Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.976
Filter
1.
Biol Reprod ; 110(6): 1125-1134, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38733568

ABSTRACT

Assisted reproduction is one of the significant tools to treat human infertility. Morphological assessment is the primary method to determine sperm and embryo viability during in vitro fertilization cycles. It has the advantage of being a quick, convenient, and inexpensive means of assessment. However, visual observation is of limited predictive value for early embryo morphology. It has led many to search for other imaging tools to assess the reproductive potential of a given embryo. The limitations of visual assessment apply to both humans and animals. One recent innovation in assisted reproduction technology imaging is interferometric phase microscopy, also known as holographic microscopy. Interferometric phase microscopy/quantitative phase imaging is the next likely progression of analytical microscopes for the assisted reproduction laboratory. The interferometric phase microscopy system analyzes waves produced by the light as it passes through the specimen observed. The microscope collects the light waves produced and uses the algorithm to create a hologram of the specimen. Recently, interferometric phase microscopy has been combined with quantitative phase imaging, which joins phase contrast microscopy with holographic microscopy. These microscopes collect light waves produced and use the algorithm to create a hologram of the specimen. Unlike other systems, interferometric phase microscopy can provide a quantitative digital image, and it can make 2D and 3D images of the samples. This review summarizes some newer and more promising quantitative phase imaging microscopy systems for evaluating gametes and embryos. Studies clearly show that quantitative phase imaging is superior to bright field microscopy-based evaluation methods when evaluating sperm and oocytes prior to IVF and embryos prior to transfer. However, further assessment of these systems for efficacy, reproducibility, cost-effectiveness, and embryo/gamete safety must take place before they are widely adopted.


Subject(s)
Embryo, Mammalian , Holography , Holography/methods , Animals , Humans , Embryo, Mammalian/diagnostic imaging , Embryo, Mammalian/physiology , Male , Female , Germ Cells/physiology , Spermatozoa/physiology , Reproductive Techniques, Assisted , Fertilization in Vitro/methods , Microscopy/methods , Microscopy/instrumentation
2.
Dev Biol ; 502: 14-19, 2023 10.
Article in English | MEDLINE | ID: mdl-37385406

ABSTRACT

The identity of germ cells, the progenitors of life, is thought to be acquired by two modes; either by maternal signals (preformed) or induced de novo from pluripotent cells (epigenesis) in the developing embryos. However, paternal roles seem enshrouded or completely overlooked in this fundamental biological process. Hence, we investigated the presence of germplasm transcripts in the sperm of Gambusia holbrooki, a live-bearing fish, demonstrating their presence and suggesting paternal contributions. Interestingly, not all germplasm markers were present (nanos1 and tdrd6) in the sperm, but some were conspicuous (dazl, dnd-α, piwi II, and vasa), indicating that the latter is required for establishing germ cell identity in the progeny, with a possible parent-specific role. Furthermore, there were also spatial differences in the distribution of these determinants, suggesting additional roles in sperm physiology and/or fertility. Our results support the hypothesis that dads also play a vital role in establishing the germ cell identity, especially in G. holbrooki, which shares elements of both preformation and induction modes of germline determination. This, coupled with its life history traits, makes G. holbrooki an excellent system for dissecting evolutionary relationships between the two germline determination modes, their underpinning mechanisms and ultimately the perpetuity of life.


Subject(s)
Cyprinodontiformes , Semen , Animals , Male , Germ Cells/physiology , Biological Evolution , Spermatozoa , Cyprinodontiformes/genetics
3.
J Hazard Mater ; 454: 131495, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37119572

ABSTRACT

Recently, 6-PPD quinone (6-PPDQ), a derivative of tire antioxidant 6-PPD, was reported to have acute toxicity for organisms. However, the possible reproductive toxicity of 6-PPDQ is still largely unclear. In this study, the reproductive toxicity of 6-PPDQ after long-term exposure was further investigated in Caenorhabditis elegans. Exposure to 1 and 10 µg/L 6-PPDQ reduced the reproductive capacity. Meanwhile, exposure to 1 and 10 µg/L 6-PPDQ enhanced the germline apoptosis, which was accompanied by upregulation of ced-3, ced-4, and egl-1 expressions and downregulation of ced-9 expression. The observed increase in germline apoptosis in 1 and 10 µg/L 6-PPDQ exposed nematodes was associated with the enhancement in DNA damage and increase in expressions of related genes of cep-1, clk-2, hus-1, and mrt-2. The detected enhancement in germline apoptosis in 1 and 10 µg/L 6-PPDQ exposed nematodes was further associated with the increase in expressions of ced-1 and ced-6 governing the cell corpse engulfment process. Molecular docking analysis indicated the binding potentials of 6-PPDQ with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2) and corpse-recognizing phagocytic receptor CED-1. Therefore, our data suggested the toxicity on reproductive capacity by 6-PPDQ at environmentally relevant concentrations by enhancing DNA damage- and cell corpse engulfment-induced germline apoptosis in organisms.


Subject(s)
Apoptosis , Benzoquinones , Caenorhabditis elegans , DNA Damage , Germ Cells , Phenylenediamines , Reproduction , Animals , Apoptosis/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Germ Cells/drug effects , Germ Cells/physiology , Molecular Docking Simulation , Phenylenediamines/toxicity , Benzoquinones/toxicity , Reproduction/drug effects , Gene Expression/drug effects
4.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36503989

ABSTRACT

The adult Drosophila testis contains a well-defined niche created by a cluster of hub cells, which secrete signals that maintain adjacent germline stem cells and somatic cyst stem cells (CySCs). Hub cells are normally quiescent in adult flies but can exit quiescence, delaminate from the hub and convert into CySCs after ablation of all CySCs. The opposite event, CySC conversion into hub cells, was proposed to occur under physiological conditions, but the frequency of this event is debated. Here, to probe further the question of whether or not hub cells can be regenerated, we developed methods to genetically ablate some or all hub cells. Surprisingly, when flies were allowed to recover from ablation, the missing hub cells were not replaced. Hub cells did not exit quiescence after partial ablation of hub cells, and labeled cells from outside the hub did not enter the hub during or after ablation. Despite its ability to exit quiescence in response to CySC ablation, we conclude that the hub in the adult Drosophila testis does not have a mechanism to replenish missing hub cells.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Male , Drosophila Proteins/genetics , Testis , Stem Cells/physiology , Stem Cell Niche , Germ Cells/physiology , Drosophila melanogaster , Cell Differentiation/physiology
5.
Int J Mol Sci ; 23(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35886859

ABSTRACT

Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.


Subject(s)
Gonads , Infertility , Animals , Embryonic Development/genetics , Germ Cells/physiology , Mammals/genetics
6.
Biol Reprod ; 107(1): 12-26, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35788258

ABSTRACT

Reproductive medicine in China has developed rapidly since 1988 due to support from the government and scientific exploration. However, the success rate of assisted reproduction technology is around 30-40% and many unknown "black boxes" in gametogenesis and embryo development are still present. With the development of single-cell and low-input sequencing technologies, the network of transcriptome and epigenetic regulation (DNA methylation, chromatin accessibility, and histone modifications) during the development of human primordial germ cells, gametes, and embryos has been investigated in depth. Furthermore, preimplantation genetic testing has also rapidly developed. In this review, we summarize and analyze China's outstanding progress in these fields.


Subject(s)
Epigenesis, Genetic , Gametogenesis , DNA Methylation , Embryonic Development , Female , Gametogenesis/genetics , Germ Cells/physiology , Humans , Pregnancy
7.
WIREs Mech Dis ; 14(6): e1572, 2022 11.
Article in English | MEDLINE | ID: mdl-35852002

ABSTRACT

Small noncoding RNAs (sncRNAs) are pieces of RNA with a length below 200 bp and represent a diverse group of RNAs having many different biological functions. The best described subtype is the microRNAs which primarily function in posttranscriptional gene regulation and appear essential for most physiological processes. Of particular interest for the germline is the PIWI-interacting RNAs (piRNAs) which are a class of sncRNA of 21-35 bp in length that are almost exclusively found in germ cells. Recently, it has become clear that piRNAs are essential for testicular function, and in this perspective, we outline the current knowledge of piRNAs in humans. Although piRNAs appear unique to germ cells, they have also been described in various somatic cancers and biofluids. Here, we discuss the potential function of piRNAs in somatic tissues and whether detection in biofluids may be used as a biomarker for testicular function. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.


Subject(s)
Neoplasms , RNA, Small Untranslated , Male , Humans , RNA, Small Interfering/genetics , Testis , Germ Cells/physiology , Neoplasms/diagnosis
8.
Zoolog Sci ; 39(3): 286-292, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35699932

ABSTRACT

Nanos is one of the components of germ plasm and is evolutionarily conserved from flies to mammals. In medaka (Oryzias latipes), maternally provided nanos3 is essential for maintenance of primordial germ cells (PGCs). Here, we generated nanos3 loss-of-function mutants by using transcription activator-like effector nuclease (TALEN) and examined the function of zygotic nanos3 in medaka. Zygotic nanos3 homozygous (-/-) mutants derived from nanos3 heterozygous mothers formed germ cells. However, after hatching, the number of germ cells decreased considerably, resulting in infertility of both nanos3-/- females and males. Surprisingly, both nanos3-/- XX and XY mutants underwent precocious spermatogenesis during early gonadal development, as seen in loss-of-function mutants of foxl3, the germline sex-determination gene, in medaka. Therefore, in addition to the maintenance of germ cells, these results suggest that zygotic nanos3 affects the proper regulation of germline sex in XX medaka.


Subject(s)
Oryzias , Animals , Female , Germ Cells/physiology , Gonads , Male , Mammals , Oryzias/genetics , Spermatogenesis/physiology
9.
Science ; 376(6595): 818-823, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35587967

ABSTRACT

In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.


Subject(s)
Cell Division , Drosophila Proteins , Drosophila melanogaster , Endosomal Sorting Complexes Required for Transport , Ubiquitin-Specific Proteases , Animals , Cytokinesis/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Germ Cells/cytology , Germ Cells/physiology , Male , Nerve Tissue Proteins/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Vesicular Transport Proteins/metabolism
10.
Genes Genet Syst ; 97(1): 3-14, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35431282

ABSTRACT

Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.


Subject(s)
Chromatin , DNA Methylation , Germ Cells , Animals , Chromatin/genetics , Chromatin/metabolism , Chromatin/physiology , DNA Methylation/physiology , Epigenesis, Genetic , Female , Germ Cells/growth & development , Germ Cells/metabolism , Germ Cells/physiology , Histones/genetics , Histones/metabolism , Mice , Pregnancy
11.
Cells ; 11(7)2022 03 28.
Article in English | MEDLINE | ID: mdl-35406698

ABSTRACT

Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.


Subject(s)
Infertility , Pluripotent Stem Cells , Female , Germ Cells/physiology , Humans , Oocytes/physiology , Oogenesis/physiology , Ovary/physiology , Pluripotent Stem Cells/physiology
12.
J Ovarian Res ; 15(1): 37, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35321734

ABSTRACT

BACKGROUND: We recently published evidence to suggest that two populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) in ovary surface epithelium (OSE) undergo proliferation/differentiation, germ cell nests (GCN) formation, meiosis and eventually differentiate into oocytes that assemble as primordial follicles on regular basis during estrus cycle. Despite presence of stem cells, follicles get exhausted with advancing age in mice and result in senescence equivalent to menopause in women. Stem cells in aged ovaries can differentiate into oocytes upon transplantation into young ovaries, however, it is still not well understood why follicles get depleted with advancing age despite the presence of stem cells. The aim of the present study was to study stem cells and GCN in aged ovaries. METHODS: OSE cells from aged mice (> 18 months equivalent to > 55 years old women) were enzymatically separated and used to study stem cells. Viable (7-AAD negative) VSELs in the size range of 2-6 µm with a surface phenotype of Lin-CD45-Sca-1+ were enumerated by flow cytometry. Immuno-fluorescence and RT-PCR analysis were done to study stem/progenitor cells (OCT-4, MVH, SCP3) and transcripts specific for VSELs (Oct-4A, Sox-2, Nanog), primordial germ cells (Stella), germ cells (Oct-4, Mvh), early meiosis (Mlh1, Scp1) and ring canals (Tex14). RESULTS: Putative VSELs and OSCs were detected as darkly stained, spherical cells with high nucleo-cytoplasmic ratio along with germ cells nests (GCN) in Hematoxylin & Eosin stained OSE cells smears. Germ cells in GCN with distinct cytoplasmic continuity expressed OCT-4, MVH and SCP3. Transcripts specific for stem cells, early meiosis and ring canals were detected by RT-PCR studies. CONCLUSION: Rather than resulting as a consequence of accelerated loss of primordial follicle and their subsequent depletion, ovarian senescence/menopause occurs as a result of stem cells dysfunction. VSELs and OSCs exist along with increased numbers of GCNs arrested in pre-meiotic or early meiotic stage in aged ovaries and primordial follicle assembly is blocked possibly due to age-related changes in their microenvironment.


Subject(s)
Germ Cells , Ovarian Follicle , Ovary , Animals , Cellular Senescence , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Germ Cells/cytology , Germ Cells/physiology , Humans , Mice , Oocytes , Ovarian Follicle/growth & development , Ovary/cytology , Ovary/physiology , Transcription Factors
13.
Fertil Steril ; 117(3): 467-468, 2022 03.
Article in English | MEDLINE | ID: mdl-35219470

ABSTRACT

The increase in utilization and changing legal landscape has made the field of embryo and gamete cryopreservation fraught with potential future challenges and liabilities. Clinics should be aware of the current state of the science, potential legal ramifications of what is currently routine practice, and long-term ethical implications of our work.


Subject(s)
Cryopreservation/methods , Embryo, Mammalian/physiology , Fertilization in Vitro/methods , Cryopreservation/trends , Embryo Transfer/methods , Embryo Transfer/trends , Fertilization in Vitro/trends , Germ Cells/physiology , Humans
14.
Fertil Steril ; 117(3): 469-476, 2022 03.
Article in English | MEDLINE | ID: mdl-35219471

ABSTRACT

The purpose of this review is to educate the reader on the role that cryopreservation has played and continues to play in the ever-evolving field of assisted reproductive technologies, specifically in clinical human fertility treatment. We discuss the science behind the cryopreservation methods and investigated some of the major considerations that any clinic or cryobank faces in terms of risks and liabilities, physical challenges that accompany the constantly growing collection of cryopreserved specimens, and what this means on the ethical and legal front. Finally, we take a glimpse in the future to explore what may be on the horizon for the preservation of gametes and reproductive tissues.


Subject(s)
Cryopreservation/methods , Fertility Preservation/methods , Reproductive Techniques, Assisted , Cryopreservation/trends , Fertility Preservation/trends , Germ Cells/physiology , Germ Cells/transplantation , Humans , Reproductive Techniques, Assisted/trends , Vitrification
15.
PLoS Pathog ; 18(2): e1010276, 2022 02.
Article in English | MEDLINE | ID: mdl-35130301

ABSTRACT

Formation of gametes in the malaria parasite occurs in the midgut of the mosquito and is critical to onward parasite transmission. Transformation of the male gametocyte into microgametes, called microgametogenesis, is an explosive cellular event and one of the fastest eukaryotic DNA replication events known. The transformation of one microgametocyte into eight flagellated microgametes requires reorganisation of the parasite cytoskeleton, replication of the 22.9 Mb genome, axoneme formation and host erythrocyte egress, all of which occur simultaneously in <20 minutes. Whilst high-resolution imaging has been a powerful tool for defining stages of microgametogenesis, it has largely been limited to fixed parasite samples, given the speed of the process and parasite photosensitivity. Here, we have developed a live-cell fluorescence imaging workflow that captures the entirety of microgametogenesis. Using the most virulent human malaria parasite, Plasmodium falciparum, our live-cell approach captured early microgametogenesis with three-dimensional imaging through time (4D imaging) and microgamete release with two-dimensional (2D) fluorescence microscopy. To minimise the phototoxic impact to parasites, acquisition was alternated between 4D fluorescence, brightfield and 2D fluorescence microscopy. Combining live-cell dyes specific for DNA, tubulin and the host erythrocyte membrane, 4D and 2D imaging together enables definition of the positioning of newly replicated and segregated DNA. This combined approach also shows the microtubular cytoskeleton, location of newly formed basal bodies, elongation of axonemes and morphological changes to the erythrocyte membrane, the latter including potential echinocytosis of the erythrocyte membrane prior to microgamete egress. Extending the utility of this approach, the phenotypic effects of known transmission-blocking inhibitors on microgametogenesis were confirmed. Additionally, the effects of bortezomib, an untested proteasomal inhibitor, revealed a clear block of DNA replication, full axoneme nucleation and elongation. Thus, as well as defining a framework for broadly investigating microgametogenesis, these data demonstrate the utility of using live imaging to validate potential targets for transmission-blocking antimalarial drug development.


Subject(s)
Cytoskeleton/metabolism , Gametogenesis , Malaria, Falciparum/parasitology , Optical Imaging/methods , Plasmodium falciparum/cytology , Plasmodium falciparum/physiology , Animals , Cell Membrane/metabolism , DNA, Protozoan/metabolism , Erythrocytes/parasitology , Germ Cells/physiology , Humans , Imaging, Three-Dimensional/methods , Protozoan Proteins/metabolism , Workflow
16.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35156684

ABSTRACT

Despite their medical and economic relevance, it remains largely unknown how suboptimal temperatures affect adult insect reproduction. Here, we report an in-depth analysis of how chronic adult exposure to suboptimal temperatures affects oogenesis using the model insect Drosophila melanogaster. In adult females maintained at 18°C (cold) or 29°C (warm), relative to females at the 25°C control temperature, egg production was reduced through distinct cellular mechanisms. Chronic 18°C exposure improved germline stem cell maintenance, survival of early germline cysts and oocyte quality, but reduced follicle growth with no obvious effect on vitellogenesis. By contrast, in females at 29°C, germline stem cell numbers and follicle growth were similar to those at 25°C, while early germline cyst death and degeneration of vitellogenic follicles were markedly increased and oocyte quality plummeted over time. Finally, we also show that these effects are largely independent of diet, male factors or canonical temperature sensors. These findings are relevant not only to cold-blooded organisms, which have limited thermoregulation, but also potentially to warm-blooded organisms, which are susceptible to hypothermia, heatstroke and fever.


Subject(s)
Cell Lineage/physiology , Drosophila melanogaster/physiology , Germ Cells/physiology , Oogenesis/physiology , Stem Cells/physiology , Animals , Cold Temperature , Female , Gene Expression Regulation, Developmental/physiology , Male , Oocytes/physiology , Ovarian Follicle/physiology , Ovary/physiology , Signal Transduction/physiology , Vitellogenesis/physiology
17.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165179

ABSTRACT

Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow [J.-L. Maître et al., Science 338, 253-256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension-stabilizing E-cadherin-actin complexes at the contact.


Subject(s)
Cadherins/metabolism , Germ Cells/physiology , Stem Cells/physiology , Actin Cytoskeleton/physiology , Actins/metabolism , Actomyosin/metabolism , Animals , Cadherins/physiology , Cell Adhesion/physiology , Cell Communication/physiology , Cell Proliferation/physiology , Cytoskeleton/physiology , Germ Cells/growth & development , Germ Cells/metabolism , Zebrafish/metabolism , alpha Catenin/metabolism
18.
Nat Commun ; 13(1): 463, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075135

ABSTRACT

Germ cells are essential to pass DNA from one generation to the next. In human reproduction, germ cell development begins with the specification of primordial germ cells (PGCs) and a failure to specify PGCs leads to human infertility. Recent studies have revealed that the transcription factor network required for PGC specification has diverged in mammals, and this has a significant impact on our understanding of human reproduction. Here, we reveal that the Hominidae-specific Transposable Elements (TEs) LTR5Hs, may serve as TEENhancers (TE Embedded eNhancers) to facilitate PGC specification. LTR5Hs TEENhancers become transcriptionally active during PGC specification both in vivo and in vitro with epigenetic reprogramming leading to increased chromatin accessibility, localized DNA demethylation, enrichment of H3K27ac, and occupation of key hPGC transcription factors. Inactivation of LTR5Hs TEENhancers with KRAB mediated CRISPRi has a significant impact on germ cell specification. In summary, our data reveals the essential role of Hominidae-specific LTR5Hs TEENhancers in human germ cell development.


Subject(s)
Endogenous Retroviruses/physiology , Hominidae/virology , Reproduction , Retroelements , Retroviridae Infections/virology , Animals , Endogenous Retroviruses/genetics , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Germ Cells/physiology , Germ Cells/virology , Hominidae/genetics , Hominidae/physiology , Humans , Retroviridae Infections/physiopathology , Transcription Factors/genetics , Transcription Factors/metabolism
19.
FASEB J ; 36(2): e22131, 2022 02.
Article in English | MEDLINE | ID: mdl-34985827

ABSTRACT

Although germ cell fate is believed to be determined by signaling factors from differentiated somatic cells, the molecular mechanism behind this process remains obscure. In this study, premature meiosis in male germ cells was observed during the embryonic stage by conditional activation of ß-catenin in Sertoli cells. Somatic and germ cell transcriptome results indicated that the BMP signaling pathway was enriched after ß-catenin activation. In addition, we observed a decreased DNA methylation within a reduction of DNMT3A in germ cells of ß-catenin activated testes and reversed increase after inhibiting BMP signaling pathway with LDN-193189. We also found that Dazl expression was increased in ß-catenin activated testes and decreased after LDN treatment. Taken together, this study demonstrates that male germ cells entered meiosis prematurely during the embryonic stage after ß-catenin activated in Sertoli cells. BMP signaling pathway involved in germ cell meiosis initiation by mediating DNA methylation to induce meiotic genes expression.


Subject(s)
Bone Morphogenetic Proteins/genetics , Embryonic Development/genetics , Germ Cells/physiology , Meiosis/genetics , RNA-Binding Proteins/genetics , Up-Regulation/genetics , Animals , Cell Differentiation/genetics , DNA Methylation/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Sertoli Cells/physiology , Signal Transduction/genetics , Testis/pathology , Transcriptome/genetics , beta Catenin/genetics
20.
PLoS Genet ; 18(1): e1010002, 2022 01.
Article in English | MEDLINE | ID: mdl-34986144

ABSTRACT

A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Germ Cells/physiology , Animals , Blastoderm , Body Patterning , Cell Differentiation , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epigenesis, Genetic , Female , Germ Cells/metabolism , Male , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...