Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.546
Filter
1.
Physiol Plant ; 176(3): e14356, 2024.
Article in English | MEDLINE | ID: mdl-38828569

ABSTRACT

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Tolerance , Salt-Tolerant Plants , Sodium , Arabidopsis/genetics , Arabidopsis/physiology , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Germination/genetics , Germination/drug effects , Amaranthaceae/genetics , Amaranthaceae/physiology
2.
BMC Genomics ; 25(1): 550, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824516

ABSTRACT

BACKGROUND: Salinity is a significant abiotic stress that affects plants from germination through all growth stages. This study was aimed to determine the morpho-physiological and genetic variations in BC1F2, BC2F1 and F3 generations resulting from the cross combination WH1105 × Kharchia 65. RESULTS: A significant reduction in germination percentage was observed under salt stress in BC1F2 and F3 seeds. Correlation, heritability in the broad sense, phenotypic coefficient of variability (PCV) and genotypic coefficient of variability (GCV) were measured for all traits. The presence of both Nax1 and Nax2 loci was confirmed in twenty-nine plants using the marker-assisted selection technique. Genetic relationships among the populations were assessed using twenty-four polymorphic SSR markers. CONCLUSION: Cluster analysis along with two and three-dimensional PCA scaling (Principal Component Analysis) revealed the distinct nature of WH 1105 and Kharchia 65. Six plants closer to the recurrent parent (WH1105) selected through this study can serve as valuable genetic material for salt-tolerant wheat improvement programs.


Subject(s)
Microsatellite Repeats , Salt Tolerance , Triticum , Triticum/genetics , Triticum/growth & development , Microsatellite Repeats/genetics , Salt Tolerance/genetics , Plant Breeding/methods , Phenotype , Germination/genetics , Genotype , Crosses, Genetic
3.
Sci Rep ; 14(1): 10791, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734751

ABSTRACT

Sweet corn is highly susceptible to the deleterious effects of low temperatures during the initial stages of growth and development. Employing a 56K chip, high-throughput single-nucleotide polymorphism (SNP) sequencing was conducted on 100 sweet corn inbred lines. Subsequently, six germination indicators-germination rate, germination index, germination time, relative germination rate, relative germination index, and relative germination time-were utilized for genome-wide association analysis. Candidate genes were identified via comparative analysis of homologous genes in Arabidopsis and rice, and their functions were validated using quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed 35,430 high-quality SNPs, 16 of which were significantly correlated. Within 50 kb upstream and downstream of the identified SNPs, 46 associated genes were identified, of which six were confirmed as candidate genes. Their expression patterns indicated that Zm11ΒHSDL5 and Zm2OGO likely play negative and positive regulatory roles, respectively, in the low-temperature germination of sweet corn. Thus, we determined that these two genes are responsible for regulating the low-temperature germination of sweet corn. This study contributes valuable theoretical support for improving sweet corn breeding and may aid in the creation of specific germplasm resources geared toward enhancing low-temperature tolerance in sweet corn.


Subject(s)
Cold Temperature , Genome-Wide Association Study , Germination , Polymorphism, Single Nucleotide , Zea mays , Germination/genetics , Zea mays/genetics , Zea mays/growth & development , Gene Expression Regulation, Plant , Quantitative Trait Loci
4.
Plant Mol Biol ; 114(3): 64, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809410

ABSTRACT

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Gene Expression Regulation, Plant , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Plants, Genetically Modified , Germination/genetics
5.
Nature ; 629(8014): 1118-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38778102

ABSTRACT

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Subject(s)
Arabidopsis , Calcium Signaling , Calcium , Germination , Osmolar Concentration , Pollen , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Germination/genetics , Mutation , Pollen/genetics , Pollen/metabolism , Water/metabolism , HEK293 Cells , Humans , Dehydration
6.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791475

ABSTRACT

Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.


Subject(s)
Amaranthus , Arabidopsis , Gene Expression Regulation, Plant , Germination , Plant Proteins , Salt Stress , Gene Expression Regulation, Plant/drug effects , Amaranthus/drug effects , Amaranthus/genetics , Amaranthus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Germination/drug effects , Germination/genetics , Arabidopsis/genetics , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Seeds/drug effects , Seeds/growth & development , Seeds/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology
7.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575879

ABSTRACT

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Subject(s)
Brassica napus , Brassica rapa , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Seedlings/metabolism , Brassica napus/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Gene Expression Profiling , Germination/genetics , Brassica rapa/metabolism , Metabolome , Starch/metabolism , Sucrose/metabolism , Seeds , Gene Expression Regulation, Plant , Transcriptome
8.
Plant Physiol Biochem ; 210: 108631, 2024 May.
Article in English | MEDLINE | ID: mdl-38657550

ABSTRACT

Glutamine synthetase (GS), an initial enzyme in nitrogen (N) plant metabolism, exists as a group of isoenzymes found in both cytosolic (GS1) and plastids (GS2) and has gathered significant attention for enhancing N use efficiency and crop yield. This work focuses on the A. thaliana GLN1;3 and GLN1;5 genes, the two predicted most expressed genes in seeds, among the five isogenes encoding GS1 in this species. The expression patterns were studied using transgenic marker line plants and qPCR during seed development and germination. The observed patterns highlight distinct functions for the two genes and confirm GLN1;5 as the most highly expressed GS1 gene in seeds. The GLN1;5, expression, oriented towards hypocotyl and cotyledons, suggests a role in protein turnover during germination, while the radicle-oriented expression of GLN1;3 supports a function in early external N uptake. While the single mutants exhibited a normal phenotype, except for a decrease in seed parameters, the double gln1;3/gln1;5 mutant displayed a germination delay, substantial impairment in growth, nitrogen metabolism, and number and quality of the seeds, as well as a diminishing in flowering. Although seed and pollen-specific, GLN1;5 expression is upregulated in the meristems of the gln1;3 mutants, filling the lack of GLN1;3 and ensuring the normal functioning of the gln1;3 mutants. These findings validate earlier in silico data on the expression patterns of GLN1;3 and GL1;5 genes in seeds, explore their different functions, and underscore their essential role in plant growth, seed production, germination, and early stages of plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Germination , Glutamate-Ammonia Ligase , Seeds , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/enzymology , Seeds/growth & development , Seeds/genetics , Seeds/enzymology , Germination/genetics , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytosol/enzymology , Cytosol/metabolism , Nitrogen/metabolism , Plants, Genetically Modified , Isoenzymes/genetics , Isoenzymes/metabolism
9.
Genes (Basel) ; 15(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674350

ABSTRACT

Seed dormancy is a life adaptation trait exhibited by plants in response to environmental changes during their growth and development. The dormancy of commercial seeds is the key factor affecting seed quality. Eggplant seed dormancy is controlled by quantitative trait loci (QTLs), but reliable QTLs related to eggplant dormancy are still lacking. In this study, F2 populations obtained through the hybridization of paternally inbred lines with significant differences in dormancy were used to detect regulatory sites of dormancy in eggplant seeds. Three QTLs (dr1.1, dr2.1, and dr6.1) related to seed dormancy were detected on three chromosomes of eggplant using the QTL-Seq technique. By combining nonsynonymous sites within the candidate regions and gene functional annotation analysis, nine candidate genes were selected from three QTL candidate regions. According to the germination results on the eighth day, the male parent was not dormant, but the female parent was dormant. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of nine candidate genes, and the Smechr0201082 gene showed roughly the same trend as that in the phenotypic data. We proposed Smechr0201082 as the potential key gene involved in regulating the dormancy of eggplant seeds. The results of seed experiments with different concentrations of gibberellin A3 (GA3) showed that, within a certain range, the higher the gibberellin concentration, the earlier the emergence and the higher the germination rate. However, higher concentrations of GA3 may have potential effects on eggplant seedlings. We suggest the use of GA3 at a concentration of 200-250 mg·L-1 to treat dormant seeds. This study provides a foundation for the further exploration of genes related to the regulation of seed dormancy and the elucidation of the molecular mechanism of eggplant seed dormancy and germination.


Subject(s)
Germination , Plant Dormancy , Quantitative Trait Loci , Seeds , Solanum melongena , Solanum melongena/genetics , Solanum melongena/growth & development , Quantitative Trait Loci/genetics , Plant Dormancy/genetics , Seeds/genetics , Seeds/growth & development , Germination/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosome Mapping , Phenotype , Genes, Plant/genetics
10.
Genes (Basel) ; 15(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674422

ABSTRACT

Zelkova schneideriana Hand.-Mazz is a valuable ornamental tree and timber source, whose seedling breeding and large-scale cultivation are restricted by low seed germination and seedling rates. The regulatory mechanisms underlying seed germination and seedling establishment in Z. schneideriana remain unknown. This study conducted metabolomic and transcriptomic analyses of seed germination and seedling establishment in Z. schneideriana. Regular expression of genes and metabolite levels has been observed in plant hormone signal transduction, starch and sucrose metabolism, linoleic acid metabolism, and phenylpropanoid biosynthesis. The reduction in abscisic acid during seed germination may lead to seed release from dormancy. After the seed is released from dormancy, the metabolic levels of auxin, cytokinins, brassinolide, and various sugars are elevated, and they are consumed in large quantities during the seedling establishment stage. Linoleic acid metabolism is gradually activated during seedling establishment. Transcriptome analysis showed that a large number of genes in different metabolic pathways are upregulated during plant establishment, and material metabolism may be accelerated during seedling establishment. Genes regulating carbohydrate metabolism are altered during seed germination and seedling establishment, which may have altered the efficiency of carbohydrate utilization. In addition, the syntheses of lignin monomers and cellulose have different characteristics at different stages. These results provide new insights into the complex mechanisms underlying seed germination and seedling establishment in Z. schneideriana and other woody plants.


Subject(s)
Gene Expression Regulation, Plant , Germination , Seedlings , Seeds , Transcriptome , Germination/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Metabolomics/methods , Gene Expression Profiling/methods , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics
11.
BMC Plant Biol ; 24(1): 334, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664603

ABSTRACT

BACKGROUND: B-box (BBX) proteins are a type of zinc finger proteins containing one or two B-box domains. They play important roles in development and diverse stress responses of plants, yet their roles in wheat remain unclear. RESULTS: In this study, 96 BBX genes were identified in the wheat genome and classified into five subfamilies. Subcellular localization prediction results showed that 68 TaBBXs were localized in the nucleus. Protein interaction prediction analysis indicated that interaction was one way that these proteins exerted their functions. Promoter analysis indicated that TaBBXs may play important roles in light signal, hormone, and stress responses. qRT-PCR analysis revealed that 14 TaBBXs were highly expressed in seeds compared with other tissues. These were probably involved in seed dormancy and germination, and their expression patterns were investigated during dormancy acquisition and release in the seeds of wheat varieties Jing 411 and Hongmangchun 21, showing significant differences in seed dormancy and germination phenotypes. Subcellular localization analysis confirmed that the three candidates TaBBX2-2 A, TaBBX4-2 A, and TaBBX11-2D were nuclear proteins. Transcriptional self-activation experiments further demonstrated that TaBBX4-2A was transcriptionally active, but TaBBX2-2A and TaBBX11-2D were not. Protein interaction analysis revealed that TaBBX2-2A, TaBBX4-2A, and TaBBX11-2D had no interaction with each other, while TaBBX2-2A and TaBBX11-2D interacted with each other, indicating that TaBBX4-2A may regulate seed dormancy and germination by transcriptional regulation, and TaBBX2-2A and TaBBX11-2D may regulate seed dormancy and germination by forming a homologous complex. CONCLUSIONS: In this study, the wheat BBX gene family was identified and characterized at the genomic level by bioinformatics analysis. These observations provide a theoretical basis for future studies on the functions of BBXs in wheat and other species.


Subject(s)
Germination , Multigene Family , Plant Dormancy , Plant Proteins , Triticum , Triticum/genetics , Triticum/physiology , Plant Dormancy/genetics , Germination/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Computer Simulation , Phylogeny
12.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654190

ABSTRACT

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Subject(s)
Germination , Plant Dormancy , Triticum , Triticum/genetics , Triticum/enzymology , Triticum/physiology , Plant Dormancy/genetics , Germination/genetics , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Hydrogen Peroxide/metabolism , Gibberellins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Peroxidases/genetics , Peroxidases/metabolism , Plants, Genetically Modified , Abscisic Acid/metabolism , Genes, Plant
13.
Plant Biol (Stuttg) ; 26(4): 602-611, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634818

ABSTRACT

Seed coat mucilage plays an important role in promoting seed germination under adversity. Previous studies have shown that Arabidopsis thaliana MYB52 (AtMYB52) can positively regulate seed coat mucilage accumulation. However, the role of Brassica napus MYB52 (BnaMYB52) in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination remains largely unknown. We cloned the BnaA09.MYB52 coding domain sequence from B. napus cv ZS11, identified its conserved protein domains and elucidated its relationship with homologues from a range of plant species. Transgenic plants overexpressing BnaA09.MYB52 in the A. thaliana myb52-1 mutant were generated through Agrobacterium-mediated transformation and used to assess the possible roles of BnaA09.MYB52 in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination. Subcellular localization and transcriptional activity assays demonstrated that BnaA09.MYB52 functions as a transcription factor. RT-qPCR results indicate that BnaA09.MYB52 is predominantly expressed in roots and developing seeds of B. napus cv ZS11. Introduction of BnaA09.MYB52 into myb52-1 restored thinner seed coat mucilage in this mutant to levels in the wild type. Consistently, expression levels of three key genes participating in mucilage formation in developing seeds of myb52-1 were also restored to wild type levels by overexpressing BnaA09.MYB52. Furthermore, BnaA09.MYB52 was induced by osmotic stress during seed germination in B. napus, and ectopic expression of BnaA09.MYB52 successfully corrected sensitivity of the myb52-1 mutant to osmotic stress during seed germination. These findings enhance our understanding of the functions of BnaA09.MYB52 and provide a novel strategy for future B. napus breeding.


Subject(s)
Arabidopsis , Brassica napus , Gene Expression Regulation, Plant , Germination , Osmotic Pressure , Plant Proteins , Plants, Genetically Modified , Seeds , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/growth & development , Germination/genetics , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Brassica napus/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Mucilage/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
14.
Planta ; 259(6): 133, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668881

ABSTRACT

MAIN CONCLUSION: PlARF2 can positively regulate the seed dormancy in Paeonia lactiflora Pall. and bind the RY cis-element. Auxin, a significant phytohormone influencing seed dormancy, has been demonstrated to be regulated by auxin response factors (ARFs), key transcriptional modulators in the auxin signaling pathway. However, the role of this class of transcription factors (TFs) in perennials with complex seed dormancy mechanisms remains largely unexplored. Here, we cloned and characterized an ARF gene from Paeonia lactiflora, named PlARF2, which exhibited differential expression levels in the seeds during the process of seed dormancy release. The deduced amino acid sequence of PlARF2 had high homology with those of other plants and contained typical conserved Auxin_resp domain of the ARF family. Phylogenetic analysis revealed that PlARF2 was closely related to VvARF3 in Vitis vinifera. The subcellular localization and transcriptional activation assay showed that PlARF2 is a nuclear protein possessing transcriptional activation activity. The expression levels of dormancy-related genes in transgenic callus indicated that PlARF2 was positively correlated with the contents of PlABI3 and PlDOG1. The germination assay showed that PlARF2 promoted seed dormancy. Moreover, TF Centered Yeast one-hybrid assay (TF-Centered Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay analysis (Dual-Luciferase) provided evidence that PlARF2 can bind to the 'CATGCATG' motif. Collectively, our findings suggest that PlARF2, as TF, could be involved in the regulation of seed dormancy and may act as a repressor of germination.


Subject(s)
Gene Expression Regulation, Plant , Paeonia , Phylogeny , Plant Dormancy , Plant Proteins , Paeonia/genetics , Paeonia/physiology , Paeonia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Seeds/physiology , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Germination/genetics , Plants, Genetically Modified , Amino Acid Sequence
15.
BMC Plant Biol ; 24(1): 215, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532331

ABSTRACT

BACKGROUND: Seed dormancy is a biological mechanism that prevents germination until favorable conditions for the subsequent generation of plants are encountered. Therefore, this mechanism must be effectively established during seed maturation. Studies investigating the transcriptome and miRNAome of rice embryos and endosperms at various maturation stages to evaluate seed dormancy are limited. This study aimed to compare the transcriptome and miRNAome of rice seeds during seed maturation. RESULTS: Oryza sativa L. cv. Nipponbare seeds were sampled for embryos and endosperms at three maturation stages: 30, 45, and 60 days after heading (DAH). The pre-harvest sprouting (PHS) assay was conducted to assess the level of dormancy in the seeds at each maturation stage. At 60 DAH, the PHS rate was significantly increased compared to those at 30 and 45 DAH, indicating that the dormancy is broken during the later maturation stage (45 DAH to 60 DAH). However, the largest number of differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) were identified between 30 and 60 DAH in the embryo and endosperm, implying that the gradual changes in genes and miRNAs from 30 to 60 DAH may play a significant role in breaking seed dormancy. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses confirmed that DEGs related to plant hormones were most abundant in the embryo during 45 DAH to 60 DAH and 30 DAH to 60 DAH transitions. Alternatively, most of the DEGs in the endosperm were related to energy and abiotic stress. MapMan analysis and quantitative real-time polymerase chain reaction identified four newly profiled auxin-related genes (OsSAUR6/12/23/25) and one ethylene-related gene (OsERF087), which may be involved in seed dormancy during maturation. Additionally, miRNA target prediction (psRNATarget) and degradome dataset (TarDB) indicated a potential association between osa-miR531b and ethylene biosynthesis gene (OsACO4), along with osa-miR390-5p and the abscisic acid (ABA) exporter-related gene (OsMATE19) as factors involved in seed dormancy. CONCLUSIONS: Analysis of the transcriptome and miRNAome of rice embryos and endosperms during seed maturation provided new insights into seed dormancy, particularly its relationship with plant hormones such as ABA, auxin, and ethylene.


Subject(s)
MicroRNAs , Oryza , Plant Dormancy/genetics , Oryza/genetics , Transcriptome , Plant Growth Regulators/metabolism , Germination/genetics , Seeds/genetics , Abscisic Acid/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , MicroRNAs/metabolism , Gene Expression Regulation, Plant
16.
Plant Physiol Biochem ; 209: 108542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531119

ABSTRACT

High salinity is one of the detrimental environmental factors restricting plant growth and crop production throughout the world. This study demonstrated that the GARP family transcription factor MtHHO3 is involved in response to salt stress and abscisic acid (ABA) signaling in Medicago truncatula. The transcription of MtHHO3 was repressed by salt, osmotic stress, and ABA treatment. The seed germination assay showed that, overexpression of MtHHO3 in Arabidopsis thaliana caused hypersensitivity to salt and osmotic stress, but increased resistance to ABA inhibition. Overexpression of MtHHO3 in M. truncatula resulted in decreased tolerance of salinity, while loss-of-function mutants mthho3-1 and mthho3-2 were more resistant to salt stress compared with wild-type plants. qRT-PCR analyses showed that MtHHO3 downregulated the expression of genes in stress and ABA responsive pathways. We further demonstrated that MtHHO3 repressed the transcription of the pathogenesis-related gene MtPR2 by binding to its promoter. Overall, these results indicate that MtHHO3 negatively regulates salt stress response in plants and deepen our understanding of the role of the GARP subfamily transcription factors in modulating salt stress and ABA signaling.


Subject(s)
Arabidopsis , Medicago truncatula , Transcription Factors/genetics , Transcription Factors/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Salt Tolerance , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Arabidopsis/metabolism , Stress, Physiological/genetics , Germination/genetics
17.
Plant Physiol Biochem ; 209: 108526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537383

ABSTRACT

Drought stress inhibits seed germination, plant growth and development of tobacco, and seriously affects the yield and quality of tobacco leaves. However, the molecular mechanism underlying tobacco drought stress response remains largely unknown. In this study, integrated analysis of transcriptome and metabolome was performed on the germinated seeds of a cultivated variety K326 and its EMS mutagenic mutant M28 with great drought tolerance. The result showed that drought stress inhibited seed germination of the both varieties, while the germination rate of M28 was faster than that of K326 under drought stress. Besides, the levels of phytohormone ABA, GA19, and zeatin were increased by drought stress in M28. Five vital pathways were identified through integrated transcriptomic and metabolomic analysis, including zeatin biosynthesis, aspartate and glutamate synthesis, phenylamine metabolism, glutathione metabolism, and phenylpropanoid synthesis. Furthermore, 20 key metabolites in the above pathways were selected for further analysis of gene modular-trait relationship, and then four highly correlated modules were found. Then analysis of gene expression network was carried out of Top30 hub gene of these four modules, and 9 key candidate genes were identified, including HSP70s, XTH16s, APX, PHI-1, 14-3-3, SCP, PPO. In conclusion, our study uncovered some key drought-responsive pathways and genes of tobacco during seeds germination, providing new insights into the regulatory mechanisms of tobacco drought stress response.


Subject(s)
Germination , Transcriptome , Germination/genetics , Droughts , Zeatin/metabolism , Seeds/metabolism , Metabolome , Gene Expression Regulation, Plant , Stress, Physiological/genetics
18.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542283

ABSTRACT

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Subject(s)
Brassica napus , Brassica rapa , Erucic Acids , Germination/genetics , Brassica napus/genetics , Glucosinolates/metabolism , Droughts , Seeds/genetics , Seeds/metabolism , Brassica rapa/genetics , Gene Expression Profiling
19.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38493663

ABSTRACT

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Subject(s)
Oryza , Oryza/physiology , Cyclic Nucleotide-Gated Cation Channels/genetics , Germination/genetics , Pollen/metabolism , Pollen Tube/genetics , Calmodulin/genetics , Calmodulin/metabolism , Phosphotransferases , Nucleotides, Cyclic/metabolism
20.
Planta ; 259(4): 83, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441675

ABSTRACT

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall , Germination/genetics , Gibberellins , Homeodomain Proteins/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...