stress in animals and plants. Here, the uncharacterized rice (Oryza sativa) OsPARP1, which has been predicted to have two alternative OsPARP1 mRNA splicing variants, OsPARP1.1 and OsPARP1.2, was investigated. However, bimolecular fluorescence complementation showed that only OsPARP1.1 interacted with OsPARP3 paralog, suggesting that OsPARP1.1 is a functional protein in rice. OsPARP1 was preferentially expressed in the stamen primordial and pollen grain of mature stamen during flower development. The osparp1 mutant and CRISPR plants were delayed in germination, indicating that defective DNA repair machinery impairs early seed germination. The mutant displayed a normal phenotype during vegetative growth but had a lower seed-setting rate than wild-type plants under normal conditions. Chromosome bridges and DNA fragmentations were detected in male meiocytes at anaphase I to prophase II. After meiosis II, malformed tetrads or tetrads with micronuclei were formed. Meanwhile, the abnormality was also found in embryo sac development. Collectively, these results suggest that OsPARP1 plays an important role in mediating response to DNA damage and gametophyte development, crucial for rice yield in the natural environment.


Subject(s)
Germ Cells, Plant/physiology , Meiosis/physiology , Oryza/enzymology , Poly (ADP-Ribose) Polymerase-1/metabolism , Seeds/physiology , DNA Damage , Fertility , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Plant , Genome, Plant , Germination , Oryza/genetics , Oryza/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics
7.
Genes (Basel) ; 11(12)2020 12 02.
Article in English | MEDLINE | ID: mdl-33276690

ABSTRACT

In angiosperms, meiotic failure coupled with the formation of genetically unreduced gametophytes in ovules (apomeiosis) constitute major components of gametophytic apomixis. These aberrant developmental events are generally thought to be caused by mutation. However, efforts to locate the responsible mutations have failed. Herein, we tested a fundamentally different hypothesis: apomeiosis is a polyphenism of meiosis, with meiosis and apomeiosis being maintained by different states of metabolic homeostasis. Microarray analyses of ovules and pistils were used to differentiate meiotic from apomeiotic processes in Boechera (Brassicaceae). Genes associated with translation, cell division, epigenetic silencing, flowering, and meiosis characterized sexual Boechera (meiotic). In contrast, genes associated with stress responses, abscisic acid signaling, reactive oxygen species production, and stress attenuation mechanisms characterized apomictic Boechera (apomeiotic). We next tested whether these metabolic differences regulate reproductive mode. Apomeiosis switched to meiosis when premeiotic ovules of apomicts were cultured on media that increased oxidative stress. These treatments included drought, starvation, and H2O2 applications. In contrast, meiosis switched to apomeiosis when premeiotic pistils of sexual plants were cultured on media that relieved oxidative stress. These treatments included antioxidants, glucose, abscisic acid, fluridone, and 5-azacytidine. High-frequency apomeiosis was initiated in all sexual species tested: Brassicaceae, Boechera stricta, Boechera exilis, and Arabidopsis thaliana; Fabaceae, Vigna unguiculata; Asteraceae, Antennaria dioica. Unreduced gametophytes formed from ameiotic female and male sporocytes, first division restitution dyads, and nucellar cells. These results are consistent with modes of reproduction and types of apomixis, in natural apomicts, being regulated metabolically.


Subject(s)
Genes, Plant/genetics , Germ Cells, Plant/physiology , Magnoliopsida/genetics , Apomixis/genetics , Brassicaceae/genetics , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Meiosis/genetics , Ovule/genetics , Oxidative Stress/genetics , Reproduction/genetics
8.
Plant Cell Physiol ; 61(11): 1861-1868, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33057650

ABSTRACT

Plants synthesize gibberellin (GA), a diterpenoid hormone, via ent-kaurenoic acid (KA) oxidation. GA has not been detected in the moss Physcomitrium patens despite its ability to synthesize KA. It was recently shown that a KA metabolite, 3OH-KA, was identified as an active regulator of protonema differentiation in P. patens. An inactive KA metabolite, 2OH-KA, was also identified in the moss, as was KA2ox, which is responsible for converting KA to 2OH-KA. In this review, we mainly discuss the GA biosynthetic gene homologs identified and characterized in bryophytes. We show the similarities and differences between the OH-KA control of moss and GA control of flowering plants. We also discuss using recent genomic studies; mosses do not contain KAO, even though other bryophytes do. This absence of KAO in mosses corresponds to the presence of KA2ox, which is absent in other vascular plants. Thus, given that 2OH-KA and 3OH-KA were isolated from ferns and flowering plants, respectively, vascular plants may have evolved from ancestral bryophytes that originally produced 3OH-KA and GA.


Subject(s)
Bryopsida/growth & development , Diterpenes/metabolism , Germ Cells, Plant/growth & development , Plant Growth Regulators/physiology , Biological Evolution , Bryopsida/metabolism , Bryopsida/physiology , Diterpenes, Kaurane/metabolism , Germ Cells, Plant/metabolism , Germ Cells, Plant/physiology , Plant Growth Regulators/metabolism
9.
BMC Plant Biol ; 20(1): 426, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32933474

ABSTRACT

BACKGROUND: The genus Cypripedium L. is one of the five genera of the subfamily Cypripedioideae, members of which are commonly known as lady's slipper orchids. Cypripedium japonicum is a perennial herb native to East Asia, specifically China, Japan, and Korea. Due to its limited distribution, the species is included in the Endangered category of the IUCN Red List. RESULTS: We investigated gametophyte development, including complete embryogenesis, in C. japonicum. The complete reproductive cycle is presented based on our observations. Anther development begins under the soil, and meiosis of pollen mother cells begins 3 weeks before anthesis, possibly during early April. The megaspore mother cells develop just after pollination in early May and mature in mid-late June. The pattern of embryo sac formation is bisporic, and there are six nuclei: three forming the egg apparatus, two polar nuclei, and an antipodal cell in the mature embryo sac. Triple fertilization results in the endosperm nucleus, which degenerates when the proembryo reaches the eight-to-sixteen-cell stage. CONCLUSION: Our overall comparisons of the features of gametophyte and embryo development in C. japonicum suggest that previous reports on the embryology of Cypripedium are not sufficient for characterization of the entire genus. Based on the available information, a reproductive calendar showing the key reproductive events leading to embryo formation has been prepared.


Subject(s)
Germ Cells, Plant/growth & development , Germ Cells, Plant/physiology , Orchidaceae/genetics , Orchidaceae/physiology , Reproduction/genetics , Seeds/growth & development , Seeds/genetics , Endangered Species , Asia, Eastern , Gene Expression Regulation, Plant , Genes, Plant , Germ Cells, Plant/cytology , Orchidaceae/cytology , Phylogeny , Reproduction/physiology , Seeds/cytology
10.
BMC Plant Biol ; 20(1): 440, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32967624

ABSTRACT

BACKGROUND: Autophagy is an evolutionarily conserved system for the degradation of intracellular components in eukaryotic organisms. Autophagy plays essential roles in preventing premature senescence and extending the longevity of vascular plants. However, the mechanisms and physiological roles of autophagy in preventing senescence in basal land plants are still obscure. RESULTS: Here, we investigated the functional roles of the autophagy-related gene PpATG3 from Physcomitrella patens and demonstrated that its deletion prevents autophagy. In addition, Ppatg3 mutant showed premature gametophore senescence and reduced protonema formation compared to wild-type (WT) plants under normal growth conditions. The abundance of nitrogen (N) but not carbon (C) differed significantly between Ppatg3 mutant and WT plants, as did relative fatty acid levels. In vivo protein localization indicated that PpATG3 localizes to the cytoplasm, and in vitro Y2H assays confirmed that PpATG3 interacts with PpATG7 and PpATG12. Plastoglobuli (PGs) accumulated in Ppatg3, indicating that the process that degrades damaged chloroplasts in senescent gametophore cells was impaired in this mutant. RNA-Seq uncovered a detailed, comprehensive set of regulatory pathways that were affected by the autophagy mutation. CONCLUSIONS: The autophagy-related gene PpATG3 is essential for autophagosome formation in P. patens. Our findings provide evidence that autophagy functions in N utilization, fatty acid metabolism and damaged chloroplast degradation under non-stress conditions. We identified differentially expressed genes in Ppatg3 involved in numerous biosynthetic and metabolic pathways, such as chlorophyll biosynthesis, lipid metabolism, reactive oxygen species removal and the recycling of unnecessary proteins that might have led to the premature senescence of this mutant due to defective autophagy. Our study provides new insights into the role of autophagy in preventing senescence to increase longevity in basal land plants.


Subject(s)
Autophagy/physiology , Bryopsida/physiology , Germ Cells, Plant/physiology , Plant Proteins/physiology , Aging , Bryopsida/genetics , Bryopsida/growth & development , Fatty Acids/metabolism , Gene Expression Regulation, Plant/genetics , Gene Knockout Techniques , Germ Cells, Plant/metabolism , Phylogeny , Plant Proteins/genetics , Transcriptome
11.
Genes (Basel) ; 11(8)2020 08 16.
Article in English | MEDLINE | ID: mdl-32824303

ABSTRACT

Undaria pinnatifida is an annual brown kelp growing naturally in coastal areas as a major primary producer in temperate regions and is cultivated on an industrial scale. Kelps have a heteromorphic life cycle characterized by a macroscopic sporophyte and microscopic sexual gametophytes. The sex-dependent effects of different environmental factors on the growth and maturation characteristics of the gametophyte stage were investigated using response surface methodology. Gametophytes were taken from three sites in Japan: Iwate Prefecture, Tokushima Prefecture, and Kagoshima Prefecture in order to confirm the sexual differences in three independent lines. Optimum temperature and light intensity were higher for males (20.7-20.9 °C and 28.6-33.7 µmol m-2 s-1, respectively) than females (16.5-19.8 °C and 26.9-32.5 µmol m-2 s-1), and maturity progressed more quickly in males than females. Optimum wavelengths of light for growth and maturation of the gametophytes were observed for both blue (400-500 nm, λmax 453 nm) and green (500-600 nm; λmax 525 nm) lights and were sex-independent. These characteristics were consistent among the three regional lines. Slower growth optima and progress of maturation could be important for female gametophytes to restrict fertilization and sporophyte germination to the lower water temperatures of autumn and winter, and suggest that the female gametophyte may be more sensitive to temperature than the male. The sexual differences in sensitivity to environmental factors improved the synchronicity of sporeling production.


Subject(s)
Environment , Germ Cells, Plant/physiology , Plant Development , Undaria/physiology , Geography , Phenotype , Temperature
12.
PLoS One ; 15(6): e0235388, 2020.
Article in English | MEDLINE | ID: mdl-32604405

ABSTRACT

The plasticity of different kelp populations to heat stress has seldom been investigated excluding environmental effects due to thermal histories, by raising a generation under common garden conditions. Comparisons of populations in the absence of environmental effects allow unbiased quantification of the meta-population adaptive potential and resolution of population-specific differentiation. Following this approach, we tested the hypothesis that genetically distinct arctic and temperate kelp exhibit different thermal phenotypes, by comparing the capacity of their microscopic life stages to recover from elevated temperatures. Gametophytes of Laminaria digitata (Arctic and North Sea) grown at 15°C for 3 years were subjected to common garden conditions with static or dynamic (i.e., gradual) thermal treatments ranging between 15 and 25°C and also to darkness. Gametophyte growth and survival during thermal stress conditions, and subsequent sporophyte recruitment at two recovery temperatures (5 and 15°C), were investigated. Population-specific responses were apparent; North Sea gametophytes exhibited higher growth rates and greater sporophyte recruitment than those from the Arctic when recovering from high temperatures, revealing differential thermal adaptation. All gametophytes performed poorly after recovery from a static 8-day exposure at 22.5°C compared to the response under a dynamic thermal treatment with a peak temperature of 25°C, demonstrating the importance of gradual warming and/or acclimation time in modifying thermal limits. Recovery temperature markedly affected the capacity of gametophytes to reproduce following high temperatures, regardless of the population. Recovery at 5°C resulted in higher sporophyte production following a 15°C and 20°C static exposure, whereas recovery at 15°C was better for gametophyte exposures to static 22.5°C or dynamic heat stress to 25°C. The subtle performance differences between populations originating from sites with contrasting local in situ temperatures support our hypothesis that their thermal plasticity has diverged over evolutionary time scales.


Subject(s)
Acclimatization/physiology , Heat-Shock Response/physiology , Laminaria/physiology , Arctic Regions , Germ Cells, Plant/growth & development , Germ Cells, Plant/physiology , Global Warming , Hot Temperature , Laminaria/growth & development , North Sea , Phenotype , Reproduction/physiology , Temperature
13.
Mol Cells ; 43(5): 448-458, 2020 May 31.
Article in English | MEDLINE | ID: mdl-32259880

ABSTRACT

T-DNA insertional mutations in Arabidopsis genes have conferred huge benefits to the research community, greatly facilitating gene function analyses. However, the insertion process can cause chromosomal rearrangements. Here, we show an example of a likely rearrangement following T-DNA insertion in the Anti-Silencing Function 1B (ASF1B) gene locus on Arabidopsis chromosome 5, so that the phenotype was not relevant to the gene of interest, ASF1B. ASF1 is a histone H3/H4 chaperone involved in chromatin remodeling in the sporophyte and during reproduction. Plants that were homozygous for mutant alleles asf1a or asf1b were developmentally normal. However, following self-fertilization of double heterozygotes (ASF1A/asf1a ASF1B/asf1b, hereafter AaBb), defects were visible in both male and female gametes. Half of the AaBb and aaBb ovules displayed arrested embryo sacs with functional megaspore identity. Similarly, half of the AaBb and aaBb pollen grains showed centromere defects, resulting in pollen abortion at the bi-cellular stage of the male gametophyte. However, inheritance of the mutant allele in a given gamete did not solely determine the abortion phenotype. Introducing functional ASF1B failed to rescue the AaBb- and aaBb- mediated abortion, suggesting that heterozygosity in the ASF1B gene causes gametophytic defects, rather than the loss of ASF1. The presence of reproductive defects in heterozygous mutants but not in homozygotes, and the characteristic all-or-nothing pollen viability within tetrads, were both indicative of commonly-observed T-DNA-mediated translocation activity for this allele. Our observations reinforce the importance of complementation tests in assigning gene function using reverse genetics.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Chromosomes/genetics , DNA, Bacterial/genetics , Germ Cells, Plant/physiology , Histone Chaperones/genetics , Trans-Activators/genetics , Arabidopsis Proteins/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation, Plant , Heterozygote , Homozygote , Molecular Chaperones , Mutagenesis, Insertional/genetics , Phenotype , Reproduction
14.
Plant Reprod ; 33(1): 35-40, 2020 03.
Article in English | MEDLINE | ID: mdl-31997012

ABSTRACT

KEY MESSAGE: Sperm cells can be isolated from the mature pollen grains of medicinal wild rice (Oryza officinalis) using an osmotic shock method, and the viable egg cells can be isolated by enzymatic digestion and mechanical dissection steps. Favorable alleles for rice breeding have been identified in natural cultivars and wild rice by association analysis of known functional genes with target trait performance. Transferring these genes from wild rice into cultivated rice varieties is one of the important objectives for rice breeders. The isolation of the sperm and egg cells of wild and cultivated rice is a prerequisite for the in vitro hybridization of distantly related cultivated rice and wild rice lines. Here, we provide a technical approach for isolating the sperm and egg cells of wild rice (Oryza officinalis). In this method, sperm cells were isolated from the mature pollen grains of medicinal wild rice (O. officinalis) according to an osmotic shock method. Additionally, viable O. officinalis egg cells were isolated following enzymatic digestion and mechanical dissection steps. Specifically, ovules were digested in an enzymatic solution containing pectinase and cellulase for 30 min, after which the ovule was cut into two halves. Three egg apparatus cells were released by gently applying pressure to the micropylar end. Generally, six or seven egg cells could be isolated from 20 ovules in 60 min. The same method was used to isolate zygotes from flowers at 24 h after pollination. This technology solved the difficulty of isolating sperm and egg cells in O. officinalis and allowed the isolated sperm and egg cells to be combined by in vitro hybridization of distantly related wild and cultivated rice lines.


Subject(s)
Agriculture , Germ Cells, Plant , Oryza , Agriculture/methods , Crop Production , Flowers/physiology , Germ Cells, Plant/physiology , Ovule , Pollen
15.
Plant J ; 101(1): 5-17, 2020 01.
Article in English | MEDLINE | ID: mdl-31355985

ABSTRACT

Protein translocation into the endoplasmic reticulum (ER) occurs either co- or post-translationally through the Sec translocation system. The Arabidopsis Sec post-translocon is composed of the protein-conducting Sec61 complex, the chaperone-docking protein AtTPR7, the J-domain-containing proteins AtERdj2A/B and the yet uncharacterized AtSec62. Yeast Sec62p is suggested to mainly function in post-translational translocation, whereas mammalian Sec62 also interacts with ribosomes. In Arabidopsis, loss of AtSec62 leads to impaired growth and drastically reduced male fertility indicating the importance of AtSec62 in protein translocation and subsequent secretion in male gametophyte development. Moreover, AtSec62 seems to be divergent in function as compared with yeast Sec62p, since we were not able to complement the thermosensitive yeast mutant sec62-ts. Interestingly, AtSec62 has an additional third transmembrane domain in contrast to its yeast and mammalian counterparts resulting in an altered topology with the C-terminus facing the ER lumen instead of the cytosol. In addition, the AtSec62 C-terminus has proven to be indispensable for AtSec62 function, since a construct lacking the C-terminal region was not able to rescue the mutant phenotype in Arabidopsis. We thus propose that Sec62 acquired a unique topology and function in protein translocation into the ER in plants.


Subject(s)
Arabidopsis/metabolism , Endoplasmic Reticulum/metabolism , Plant Infertility/physiology , Arabidopsis Proteins/metabolism , Germ Cells, Plant/metabolism , Germ Cells, Plant/physiology , Plant Infertility/genetics , Protein Transport/physiology , Ribosomes/metabolism
16.
Evolution ; 74(2): 270-282, 2020 02.
Article in English | MEDLINE | ID: mdl-31845323

ABSTRACT

In many hermaphroditic flowering plants, self-fertilization is prevented by self-incompatibility (SI), often controlled by a single locus, the S-locus. In single isolated populations, the maintenance of SI depends chiefly on inbreeding depression and the number of SI alleles at the S-locus. In subdivided populations, however, population subdivision has complicated effects on both the number of SI alleles and the level of inbreeding depression, rendering the maintenance of SI difficult to predict. Here, we explore the conditions for the invasion of a self-compatible mutant in a structured population. We find that the maintenance of SI is strongly compromised when a population becomes subdivided. We show that this effect is mainly caused by the decrease in the local diversity of SI alleles rather than by a change in the dynamics of inbreeding depression. Strikingly, we also find that the diversity of SI alleles at the whole population level is a poor predictor of the maintenance of SI. We discuss the implications of our results for the interpretation of empirical data on the loss of SI in natural populations.


Subject(s)
Germ Cells, Plant/physiology , Inbreeding Depression , Magnoliopsida/physiology , Self-Incompatibility in Flowering Plants/genetics , Alleles , Magnoliopsida/genetics , Models, Genetic
17.
Mar Pollut Bull ; 146: 584-590, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426196

ABSTRACT

Green algal blooms have occurred in the Yellow Sea for 13 consecutive years since 2007. However, little is known about the reproductive strategy of the dominant species Ulva prolifera in the field. In particular, it is not clear whether the floating Ulva species are sporophytes or gametophytes, and if their life history is sexual or asexual. In this study, the life history type was determined based on the size, phototactic response, and flagella number for the zoids in at least two successive generations. In addition, chromosome observations were conducted to distinguish the gametophytes and sporophytes in the floating Ulva species. The results showed that the floating Ulva species were all sporophytes with sexual reproductive patterns, thereby indicating that this Ulva species always maintains vegetative growth from April to June during the early stage of the blooms. In addition, we found that the chromosome numbers were 18 for the diploid sporophytes and nine for the haploid male and female gametophytes. These results provide useful information to help understand the explosive growth of these green algal blooms.


Subject(s)
Eutrophication , Ulva/physiology , Chromosomes, Plant , Diploidy , Germ Cells, Plant/physiology , Karyotyping , Oceans and Seas , Reproduction/physiology , Ulva/growth & development
19.
Nat Commun ; 10(1): 785, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30770831

ABSTRACT

Meiotic crossover (CO) plays a key role in producing gametophytes and generating genetic variation. The patterns of CO production differ inter- and intra-species, as well as between sexes. However, sex-specific patterns of CO production have not been accurately profiled independently of genetic backgrounds in maize. Here, we develop a method to isolate single female gametophyte for genomes sequencing in maize. We show that more COs are observed in male (19.3 per microspore) than in female (12.4 per embryo sac). Based on Beam-Film model, the more designated class I and II COs are identified in male than in female. In addition, CO maturation inefficiency (CMI) is detected in some genetic backgrounds, suggesting that maize may be an ideal model for dissecting CMI. This research provides insights toward understanding the molecular mechanism of CO production between sexes and may help to improve maize breeding efficiency through paternal selection.


Subject(s)
Germ Cells, Plant/metabolism , Zea mays/genetics , Zea mays/physiology , Crossing Over, Genetic/genetics , Crossing Over, Genetic/physiology , Germ Cells, Plant/physiology , Meiosis/genetics , Meiosis/physiology , Ovule/genetics , Ovule/metabolism
20.
Methods Mol Biol ; 1924: 45-51, 2019.
Article in English | MEDLINE | ID: mdl-30694466

ABSTRACT

Shoot phototropism benefits growth and metabolism in land plants by enabling them to position their photosynthetic organs in favorable light conditions. Nonvascular land plants, like the ancestors of modern mosses, are believed to have been among the first plants to occupy the land. To understand the evolutional history of shoot phototropism in land plants, we have established a system for experimentally studying phototropism in gametophores of the moss Physcomitrella patens. Here we will describe the key points in our system, including obtaining etiolated gametophores, the light sources used for inducing bending, and the methods for evaluation of phototropic responses.


Subject(s)
Bryopsida/physiology , Plant Shoots/physiology , Germ Cells, Plant/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...