Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 575
Filter
1.
Science ; 384(6700): 1105-1110, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843334

ABSTRACT

Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing ß-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear ß-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking ß-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and ß-catenin and Nodal regulate morphogenesis.


Subject(s)
Body Patterning , Fundulidae , Morphogenesis , Nodal Protein , beta Catenin , Animals , beta Catenin/metabolism , Nodal Protein/metabolism , Fundulidae/embryology , Fundulidae/metabolism , Signal Transduction , Cell Movement , Germ Layers/metabolism , Blastula/metabolism , Embryonic Development , Embryo, Nonmammalian/metabolism , Cell Nucleus/metabolism
2.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38744282

ABSTRACT

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Subject(s)
Blastomeres , Cell Lineage , Embryo, Mammalian , Female , Humans , Blastomeres/cytology , Blastomeres/metabolism , Cell Division , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development , Germ Layers/cytology , Germ Layers/metabolism , Male , Animals , Mice
3.
Cell Stem Cell ; 31(5): 587-588, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701753

ABSTRACT

Using a human stem cell-based model to understand how the human epiblast forms at the very beginning of implantation, Indana et al.1 establish a role for pushing forces that are generated by apical actin polymerization and reveal a two-stage, biomechanics-driven lumen growth process underlying epiblast cavity morphogenesis.


Subject(s)
Actins , Humans , Actins/metabolism , Germ Layers/metabolism , Germ Layers/cytology , Morphogenesis , Animals
4.
Cell Stem Cell ; 31(5): 640-656.e8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701758

ABSTRACT

Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 µm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.


Subject(s)
Actins , Germ Layers , Osmotic Pressure , Polymerization , Humans , Actins/metabolism , Germ Layers/metabolism , Germ Layers/cytology , Models, Biological , Tight Junctions/metabolism
5.
Sci Rep ; 14(1): 10420, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710730

ABSTRACT

In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells , Nanog Homeobox Protein , Animals , Mice , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mice, Knockout
6.
Genome Res ; 34(4): 572-589, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38719471

ABSTRACT

Dormancy is a key feature of stem cell function in adult tissues as well as in embryonic cells in the context of diapause. The establishment of dormancy is an active process that involves extensive transcriptional, epigenetic, and metabolic rewiring. How these processes are coordinated to successfully transition cells to the resting dormant state remains unclear. Here we show that microRNA activity, which is otherwise dispensable for preimplantation development, is essential for the adaptation of early mouse embryos to the dormant state of diapause. In particular, the pluripotent epiblast depends on miRNA activity, the absence of which results in the loss of pluripotent cells. Through the integration of high-sensitivity small RNA expression profiling of individual embryos and protein expression of miRNA targets with public data of protein-protein interactions, we constructed the miRNA-mediated regulatory network of mouse early embryos specific to diapause. We find that individual miRNAs contribute to the combinatorial regulation by the network, and the perturbation of the network compromises embryo survival in diapause. We further identified the nutrient-sensitive transcription factor TFE3 as an upstream regulator of diapause-specific miRNAs, linking cytoplasmic MTOR activity to nuclear miRNA biogenesis. Our results place miRNAs as a critical regulatory layer for the molecular rewiring of early embryos to establish dormancy.


Subject(s)
Cell Proliferation , MicroRNAs , Pluripotent Stem Cells , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Embryonic Development/genetics , Germ Layers/metabolism , Germ Layers/cytology , Blastocyst/metabolism , Blastocyst/cytology , Female
7.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38752427

ABSTRACT

Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.


Subject(s)
Embryo Implantation , Germ Layers , Morphogenesis , Signal Transduction , Smad4 Protein , Animals , Smad4 Protein/metabolism , Smad4 Protein/genetics , Germ Layers/metabolism , Embryo Implantation/genetics , Mice , Morphogenesis/genetics , Female , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Mice, Knockout , Embryo, Mammalian/metabolism , Endoderm/metabolism , Endoderm/embryology , Blastocyst/metabolism , Blastocyst/cytology
8.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579720

ABSTRACT

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Subject(s)
Cell Differentiation , Gastrulation , Germ Layers , Animals , Mice , Germ Layers/cytology , Germ Layers/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , Fetal Proteins/metabolism , Fetal Proteins/genetics , Wnt Signaling Pathway , Cell Proliferation , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism
9.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563517

ABSTRACT

The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.


Subject(s)
Blastocyst , Cell Differentiation , Cell Lineage , Models, Biological , Animals , Mice , Blastocyst/metabolism , Blastocyst/cytology , Signal Transduction , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Endoderm/cytology , Endoderm/metabolism , Germ Layers/cytology , Germ Layers/metabolism
10.
Cells ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534378

ABSTRACT

Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of differentiation is limited. This is a long-standing issue for rapid and high-throughput screening to determine lineage specification efficiency. Here, we present deep learning (DL) methodologies for predicting and classifying early mesoderm cells differentiated from embryoid bodies (EBs) based on cellular and nuclear morphologies. Using a transgenic murine embryonic stem cell (mESC) line, namely OGTR1, we validated the upregulation of mesodermal genes (Brachyury (T): DsRed) in cells derived from EBs for the deep learning model training. Cells were classified into mesodermal and non-mesodermal (representing endo- and ectoderm) classes using a convolutional neural network (CNN) model called InceptionV3 which achieved a very high classification accuracy of 97% for phase images and 90% for nuclei images. In addition, we also performed image segmentation using an Attention U-Net CNN and obtained a mean intersection over union of 61% and 69% for phase-contrast and nuclear images, respectively. This work highlights the potential of integrating cell culture, imaging technologies, and deep learning methodologies in identifying lineage specification, thus contributing to the advancements in regenerative medicine. Collectively, our trained deep learning models can predict the mesoderm cells with high accuracy based on cellular and nuclear morphologies.


Subject(s)
Deep Learning , Pluripotent Stem Cells , Animals , Mice , Cell Differentiation/physiology , Germ Layers/metabolism , Mesoderm/metabolism
11.
Stem Cell Res ; 76: 103358, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447455

ABSTRACT

Parkinson's disease is a degenerative brain disorder characterized by dopamine neuronal degeneration and dopamine transporter loss. In this study, we generated an induced pluripotent stem cell (iPSC) line, KNIHi001-A, from the peripheral blood mononuclear cells (PBMCs) of a 76-year-old man with Parkinson's disease. The non-integrating Sendai virus was used to reprogram iPSCs. iPSCs exhibit pluripotent markers, a normal karyotype, viral clearance, and the ability to differentiate into the three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Male , Humans , Aged , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/metabolism , Leukocytes, Mononuclear/metabolism , Germ Layers/metabolism , Sendai virus/genetics , Cellular Reprogramming , Cell Differentiation/physiology
12.
Results Probl Cell Differ ; 72: 11-25, 2024.
Article in English | MEDLINE | ID: mdl-38509250

ABSTRACT

Pluripotent stem cell lines established from early-stage embryos of mammals or other species represent the embryonic stages before the initiation of somatic development. In these stem cell lines, cell proliferation capacity is maintained while developmental progression is arrested at a specific developmental stage that is determined by the combination of culture conditions, cell state, and species. All of these pluripotent stem cell lines express the transcription factors (TFs) Sox2 and Pou5f1 (Oct3/4); hence, these TFs are often regarded as pluripotency factors. However, the regulatory roles of these TFs vary depending on the cell line type. The cell lines representing preimplantation stage embryonic cells (mouse embryonic stem cells, mESCs) are regulated principally by the combined action of Sox2 and Pou5f1. Human ESCs and mouse epiblast stem cells (EpiSCs) represent immature and mature epiblast cells, respectively, where Otx2 and Zic2 progressively take over the preimplantation stage's regulatory roles of Sox2 and Pou5f1. This transition of the core TFs occurs to prepare for the initiation of somatic development.


Subject(s)
Pluripotent Stem Cells , Animals , Mice , Humans , Transcription Factors/metabolism , Germ Layers/metabolism , Cell Line , Cell Differentiation , Mammals
13.
Article in English | MEDLINE | ID: mdl-38509249

ABSTRACT

All somatic cells develop from the epiblast, which occupies the upper layer of two-layered embryos and in most mammals is formed after the implantation stage but before gastrulation initiates. Once the epiblast is established, the epiblast cells begin to develop into various somatic cells via large-scale cell reorganization, namely, gastrulation. Different pluripotent stem cell lines representing distinct stages of embryogenesis have been established: mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs), and mouse epiblast stem cells (EpiSCs), which represent the preimplantation stage inner cell mass, an early  post-implantation stage epiblast, and a later-stage epiblast, respectively. Together, these cell lines provide excellent in vitro models of cell regulation before somatic cells develop. This chapter addresses these early developmental stages.


Subject(s)
Embryonic Stem Cells , Pluripotent Stem Cells , Animals , Mice , Humans , Embryonic Stem Cells/metabolism , Cell Differentiation , Pluripotent Stem Cells/metabolism , Germ Layers/metabolism , Cell Line , Mammals
14.
Results Probl Cell Differ ; 72: 61-80, 2024.
Article in English | MEDLINE | ID: mdl-38509252

ABSTRACT

Studies using early-stage avian embryos have substantially impacted developmental biology, through the availability of simple culture methods and easiness in tissue manipulation. However, the regulations underlying brain and head development, a central issue of developmental biology, have not been investigated systematically. Yoshihi et al. (2022a) devised a technique to randomly label the epiblast cells with a green fluorescent protein before their development into the brain tissue. This technique was combined with grafting a node or node-derived anterior mesendoderm labeled with a cherry-colored fluorescent protein. Then cellular events were live-recorded over 18 hours during the brain and head development. The live imaging-based analyses identified previously undescribed mechanisms central to brain development: all anterior epiblast cells have a potential to develop into the brain tissues and their gathering onto a proximal anterior mesendoderm forms a brain primordium whereas the remaining cells develop into the covering head ectoderm. The analyses also ruled out the direct participation of the node's activity in the brain development. Yoshihi et al. (2022a) also demonstrate how the enigmatic data from classical models can be reinterpreted in the new model.This chapter was adapted from Yoshihi K, Iida H, Teramoto M, Ishii Y, Kato K, Kondoh H. (2022b). Epiblast cells gather onto the anterior mesendoderm and initiate brain development without the direct involvement of the node in avian embryos: Insights from broad-field live imaging. Front Cell Dev Biol. 10:1019845. doi: 10.3389/fcell.2022.1019845.


Subject(s)
Gastrula , Germ Layers , Germ Layers/metabolism , Ectoderm/metabolism , Embryonic Development , Brain
15.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473927

ABSTRACT

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are derived from pre- and post-implantation embryos, representing the initial "naïve" and final "primed" states of pluripotency, respectively. In this study, novel reprogrammed pluripotent stem cells (rPSCs) were induced from mouse EpiSCs using a chemically defined medium containing mouse LIF, BMP4, CHIR99021, XAV939, and SB203580. The rPSCs exhibited domed clones and expressed key pluripotency genes, with both X chromosomes active in female cells. Furthermore, rPSCs differentiated into cells of all three germ layers in vivo through teratoma formation. Regarding epigenetic modifications, the DNA methylation of Oct4, Sox2, and Nanog promoter regions and the mRNA levels of Dnmt3a, Dnmt3b, and Dnmt1 were reduced in rPSCs compared with EpiSCs. However, the miR-290 family was significantly upregulated in rPSCs. After removing SB203580, an inhibitor of the p38 MAPK pathway, the cell colonies changed from domed to flat, with a significant decrease in the expression of pluripotency genes and the miR-290 family. Conversely, overexpression of pri-miR-290 reversed these changes. In addition, Map2k6 was identified as a direct target gene of miR-291b-3p, indicating that the miR-290 family maintains pluripotency and self-renewal in rPSCs by regulating the MAPK signaling pathway.


Subject(s)
MicroRNAs , Pluripotent Stem Cells , Animals , Mice , Female , Pluripotent Stem Cells/metabolism , Cell Differentiation/genetics , Signal Transduction , MAP Kinase Signaling System , MicroRNAs/metabolism , Germ Layers/metabolism , MAP Kinase Kinase 6
16.
Nat Struct Mol Biol ; 31(1): 102-114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177678

ABSTRACT

As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.


Subject(s)
DNA Methylation , Embryonic Stem Cells , Animals , Mice , Cell Differentiation/genetics , Embryonic Stem Cells/metabolism , Transcription Factors/metabolism , Mouse Embryonic Stem Cells , Germ Cells/metabolism , Germ Layers/metabolism , Mammals/metabolism
17.
Dev Cell ; 59(4): 465-481.e6, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38237590

ABSTRACT

The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.


Subject(s)
Epigenesis, Genetic , Pluripotent Stem Cells , Animals , Mice , DNA Methylation/genetics , Chromatin/metabolism , DNA/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
18.
Nature ; 626(7998): 357-366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052228

ABSTRACT

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Subject(s)
Embryonic Development , Germ Layers , Pluripotent Stem Cells , Humans , Cell Differentiation , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Pluripotent Stem Cells/cytology , Interleukin-6/metabolism , Gastrula/cytology , Gastrula/embryology , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
19.
Stem Cell Res ; 74: 103270, 2024 02.
Article in English | MEDLINE | ID: mdl-38100911

ABSTRACT

The appropriate control of induced pluripotent stem cells (iPSCs) is essential for studying iPSCs derived from patients with Parkinson's disease (PD). Here, we established an iPSC line from a healthy female donor. The iPSCs were pluripotent, could differentiate into three germ layers, and had normal karyotypes. We also confirmed that the iPSC line exhibited no PD-related gene abnormalities. This iPSC line will be useful for PD research.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Cell Line , Germ Layers/metabolism
20.
Sci Rep ; 13(1): 22483, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110549

ABSTRACT

The Cre-LoxP system has been commonly used for cell-specific genetic manipulation. However, many Cre strains exhibit excision activity in unexpected cell types or tissues. Therefore, it is important to identify the cell types in which recombination takes place. Fibroblasts are a cell type that is inadequately defined due to a lack of specific markers to detect the entire cell lineage. Here, we investigated the Cre recombination induced by Col1α2-iCre, one of the most common fibroblast-mesenchymal Cre driver lines, by using a double-fluorescent Cre reporter line in which GFP is expressed when recombination occurs. Our results indicated that Col1α2-iCre activity was more extensive across cell types than previously reported: Col1α2-iCre-mediated recombination was found in not only cells of mesenchymal origin but also those of other lineages, including haematopoietic cells, myocardial cells, lung and intestinal epithelial cells, and neural cells. In addition, study of embryos revealed that recombination by Col1α2-iCre was observed in the early developmental stage before gastrulation in epiblasts, which would account for the recombination across various cell types in adult mice. These results offer more insights into the activity of Col1α2-iCre and suggest that experimental results obtained using Col1α2-iCre should be carefully interpreted.


Subject(s)
Germ Layers , Integrases , Mice , Animals , Mice, Transgenic , Integrases/genetics , Integrases/metabolism , Germ Layers/metabolism , Cell Lineage/genetics , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...