Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.127
Filter
1.
Dev Cell ; 59(11): 1361-1362, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834032

ABSTRACT

The ability to germinate, develop, and thrive underwater is key to efficient rice cultivation. In this issue of Developmental Cell, Wang et al. (2024) illuminate a hormone synthesis and inactivation cascade that promotes germination of submerged rice seeds and may allow improved germination in the field.


Subject(s)
Germination , Oryza , Oryza/growth & development , Oryza/metabolism , Germination/physiology , Seeds/growth & development , Seeds/metabolism , Plant Growth Regulators/metabolism , Water/metabolism
2.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840053

ABSTRACT

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Subject(s)
Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
3.
Braz J Biol ; 84: e281973, 2024.
Article in English | MEDLINE | ID: mdl-38836802

ABSTRACT

Agricultural management using technologies that help farmers increase productivity and reduce production costs must be promoted to ensure agricultural sustainability. The objective of the study was to achieve the pH effect of growth solution, chemical treatment, use of osmoprotector additive and mineral nitrate presence, on the activity of growth promoting bacteria, Azospirillum brasilense, and its effects on the physiological quality of seeds and wheat seedling growth. The first experiment evaluated the physiological quality of seeds and the second experiment was divided into four, evaluating the growth of wheat seedling in a hydroponic system. The experiments were prolonged in a very randomized design, with four replications. The physiological quality of the seeds was evaluated by germination tests, first germination count, length of the shoot and root and dry mass of the shoot and root. Initial growth was evaluated by quantifying the dry mass of the leaf shoot and root and the root system intervals. The pH of the solution and the presence of nitrogen did not influence the effects of inoculation of the A. brasilense bacteria. With the use of chemical treatment and osmoprotective additive, A. brasilense had no effect on the growth of wheat seedlings.


Subject(s)
Azospirillum brasilense , Culture Media , Germination , Seedlings , Triticum , Triticum/microbiology , Triticum/growth & development , Azospirillum brasilense/physiology , Seedlings/growth & development , Seedlings/microbiology , Germination/physiology , Hydrogen-Ion Concentration
4.
PLoS One ; 19(6): e0303638, 2024.
Article in English | MEDLINE | ID: mdl-38833460

ABSTRACT

Arthraxon hispidus is an introduced, rapidly spreading, and newly invasive grass in the eastern United States, yet little is known about the foundational biology of this aggressive invader. Germination responses to environmental factors including salinity, pH, osmotic potential, temperature, and burial depth were investigated to better understand its germination niche. Seeds from six populations in the Mid-Atlantic US germinated 95% with an average mean time to germination of 3.42 days of imbibition in the dark at 23°C. Germination occurred across a temperature range of 8-37°C and a pH range of 5-10 (≥83%), suggesting that neither pH nor temperature will limit germination in many environments. Arthraxon hispidus germination occurred in high salinity (342 mM NaCl) and osmotic potentials as low as -0.83MPa. The NaCl concentration required to reduce germination by 50% exceeded salinity concentrations found in soil and some brackish water saltmarsh systems. While drought adversely affects A. hispidus, 50% germination occurred at osmotic potentials ranging from -0.25 to -0.67 MPa. Given the climatic conditions of North America, drought stress is unlikely to restrict germination in large regions. Finally, emergence greatly decreased with burial depth. Emergence was reduced to 45% at 1-2 cm burial depths, and 0% at 8 cm. Emergence depths in concert with adequate moisture, germination across a range of temperatures, and rapid germination suggests A. hispidus' seed bank may be short-lived in moist environments, but further investigation is warranted. Given the broad abiotic tolerances of A. hispidus and a widespread native range, A. hispidus has the potential to germinate in novel territories beyond its currently observed invaded range.


Subject(s)
Germination , Introduced Species , Temperature , Germination/physiology , Poaceae/physiology , Poaceae/growth & development , Salinity , Hydrogen-Ion Concentration , Seeds/growth & development , Seeds/physiology , Droughts
5.
PeerJ ; 12: e17148, 2024.
Article in English | MEDLINE | ID: mdl-38708360

ABSTRACT

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.


Subject(s)
Lotus , Pollen , Thermotolerance , Pollen/physiology , Thermotolerance/physiology , Lotus/physiology , Lotus/growth & development , Adaptation, Physiological/physiology , Global Warming , Germination/physiology , Altitude , Climate Change , Temperature , Acclimatization/physiology
6.
BMC Plant Biol ; 24(1): 486, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822268

ABSTRACT

BACKGROUND: Horsfieldia hainanensis Merr., an indicator species of China's humid tropical rainforests, is endangered due to difficulties with population regeneration. In this study, the biological characteristics and germination adaptability of the seeds were studied for the first time, in order to provide a basis for analyzing the causes of endangerment and strategies for the artificial cultivation of H. hainanensis. The effects of biological characteristics (population, arils, seed coat, seed weight, seed moisture content) and environmental factors (temperature, light, drought, substrate, burial depth) on seed germination and seedling growth of H. hainanensis were studied. RESULTS AND DISCUSSION: The fruits were found to be capsules containing seeds wrapped in a pericarp and fleshy aril, which provide protection and assist in seed dispersal, but also pose risks to the seeds, as the peel and fleshy aril can become moldy under high temperature and humidity conditions. There were significant differences in fruit morphology and germination characteristics among different populations, and the seed quality of populations in Niandian village, Daxin County, Chongzuo City, Guangxi Zhuang Autonomous Region was better. The arils significantly inhibited seed germination, the germination of large seeds was better, and seedling growth from medium seeds was superior. H. hainanensis seeds were sensitive to dehydration, and intolerant to drought and low temperature, which is typical of recalcitrant seeds. The seeds are suitable for germination on a moist substrate surface with good water retention and breathability at 30-35℃.


Subject(s)
Endangered Species , Germination , Seeds , Germination/physiology , Seeds/growth & development , Seeds/physiology , China , Fruit/growth & development , Fruit/physiology , Seedlings/growth & development , Seedlings/physiology , Temperature
7.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793920

ABSTRACT

Soybean is grown worldwide for its high protein and oil content. Weeds compete fiercely for resources, which affects soybean yields. Because of the progressive enhancement of weed resistance to herbicides and the quickly increasing cost of manual weeding, mechanical weed control is becoming the preferred method of weed control. Mechanical weed control finds it difficult to remove intra-row weeds due to the lack of rapid and precise weed/soybean detection and location technology. Rhodamine B (Rh-B) is a systemic crop compound that can be absorbed by soybeans which fluoresces under a specific excitation light. The purpose of this study is to combine systemic crop compounds and computer vision technology for the identification and localization of soybeans in the field. The fluorescence distribution properties of systemic crop compounds in soybeans and their effects on plant growth were explored. The fluorescence was mainly concentrated in soybean cotyledons treated with Rh-B. After a comparison of soybean seedlings treated with nine groups of rhodamine B solutions at different concentrations ranging from 0 to 1440 ppm, the soybeans treated with 180 ppm Rh-B for 24 h received the recommended dosage, resulting in significant fluorescence that did not affect crop growth. Increasing the Rh-B solutions reduced crop biomass, while prolonged treatment times reduced seed germination. The fluorescence produced lasted for 20 days, ensuring a stable signal in the early stages of growth. Additionally, a precise inter-row soybean plant location system based on a fluorescence imaging system with a 96.7% identification accuracy, determined on 300 datasets, was proposed. This article further confirms the potential of crop signaling technology to assist machines in achieving crop identification and localization in the field.


Subject(s)
Glycine max , Rhodamines , Seedlings , Glycine max/growth & development , Glycine max/drug effects , Glycine max/metabolism , Seedlings/growth & development , Rhodamines/chemistry , Crops, Agricultural/growth & development , Germination/physiology , Germination/drug effects , Plant Weeds/growth & development , Plant Weeds/drug effects , Fluorescence
8.
Physiol Plant ; 176(3): e14353, 2024.
Article in English | MEDLINE | ID: mdl-38801018

ABSTRACT

Environmental factors, such as temperature and moisture, and plant factors, such as seed position on the mother plant, can affect seed viability and germination. However, little is known about the viability and germination of seeds in different positions on the mother plant after burial in soil under natural environmental conditions. Here, diaspores from three positions on a compound spike and seeds from two/three positions in a diaspore of the invasive diaspore-heteromorphic annual grass Aegilops tauschii were buried at four depths for more than 2 years (1-26 months) under natural conditions and viability and germination monitored monthly. Viability of seeds in each diaspore/seed position decreased as burial depth and duration increased and was associated with changes in soil temperature and moisture. Germination was highest at 2 cm and lowest at 10 cm soil depths, with peaks and valleys in autumn/spring and winter/summer, respectively. Overall, seeds in distal diaspore and distal seed positions had higher germination percentages than those in basal diaspore and basal seed positions, but basal ones lived longer than distal ones. Chemical content of fresh diaspores/seeds was related to diaspore/seed position effects on seed germination and viability during burial. We conclude that seeds in distal diaspores/seed positions have a 'high risk' strategy and those in basal positions a 'low risk' strategy. The two risk strategies may act as a bet-hedging strategy that spreads risks of germination failure in the soil seed bank over time, thereby facilitating the survival and invasiveness of A. tauschii.


Subject(s)
Germination , Poaceae , Seeds , Soil , Germination/physiology , Seeds/physiology , Seeds/growth & development , Poaceae/physiology , Poaceae/growth & development , Soil/chemistry , Introduced Species , Temperature , Seasons , Environment
9.
Sci Rep ; 14(1): 8235, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589665

ABSTRACT

This study investigated the germination capacity (endogenous factor) of Petagnaea gussonei (Spreng.) Rauschert, an endemic monospecific plant considered as a relict species of the ancient Mediterranean Tertiary flora. This investigation focused also on the temporal trends of soil-use, climate and desertification (exogenous factors) across the natural range of P. gussonei. The final germination percentage showed low values between 14 and 32%, the latter obtained with GA3 and agar at 10 °C. The rising temperatures in the study area will further increase the dormancy of P. gussonei, whose germination capacity was lower and slower at temperatures higher than 10 °C. A further limiting factor of P. gussonei is its dormancy, which seems to be morpho-physiological. Regarding climate trends, in the period 1931-2020, the average temperature increased by 0.5 °C, from 15.4 to 15.9 °C, in line with the projected climate changes throughout the twenty-first century across the Mediterranean region. The average annual rainfall showed a relatively constant value of c. 900 mm, but extreme events grew considerably in the period 1991-2020. Similarly, the land affected by desertification expanded in an alarming way, by increasing from 21.2% in 2000 to 47.3% in 2020. Soil-use changes created also a complex impacting mosaic where c. 40% are agricultural areas. The effective conservation of P. gussonei should be multilateral by relying on germplasm banks, improving landscape connectivity and vegetation cover, and promoting climate policies.


Subject(s)
Apiaceae , Plant Dormancy , Plant Dormancy/physiology , Soil , Conservation of Natural Resources , Climate Change , Seeds/physiology , Germination/physiology , Plants , Temperature
10.
Braz J Biol ; 84: e281286, 2024.
Article in English | MEDLINE | ID: mdl-38629678

ABSTRACT

Salinity reduces feijão-caupi production, and the search for tolerant varieties becomes important within the agricultural context, as, in addition to being used in the field, they can be used in genetic improvement. The objective was to for a identify variety that is tolerant to salinity considering the physiological quality of seeds and seedling growth. A 2 × 4 factorial scheme was used, referring to the varieties Pingo-de-ouro and Coruja, and four electrical conductivities of water (0; 3.3; 6.6 and 9.9 dS m-1). The physiological quality of seeds and the growth of seedlings were analyzed, in addition to the cumulative germination. The Pingo-de-ouro variety showed no germination, length of the shoot and root, dry mass of the shoot and root compromised up to electrical conductivity of 6 dS m-1 in relation to 0.0 dS m-1. On the other hand, the Coruja variety showed reduced germination, increased shoot and root length. The creole variety Pingo-de-ouro proved to be tolerant to salinity.


Subject(s)
Vigna , Vigna/genetics , Salinity , Sodium Chloride , Seedlings , Germination/physiology , Seeds/physiology
11.
Bioresour Technol ; 400: 130663, 2024 May.
Article in English | MEDLINE | ID: mdl-38583671

ABSTRACT

The measurement of germination index (GI) in composting is a time-consuming and laborious process. This study employed four machine learning (ML) models, namely Random Forest (RF), Artificial Neural Network (ANN), Support Vector Regression (SVR), and Decision Tree (DT), to predict GI based on key composting parameters. The prediction results showed that the coefficient of determination (R2) for RF (>0.9) and ANN (>0.9) was higher than SVR (<0.6) and DT (<0.8), suggesting that RF and ANN displayed superior predictive performance for GI. The SHapley additive exPlanations value result indicated that composting time, temperature, and pH were the important features contributing to GI. Composting time was found to have the most significant impact on GI. Overall, RF and ANN were suggested as effective tools for predicting GI in composting. This study offers the reliable approach of accurately predicting GI in composting processes, thereby enabling intelligent composting practices.


Subject(s)
Composting , Machine Learning , Neural Networks, Computer , Composting/methods , Germination/physiology , Temperature , Hydrogen-Ion Concentration , Soil/chemistry , Organic Chemicals
12.
J Proteomics ; 300: 105176, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38604334

ABSTRACT

Cold stratification is known to affect the speed of seed germination; however, its regulation at the molecular level in Ferula assa-foetida remains ambiguous. Here, we used cold stratification (4 °C in the dark) to induce germination in F. assa-foetida and adopted a proteomic and metabolomic approach to understand the molecular mechanism of germination. Compared to the control, we identified 209 non-redundant proteins and 96 metabolites in germinated F. assa-foetida seed. Results highlight the common and unique regulatory mechanisms like signaling cascade, reactivation of energy metabolism, activation of ROS scavenging system, DNA repair, gene expression cascade, cytoskeleton, and cell wall modulation in F. assa-foetida germination. A protein-protein interaction network identifies 18 hub protein species central to the interactome and could be a key player in F. assa-foetida germination. Further, the predominant metabolic pathways like glucosinolate biosynthesis, arginine and proline metabolism, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis, and carotenoid biosynthesis in germinating seed may indicate the regulation of carbon and nitrogen metabolism is prime essential to maintain the physiology of germinating seedlings. The findings of this study provide a better understanding of cold stratification-induced seed germination, which might be utilized for genetic modification and traditional breeding of Ferula assa-foetida. SIGNIFICANCE: Seed germination is the fundamental checkpoint for plant growth and development, which has ecological significance. Ferula assa-foetida L., commonly known as "asafoetida," is a medicinal and food crop with huge therapeutic potential. To date, our understanding of F. assa-foetida seed germination is rudimentary. Therefore, studying the molecular mechanism that governs dormancy decay and the onset of germination in F. assa-foetida is essential for understanding the basic principle of seed germination, which could offer to improve genetic modification and traditional breeding.


Subject(s)
Ferula , Germination , Plant Proteins , Proteomics , Seeds , Germination/physiology , Seeds/metabolism , Seeds/growth & development , Ferula/metabolism , Proteomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Metabolomics , Gene Expression Regulation, Plant , Protein Interaction Maps , Proteome/metabolism
13.
Dev Cell ; 59(11): 1363-1378.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38579719

ABSTRACT

The mechanism underlying the ability of rice to germinate underwater is a largely enigmatic but key research question highly relevant to rice cultivation. Moreover, although rice is known to accumulate salicylic acid (SA), SA biosynthesis is poorly defined, and its role in underwater germination is unknown. It is also unclear whether peroxisomes, organelles essential to oilseed germination and rice SA accumulation, play a role in rice germination. Here, we show that submerged imbibition of rice seeds induces SA accumulation to promote germination in submergence. Two submergence-induced peroxisomal Oryza sativa cinnamate:CoA ligases (OsCNLs) are required for this SA accumulation. SA exerts this germination-promoting function by inducing indole-acetic acid (IAA) catabolism through the IAA-amino acid conjugating enzyme GH3. The metabolic cascade we identified may potentially be adopted in agriculture to improve the underwater germination of submergence-intolerant rice varieties. SA pretreatment is also a promising strategy to improve submerged rice germination in the field.


Subject(s)
Germination , Oryza , Peroxisomes , Plant Growth Regulators , Plant Proteins , Oryza/metabolism , Oryza/growth & development , Germination/physiology , Peroxisomes/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Coenzyme A Ligases/metabolism , Indoleacetic Acids/metabolism , Seeds/metabolism , Seeds/growth & development , Salicylic Acid/metabolism , Cinnamates/metabolism
14.
Braz J Biol ; 84: e279806, 2024.
Article in English | MEDLINE | ID: mdl-38536976

ABSTRACT

The proper establishment of plants is essential for the efficient use of resources such as water and light. Besides, even after seed storage and sowing the uniform establishment of plants is essential for their success. Crotalaria ochroleuca and Crotalaria spectabilis are important medicinal plants with poor seed germination rate, occasionally. The effects of seed priming in both C. ochroleuca and C. spectabilis were evaluated in seed performance even after seeds storage for up 90-days. Experimental assays were performed in a randomized design with gibberellic acid (GA3, 100 ppm), polyethylene glycol (PEG 6000, -0.2 MPa) and PEG (-0.2 MPa) + GA3 (100 ppm) solutions during seed priming in four replicates. Seeds not submitted to priming treatments constituted control. Seeds physiological performance were evaluated immediately and even after 30, 60 and 90-days seed dry-storage. The data obtained in each experiment were submitted to variance analysis (ANOVA) adopting a confidence level of 95%. The effects of seed priming with PEG and GA3 during seed ageing were significant for germination variables of C. ochroleuca and C. spectabilis. During dry storage, seed viability of both species gradually decreased and the first symptoms were delayed seed germination, especially more evident for C. ochroleuca, even in primed or non-primed seeds. Afterwards, C. ochroleuca seeds previously GA3 primed had higher results of root protrusion (86%), hypocotyls elongation (76%) and complete seedlings (75%) than non-primed seeds (control). These findings shown a good potential of hormopriming to attenuate damage during the seed aging of C. ochroleuca.


Subject(s)
Crotalaria , Seedlings , Germination/physiology , Seeds/physiology
15.
J Integr Plant Biol ; 66(4): 731-748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38482956

ABSTRACT

Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.


Subject(s)
Gibberellins , Oryza , Gibberellins/pharmacology , Gibberellins/metabolism , Germination/physiology , Potassium/metabolism , Oryza/metabolism , Seeds/metabolism , Salt Stress , Membrane Transport Proteins/metabolism , Gene Expression Regulation, Plant
16.
Proc Natl Acad Sci U S A ; 121(14): e2321612121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530890

ABSTRACT

To preserve germination ability, plant seeds must be protected from environmental stresses during the storage period. Here, we demonstrate that autophagy, an intracellular degradation system, maintains seed germination ability in Arabidopsis thaliana. The germination ability of long-term (>5 years) stored dry seeds of autophagy-defective (atg) mutant and wild-type (WT) plants was compared. Long-term stored (old) seeds of atg mutants showed lower germination ability than WT seeds, although short-term stored (new) seeds of atg mutants did not show such a phenotype. After removal of the seed coat and endosperm from old atg mutant seeds, the embryos developed into seedlings. Autophagic flux was maintained in endosperm cells during the storage period, and autophagy defect resulted in the accumulation of oxidized proteins and accelerated endosperm cell death. Consistent with these findings, the transcripts of genes, ENDO-ß-MANNANASE 7 and EXPANSIN 2, which are responsible for degradation/remodeling of the endosperm cell wall during germination, were reduced in old atg mutant seeds. We conclude that autophagy maintains endosperm quality during seed storage by suppressing aging-dependent oxidative damage and cell death, which allows the endosperm to perform optimal functions during germination, i.e., cell wall degradation/remodeling, even after long-term storage.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Endosperm/genetics , Germination/physiology , Seeds/genetics , Arabidopsis Proteins/metabolism , Autophagy , Gene Expression Regulation, Plant
17.
Plant Biol (Stuttg) ; 26(3): 457-466, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38407522

ABSTRACT

Old man's beard (Clematis vitalba L.) is a liana species that has become invasive in many areas of its introduced range. Seeds are produced in abundance and are both physiologically and morphologically dormant upon maturity. To understand the importance of seeds to its invasiveness, changes in viability and dormancy of the aerial seed bank were tracked throughout the after-ripening period and during storage. Seeds collected every second month for 2 years were subjected to germination tests. Other seeds stored in outdoor ambient conditions or in a dry, chilled state were dissected before, during, and after imbibition, as well as during incubation, to measure embryo size. Less than 72% of seeds on the mother plant were viable. Viable seeds remained completely morpho-physiologically dormant throughout autumn, even when treated with nitrate. Physiological dormancy declined in response to seasonal changes, yet morphological dormancy did not change until seeds had been exposed to appropriate germination conditions for several days. Fully dormant autumn seeds decayed at higher rates during incubation than partially or fully after-ripened seeds, which were also more germinable and less dormant. Furthermore, seeds incubated in complete darkness were more likely to decay or remain dormant than those exposed to light. This study demonstrates that fewer than three-quarters of seeds produced are viable and further decay occurs after dispersal, yet total fertility is still very high, with enormous propagule pressure from seeds alone. Viable seeds are protected with two forms of dormancy; morphological dormancy requires additional germination cues in order to break after seasonal changes break physiological dormancy.


Subject(s)
Clematis , Plant Dormancy , Humans , Plant Dormancy/physiology , Seed Bank , Germination/physiology , Seeds/physiology
18.
Ann Bot ; 133(7): 941-952, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38365444

ABSTRACT

BACKGROUND AND AIMS: Orchid seeds are reputed to be short lived in dry, cold storage conditions, potentially limiting the use of conventional seed banks for long-term ex situ conservation. This work explores whether Cattleya seeds are long lived or not during conventional storage (predried to ~12 % relative humidity, then stored at -18 °C). METHODS: We explored the possible interaction of factors influencing seed lifespan in eight species of the genus Cattleya using physiological (germination and vigour), biochemical (gas chromatography), biophysical (differential scanning calorimetry) and morphometric methods. Seeds were desiccated to ~3 % moisture content and stored at -18 °C for more than a decade, and seed quality was measured via three in vitro germination techniques. Tetrazolium staining was also used to monitor seed viability during storage. The morphometric and germination data were subjected to ANOVA and cluster analysis, and seed lifespan was subjected to probit analysis. KEY RESULTS: Seeds of all Cattleya species were found to be desiccation tolerant, with predicted storage lifespans (P50y) of ~30 years for six species and much longer for two species. Cluster analysis showed that the three species with the longest-lived seeds had smaller (9-11 %) airspaces around the embryo. The post-storage germination method impacted the quality assessment; seeds equilibrated at room temperature for 24 h or in 10 % sucrose solution had improved germination, particularly for the seeds with the smallest embryos. Chromatography revealed that the seeds of all eight species were rich in linoleic acid, and differential scanning calorimetry identified a peak that might be auxiliary to selecting long-lived seeds. CONCLUSIONS: These findings show that not all orchids produce seeds that are short lived, and our trait analyses might help to strengthen prediction of seed longevity in diverse orchid species.


Subject(s)
Germination , Orchidaceae , Seed Bank , Seeds , Seeds/physiology , Seeds/growth & development , Orchidaceae/physiology , Orchidaceae/growth & development , Orchidaceae/anatomy & histology , Germination/physiology , Desiccation , Calorimetry, Differential Scanning
19.
Zhongguo Zhong Yao Za Zhi ; 49(2): 354-360, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403311

ABSTRACT

This study aimed to examine the morphological, physiological, and biochemical alterations occurring in Notopterygium incisum seeds throughout their developmental stages, with the objective of establishing a theoretical foundation for the cultivation of superior quality seeds. The experimental materials utilized in this study were the seeds of N. incisum at various stages of development following anthesis. Through the employment of morphological observation and plant physiology techniques, the external morphology, nutrients, enzyme activity, and endogenous hormones of the seeds were assessed. The results revealed a transition in seed coat color from light green to brown during the growth and development of N. incisum seeds. Additionally, as the seeds matured, a decrease in water content was observed. Conversely, starch content exhibited a progressive increase, while sucrose content displayed fluctuations. At 7 days after anthesis, the soluble sugar content attained its highest level of 4.52 mg·g~(-1), whereas the soluble protein content reached its maximum of 6.00 mg·g~(-1) at 14 days after anthesis and its minimum of 4.94 mg·g~(-1) at 42 days after anthesis. The activity of superoxide dismutase(SOD) exhibited an initial increase, followed by a decrease, and eventually reached a stable state. Conversely, the activities of catalase(CAT) and peroxidase(POD) demonstrated a decrease initially, followed by an increase, and then another decrease. The levels of the four endogenous hormones, namely gibberellin(GA_3), zeatin riboside(ZR), auxin(IAA), and abscisic acid(ABA), in the seeds displayed significant variations, with IAA and ABA exhibiting considerably higher levels compared to the other hormones. The levels of plant growth-promoting hormones, represented by IAA, generally displayed a pattern of initial increase followed by a subsequent decrease during seed development, while the plant growth-inhibiting hormone ABA showed the opposite trend. The findings indicate that the alterations in nutrient composition, antioxidant enzyme activity, and endogenous hormone levels vary throughout the maturation process of N. incisum seeds. These observations hold relevance for the cultivation of N. incisum seeds.


Subject(s)
Gibberellins , Plant Growth Regulators , Abscisic Acid , Seeds , Hormones/metabolism , Germination/physiology
20.
PeerJ ; 12: e16839, 2024.
Article in English | MEDLINE | ID: mdl-38348103

ABSTRACT

Hieracium lucidum subsp. lucidum is a critically endangered endemic taxa of the Sicilian flora. It is a relict of the Tertiary period surviving on the cliffs of Monte Gallo (NW-Sicily). This research focused on finding the best protocols for seed germination and vegetative and in vitro propagation to contribute to ex situ conservation. Seed germination tests were carried out using constant temperatures of 15 °C, 20 °C and 25 °C in continuous darkness and an alternating temperature of 30/15 °C (16 h/8 h, light/dark). The seeds had no dormancy, and a high germination capacity (70-95%) was obtained at all tested thermoperiods. The possibility of vegetative propagation of the taxon was evaluated through the rooting capacity of stem cuttings treated or not treated with indole-3-butyric acid (IBA). All cuttings were treated with IBA rooted within 2 months, while only 50% of the untreated cuttings were rooted within a longer time. An efficient protocol for rapid in vitro propagation from leaf portions was developed. The response of explants was tested on hormone-free Murashige and Skoog (MS) basal medium and MS enriched with different types of cytokinins: 6-Benzylaminopurine (BAP) and meta-Topolin (mT) in combination with naphthaleneacetic acid (NAA) and 2,4-Dichlorophenoxyacetic acid (2,4-D) at the same concentration. The combination of mT (2 mg L-1) and 2,4-D (1 mg L-1) in the medium was the most effective and showed the highest percentage of callus induction and the mean number of regenerated shoots. The maximum rate of root regeneration and the maximum number and length of roots were obtained on hormone-free MS and MS enriched with IBA at concentrations of 1 mg L-1. From the results obtained, it can be concluded that H. lucidum subsp. lucidum can be successfully propagated using one of the tested techniques, subject to the availability of the material for reproduction.


Subject(s)
Asteraceae , Germination , Germination/physiology , Seeds , Cytokinins , 2,4-Dichlorophenoxyacetic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...