Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Neuropharmacology ; 251: 109919, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38548221

ABSTRACT

Ghrelin and its mimetics have been shown to reduce cisplatin-induced emesis in preclinical studies using ferrets and shrews. This study investigated the effectiveness of ghrelin and des-acyl ghrelin (DAG) in antagonizing cisplatin-induced emesis and physiological changes indicative of nausea in Suncus murinus. Animals implanted with radiotelemetry devices were administered ghrelin (0.2, 1.0, and 5.0 µg/day), DAG (0.2, 1.0, and 5.0 µg/day), or saline (14 µL/day) intracerebroventricularly 4 days before and 3 days after treatment with cisplatin (30 mg/kg). At the end, the anti-apoptotic potentials of ghrelin and DAG were assessed by measuring Bax expression and cytochrome C activity. Neurotransmitter changes in the brain were evaluated using liquid chromatography-mass spectrometry analysis. Ghrelin and DAG reduced cisplatin-induced emesis in the delayed (24-72 h) but not the acute phase (0-24 h) of emesis. Ghrelin also partially reversed the inhibitory effects of cisplatin on food intake without affecting gastrointestinal myoelectrical activity or causing hypothermia; however, ghrelin or DAG did not prevent these effects. Ghrelin and DAG could attenuate the cisplatin-induced upregulation of Bax and cytochrome C in the ileum. Cisplatin dysregulated neurotransmitter levels in the frontal cortex, amygdala, thalamus, hypothalamus, and brainstem, and this was partially restored by low doses of ghrelin and DAG. Our findings suggest that ghrelin and DAG exhibit protective effects against cisplatin-induced delayed emesis. The underlying antiemetic mechanism may involve GHSR and/or unspecified pathways that modulate the neurotransmitters involved in emesis control in the brain and an action to attenuate apoptosis in the gastrointestinal tract.


Subject(s)
Antiemetics , Antineoplastic Agents , Animals , Cisplatin/toxicity , Ghrelin/pharmacology , Ghrelin/therapeutic use , Vomiting/chemically induced , Vomiting/drug therapy , Vomiting/prevention & control , Cytochromes c , bcl-2-Associated X Protein , Ferrets , Nausea/chemically induced , Nausea/drug therapy , Nausea/prevention & control , Antiemetics/pharmacology , Antiemetics/therapeutic use , Antineoplastic Agents/toxicity , Neurotransmitter Agents/adverse effects
2.
J Ethnopharmacol ; 327: 117989, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38462026

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action. AIM OF STUDY: This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action. MATERIALS AND METHODS: SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action. RESULTS: LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. CONCLUSIONS: Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.


Subject(s)
Drugs, Chinese Herbal , Dyspepsia , Microbiota , Rats , Animals , Ghrelin/therapeutic use , Dyspepsia/drug therapy , Rats, Sprague-Dawley , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Metabolomics/methods , DNA, Ribosomal
3.
Brain Inj ; 38(7): 514-523, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38433464

ABSTRACT

OBJECTIVE: This study investigated the effects of ghrelin on oxidative stress, working memory, inflammatory parameters, and neuron degeneration. METHODS: TBI was produced with the weight-drop technique. Rats in the G+TBI and TBI+G groups received ghrelin for 7 or 2 days, respectively. The control group received saline. On the 8th day of the study, the brain and blood tissue were taken under anesthesia. RESULTS: A significant increase in brain GSH-PX, MDA, IL-1ß, TGF-ß1, and IL-8 levels and a significant decrease in CAT levels were found in the TBI group compared to the control. Serum MDA, GSH, IL-1ß, and IL-8 levels were increased with TBI. Ghrelin treatment after TBI significantly increased the serum GSH, CAT, GSH-PX, and brain GSH and CAT levels, while it significantly decreased the serum MDA, IL-1ß, and brain MDA, TGF-ß1, and IL-8 levels. Histological evaluations revealed that ghrelin treatment led to a reduction in inflammation, while also significantly ameliorating TBI-induced neuron damage and vascular injuries. Immunohistochemistry staining showed that GFAP staining intensity was significantly increased in the cortex and hippocampus in TBI, and GFAP immunoreactivity was decreased with ghrelin treatment. CONCLUSION: The results from this study suggested that ghrelin may have curative effects on TBI.


Subject(s)
Brain Injuries, Traumatic , Ghrelin , Glial Fibrillary Acidic Protein , Oxidative Stress , Ghrelin/therapeutic use , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Oxidative Stress/drug effects , Male , Rats , Glial Fibrillary Acidic Protein/metabolism , Disease Models, Animal , Neurons/metabolism , Neurons/drug effects , Rats, Sprague-Dawley , Brain/metabolism , Brain/drug effects , Inflammation/metabolism , Inflammation/drug therapy
4.
J Ethnopharmacol ; 326: 117971, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38403003

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY: This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS: To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin ß (ß-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS: The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (ß-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.


Subject(s)
Atractylodes , Rhizome , Humans , Female , Pregnancy , Mice , Animals , Ghrelin/therapeutic use , Pregnancy Outcome , Cholesterol, LDL , Fetal Weight , Diarrhea/drug therapy , Gastrins , Water , RNA, Messenger
5.
Mol Biotechnol ; 66(5): 948-959, 2024 May.
Article in English | MEDLINE | ID: mdl-38198052

ABSTRACT

Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.


Subject(s)
Ghrelin , Muscle, Skeletal , Muscular Atrophy , Regeneration , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Regeneration/drug effects , Animals , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control , Muscular Atrophy/drug therapy , Ghrelin/pharmacology , Ghrelin/metabolism , Ghrelin/therapeutic use , Signal Transduction/drug effects , Muscle Development/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics
6.
Article in English | MEDLINE | ID: mdl-38278286

ABSTRACT

Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.


Subject(s)
Ghrelin , Receptors, Ghrelin , Mice , Animals , Ghrelin/pharmacology , Ghrelin/therapeutic use , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Signal Transduction , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Stress, Psychological/complications , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
7.
Digestion ; 105(1): 34-39, 2024.
Article in English | MEDLINE | ID: mdl-37673052

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal symptoms, but its pathogenesis is not fully understood. SUMMARY: We have recently shown in rats that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve the intestinal barrier dysfunction, which is a major pathophysiology of IBS. We have additionally shown that the neuropeptides injected intracisternally induced a visceral antinociceptive action against colonic distension. Since it has been known that intestinal barrier dysfunction causes visceral hypersensitivity, the other main pathophysiology of IBS, the neuropeptides act centrally to reduce leaky gut, followed by improvement of visceral sensation, leading to therapeutic action on IBS. It has been recently reported that there is a bidirectional relationship between neuroinflammation in the brain and the pathophysiology of IBS. For example, activation of microglia in the brain causes visceral hypersensitivity. Accumulating evidence has suggested that orexin, ghrelin, or oxytocin could improve neuroinflammation in the CNS. All these results suggest that neuropeptides such as orexin, ghrelin, and oxytocin act in the brain to improve intestinal barrier function and visceral sensation and also induce a protective action against neuroinflammation in the brain. KEY MESSAGES: We therefore speculated that orexin, ghrelin, or oxytocin in the brain possess dual actions, improvement of visceral sensation/leaky gut in the gut, and reduction of neuroinflammation in the brain, thereby inducing a therapeutic effect on IBS in a convergent manner.


Subject(s)
Irritable Bowel Syndrome , Neuropeptides , Rats , Animals , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/pathology , Orexins/pharmacology , Orexins/therapeutic use , Ghrelin/pharmacology , Ghrelin/therapeutic use , Oxytocin/therapeutic use , Oxytocin/pharmacology , Neuroinflammatory Diseases , Neuropeptides/pharmacology , Neuropeptides/therapeutic use , Brain/pathology
8.
J Drug Target ; 32(2): 148-158, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38088811

ABSTRACT

AIMS: Endoplasmic reticulum stress(ERS) can induce inflammation mediated by NLRP3 inflammatory bodies and link inflammation with oxidative stress in myocardial tissue. Ghrelin is an endogenous growth hormone-releasing peptide that has been proven to have multiple effects, such as regulating energy metabolism and inhibiting inflammation. However, the role of ghrelin in myocardial injury in diabetic rats and the mechanism have not been reported. RESULTS: We found that ghrelin could improve endoplasmic reticulum stress and inflammatory pyroptosis in the myocardial tissue of diabetic rats and reduce ERS and NLRP3 inflammasome crosstalk in H9C2 cardiomyocytes. Interestingly, ghrelin could activate the PI3K/AKT signalling pathway, playing a role in inhibiting endoplasmic reticulum stress and reducing the expression of pyroptosis-related proteins. However, these protective effects could be largely eliminated by LY294002. CONCLUSIONS: In summary, we demonstrated that ghrelin inhibited myocardial pyroptosis in diabetic cardiomyopathy by regulating ERS and NLRP3 inflammasome crosstalk through the PI3K/AKT pathway. Our results provide new insights into the mechanism of diabetic myocardial injury induced by high glucose and high palmitic acid and ghrelin-mediated anti-inflammatory protection and provide potential therapeutic targets and strategies for diabetic cardiomyopathy.


Ghrelin improves lipid metabolism but not glucose metabolism in rats with diabetic cardiomyopathy.Ghrelin improves cardiac dysfunction and structure disorder in diabetic cardiomyopathy.Ghrelin inhibits cardiomyocyte pyroptosis in diabetic cardiomyopathy by regulating myocardial endoplasmic reticulum stress and NLRP3 inflammasome activation.The protective effect mediated by ghrelin may be related to the activation of PI3K/AKT signal pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Oligopeptides , Rats , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Cardiomyopathies/drug therapy , Pyroptosis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Diabetes Mellitus, Experimental/drug therapy , Ghrelin/pharmacology , Ghrelin/therapeutic use , Reactive Oxygen Species/metabolism , Inflammation/drug therapy
9.
J Ethnopharmacol ; 321: 117568, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38092317

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liansu capsule could alleviate dyspeptic symptoms; however, the mechanisms underlying its role in treating functional dyspepsia (FD) remain unclear. AIM OF THE STUDY: To elucidate the mechanism underlying the efficacy of Liansu capsule in alleviating FD symptoms. MATERIALS AND METHODS: Thirty-six male mice were randomly divided into the following six groups: control, model, low-strength Liansu, moderate-strength Liansu, high-strength Liansu, and domperidone groups. Small intestine propulsion rate, gastric residual rate and histopathological analysis were performed to evaluate efficacy of Liansu capsule. Levels of interleukin-1ß, interleukin-6, tumor necrosis factor α, phosphorylation of p65, ghrelin and gastrin were verified by real-time quantitative polymerase chain reaction and immunofluorescence assays. Targeted metabolomic analyses, western blotting and immunofluorescence assays were used to explore the mechanism of Liansu capsule in ameliorating FD. RESULTS: The Liansu capsule significantly ameliorated the symptoms of FD, and markedly increased the levels of ghrelin and gastrin. Moreover, Liansu capsule significantly downregulated the levels of the proinflammatory cytokine interleukin-1ß, interleukin-6, tumor necrosis factor α, and inhibited the phosphorylation of p65. Targeted metabolomic analyses showed that Liansu capsule significantly reduced the levels of deoxycholic acid and hyodeoxycholic acid, which were significantly elevated in the model group. Furthermore, these results showed that deoxycholic acid and hyodeoxycholic acid markedly promoted the levels of Takeda G-protein-coupled receptor 5 (TGR5), phosphorylated signal transducer and activator of transcription 3 (STAT3), and Kruppel-like factor 5 (KLF5) in vitro. whereas, Liansu capsule significantly reduced the levels of TGR5, phosphorylated STAT3, and KLF5. CONCLUSION: Our findings indicated that Liansu capsule improved FD by regulating the deoxycholic acid/hyodeoxycholic acid-TGR5-STAT3-KLF5 axis. The findings reveal a novel mechanism underlying the role of Liansu capsule, which may be a promising therapeutic strategy for FD.


Subject(s)
Dyspepsia , Male , Mice , Animals , Dyspepsia/drug therapy , Ghrelin/therapeutic use , Tumor Necrosis Factor-alpha , Gastrins , Interleukin-6 , Interleukin-1beta , Deoxycholic Acid
10.
J Fr Ophtalmol ; 47(1): 103746, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37806937

ABSTRACT

Glaucoma is a group of neurodegenerative diseases characterized by loss of retinal ganglion cells and visual field defects and is one of the major causes of irreversible blindness worldwide. Primary open-angle glaucoma (POAG) is one of the classifications of glaucoma. Oxidative stress in trabecular reticulated cells is one of the possible mechanisms of the development of glaucoma. At present, there is still a lack of effective methods to treat glaucoma. Ghrelin is characterized by its wide distribution and high potency and has anti-inflammatory, antioxidant, and anti-apoptotic effects, which may be beneficial in the treatment of glaucoma. In this study, we investigated whether ghrelin can protect human trabecular meshwork cells (HTMCs) from oxidative damage induced by hydrogen peroxide (H2O2), as well as the possible mechanism of action. CCK8 and flow cytometry results revealed that treatment of HTMCs with ghrelin showed a dose-dependent protective effect against H2O2-induced damage. Ghrelin significantly decreased the rate of apoptosis and levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the level of superoxide dismutase (SOD) and catalase (CAT) in HTMCs. The difference was statistically significant compared with the H2O2 group. Ghrelin activated Nrf2/HO-1/NQO-1 signaling pathways and decreased HIF-1α level in H2O2-injured HTMCs as shown on qPCR and Western blot. In conclusion, ghrelin can protect HTMCs from oxidative damage induced by H2O2 and reduce apoptosis in HTMCs, which can be a new approach to treating POAG. The underlying therapeutic mechanism may be related to Nrf2/HO-1/NQO-1 signaling pathways and HIF-1α.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Trabecular Meshwork , Glaucoma, Open-Angle/drug therapy , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/therapeutic use , Ghrelin/pharmacology , Ghrelin/metabolism , Ghrelin/therapeutic use , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , NF-E2-Related Factor 2/therapeutic use
11.
Altern Ther Health Med ; 30(2): 36-41, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37856799

ABSTRACT

Context: Chronic heart failure (CHF) is a form of persistent heart failure. If a patient develops depression, it can worsen the severity of heart failure and can lead to adverse outcomes. No researchers have studied the effects of tonic heart qi soup for patients with CHF and depression. Objective: The study intended to evaluate the clinical efficacy of tonic heart qi soup in the treatment of chronic heart failure (CHF) for patients with comorbid depression. Design: The research team performed a prospective randomized controlled trial. Setting: The study took place in the Department of Chinese Medicine at Cangzhou Central Hospital in Cangzhou, Hebei Province, China. Participants: Participants were 120 patients with CHF at the hospital as inpatients or outpatients between January 2016 and January 2019. Intervention: The research team divided participants into two groups, with 60 patients each: (1) an intervention group, which received conventional Western medical treatment combined with treatment with a commercial tonic heart qi soup and (2) a control group, which received conventional Western medical treatment only. Outcome Measures: The research team measured: (1) treatment efficacy, (2) cardiac function, (3) adverse reactions, (4) B-type natriuretic peptide (BNP) and Ghrelin, and (5) depression. Results: In the intervention group, 55 participants showed significant improvement in the degree of heart failure, for a total effectiveness rate of 91.67%, which was significantly higher than that of the control group (P = .000). The intervention group had 10 participants in class II, 18 in class III, and 22 in class IV. Among them, 28 participants improved, indicating significantly better outcomes than those of the control group. The intervention group's BNP levels, at 1031.58 ± 118.83 pg/ml, and ghrelin levels, at 481.46 ± 57.53%, were significantly lower than those of the control group. No liver- or renal-function damage, insomnia, or significant adverse reactions occurred for either group. The intervention group's total incidence rate for adverse reactions, at 1.67%, was significantly lower than that of the control group, at 11.67% (P = .000) and also had a higher total effective rate in reducing depression, at 86.67%, compared to that of the control group, at 43.33%. Conclusions: Heart Qi Tonic Tang, as an adjunctive therapy, significantly improved outcomes for CHF patients with depression. It effectively reduced heart failure symptoms, with minimal adverse reactions and increased patient comfort and compliance.


Subject(s)
Ghrelin , Heart Failure , Humans , Ghrelin/therapeutic use , Qi , Depression/therapy , Prospective Studies , Heart Failure/therapy , Heart Failure/drug therapy
12.
ESC Heart Fail ; 11(1): 601-605, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030138

ABSTRACT

AIM: Acyl ghrelin increases cardiac output (CO) in heart failure with reduced ejection fraction (HFrEF). This could impair the right ventricular-pulmonary arterial coupling (RVPAC), both through an increased venous return and right ventricular afterload. We aim to investigate if acyl ghrelin increases CO with or without worsening the right-sided haemodynamics in HFrEF assessed by RVPAC. METHODS AND RESULTS: The Karolinska Acyl ghrelin Trial was a randomized double-blind placebo-controlled trial of acyl ghrelin versus placebo (120-min intravenous infusion) in HFrEF. RVPAC was assessed echocardiographically at baseline and 120 min. ANOVA was used for difference in change between acyl ghrelin versus placebo, adjusted for baseline values. Of the 30 randomized patients, 22 had available RVPAC (acyl ghrelin n = 12, placebo n = 10). Despite a 15% increase in CO in the acyl ghrelin group (from 4.0 (3.5-4.6) to 4.6 (3.9-6.1) L/min, P = 0.003), RVPAC remained unchanged; 5.9 (5.3-7.6) to 6.3 (4.8-7.5) mm·(m/s)-1 , P = 0.372, while RVPAC was reduced in the placebo group, 5.2 (4.3-6.4) to 4.8 (4.2-5.8) mm·(m/s)-1 , P = 0.035. Comparing change between groups, CO increased in the acyl ghrelin group versus placebo (P = 0.036) while RVPAC and the right ventricular pressure gradient remained unchanged. CONCLUSION: Treatment with acyl ghrelin increases CO while preserving or even improving RVPAC in HFrEF, possibly due to increased contractility, reduced PVR and/or reduced left sided filling pressures. These potential effects strengthen the role of acyl ghrelin therapy in HFrEF with right ventricular failure.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Humans , Stroke Volume , Heart Failure/drug therapy , Ghrelin/pharmacology , Ghrelin/therapeutic use , Cardiac Output
13.
Cancer Med ; 12(19): 19471-19479, 2023 10.
Article in English | MEDLINE | ID: mdl-37712645

ABSTRACT

BACKGROUND: The presence of cachexia negatively impacts the prognosis of patients with cancer. However, the mechanisms behind the development of cachexia and its prognostic impact on immunotherapy efficacy are not fully understood. MATERIALS AND METHODS: We retrospectively screened patients with advanced or recurrent non-small cell lung cancer (NSCLC) who received PD-1/PD-L1 inhibitor monotherapy. Among 183 patients, pre-treatment plasma samples were available from 100 patients. We defined cancer cachexia as weight loss of at least 5% during the past 6 months or weight loss of at least 2% and BMI <20. We analyzed 75 soluble immune mediators in pre-treatment plasma samples to explore the possible mechanisms behind the development of cancer cachexia. We also investigated whether cancer cachexia affects prognosis. RESULTS: Among 100 patients, 35 had cancer cachexia. Logistic regression analysis identified ghrelin, c-reactive protein (CRP), pentraxin-3 (PTX-3), and osteopontin (OPN) as factors associated with cachexia. Patients with cachexia had worse progression-free survival (PFS) and overall survival (OS), although we did not detect statistically significant differences. Analyzing the soluble immune mediators associated with cachexia, the combination of cachexia and PTX-3 or OPN expression levels was predictive for PFS and the combination of cachexia and CRP or OPN expression levels was predictive for OS. CONCLUSIONS: Pre-treatment ghrelin, CRP, PTX-3, and OPN may be associated with cachexia. Among patients with NSCLC who received PD-1/L1 inhibitor monotherapy, those with cachexia had worse survival than those without cachexia. Larger studies will be required to confirm our data and better understand the mechanisms behind the development of cachexia.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Ghrelin/therapeutic use , Cachexia/etiology , Programmed Cell Death 1 Receptor , Retrospective Studies , Biomarkers, Tumor/analysis , Neoplasm Recurrence, Local , Prognosis , B7-H1 Antigen/analysis
14.
J. physiol. biochem ; 79(3): 625-634, ago. 2023. ilus
Article in English | IBECS | ID: ibc-223753

ABSTRACT

Accumulating evidence suggest that ghrelin plays a role as an antiseptic peptide. The present study aimed to clarify whether the brain may be implicated ghrelin’s antiseptic action. We examined the effect of brain ghrelin on survival in a novel endotoxemic model achieved by treating rats with lipopolysaccharide (LPS) and colchicine. The observation of survival stopped three days after chemicals’ injection or at death. Intracisternal ghrelin dose-dependently reduced lethality in the endotoxemic model; meanwhile, neither intraperitoneal injection of ghrelin nor intracisternal des-acyl-ghrelin injection affected the mortality rate. The brain ghrelin-induced lethality reduction was significantly blocked by surgical vagotomy. Moreover, intracisternal injection of a ghrelin receptor antagonist blocked the improved survival achieved by intracisternal ghrelin injection or intravenous 2-deoxy-d-glucose administration. Intracisternal injection of an adenosine A2B receptor agonist reduced the lethality and the ghrelin-induced improvement of survival was blocked by adenosine A2B receptor antagonist. I addition, intracisternal ghrelin significantly blocked the colonic hyperpermeability produced by LPS and colchicine. These results suggest that ghrelin acts centrally to reduce endotoxemic lethality. Accordingly, activation of the vagal pathway and adenosine A2B receptors in the brain may be implicated in the ghrelin-induced increased survival. Since the efferent vagus nerve mediates anti-inflammatory mechanisms, we speculate that the vagal cholinergic anti-inflammatory pathway is implicated in the decreased septic lethality caused by brain ghrelin. (AU)


Subject(s)
Animals , Rats , Ghrelin/pharmacology , Ghrelin/therapeutic use , Anti-Infective Agents, Local/pharmacology , Adenosine/pharmacology , Colchicine/pharmacology , Lipopolysaccharides/toxicity , Vagus Nerve/physiology , Cerebrum
15.
J Physiol Biochem ; 79(3): 625-634, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37099079

ABSTRACT

Accumulating evidence suggest that ghrelin plays a role as an antiseptic peptide. The present study aimed to clarify whether the brain may be implicated ghrelin's antiseptic action. We examined the effect of brain ghrelin on survival in a novel endotoxemic model achieved by treating rats with lipopolysaccharide (LPS) and colchicine. The observation of survival stopped three days after chemicals' injection or at death. Intracisternal ghrelin dose-dependently reduced lethality in the endotoxemic model; meanwhile, neither intraperitoneal injection of ghrelin nor intracisternal des-acyl-ghrelin injection affected the mortality rate. The brain ghrelin-induced lethality reduction was significantly blocked by surgical vagotomy. Moreover, intracisternal injection of a ghrelin receptor antagonist blocked the improved survival achieved by intracisternal ghrelin injection or intravenous 2-deoxy-d-glucose administration. Intracisternal injection of an adenosine A2B receptor agonist reduced the lethality and the ghrelin-induced improvement of survival was blocked by adenosine A2B receptor antagonist. I addition, intracisternal ghrelin significantly blocked the colonic hyperpermeability produced by LPS and colchicine. These results suggest that ghrelin acts centrally to reduce endotoxemic lethality. Accordingly, activation of the vagal pathway and adenosine A2B receptors in the brain may be implicated in the ghrelin-induced increased survival. Since the efferent vagus nerve mediates anti-inflammatory mechanisms, we speculate that the vagal cholinergic anti-inflammatory pathway is implicated in the decreased septic lethality caused by brain ghrelin.


Subject(s)
Anti-Infective Agents, Local , Ghrelin , Rats , Animals , Ghrelin/pharmacology , Ghrelin/therapeutic use , Adenosine/pharmacology , Lipopolysaccharides/toxicity , Vagus Nerve/physiology , Brain , Colchicine/pharmacology , Anti-Infective Agents, Local/pharmacology
16.
BMC Complement Med Ther ; 23(1): 123, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069587

ABSTRACT

OBJECTIVE: This double-blind, placebo-controlled, clinical trial was conducted to define the effects of Nigella sativa (N. Sativa) powder plus conventional medical treatment of Helicobacter pylori (H. pylori) on serum ghrelin level and appetite in H. pylori-infected patients. METHODS: In the present study, 51 H. pylori-positive patients were randomly allocated to treatment (n = 26) or placebo (n = 25) groups. They received 2 g/day N. Sativa with quadruple therapy or 2 g/day placebo plus quadruple therapy for 8 weeks. The serum level of ghrelin was assessed before and after the intervention. Appetite was evaluated at the onset and at the end of the intervention. RESULTS: At the end of the study, the appetite of the treatment group improved significantly compared with the placebo group (P = 0.02). Statistically, the difference in serum ghrelin levels between the study's groups was insignificant (P > 0.05). CONCLUSION: Supplementation with N. Sativa powder may be a beneficial adjunctive therapy in H. pylori-infected patients. TRIAL REGISTRATION: This study was registered in the Iranian Registry of Clinical Trials (IRCT20170916036204N7) on 08/08/2018.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Nigella sativa , Humans , Ghrelin/pharmacology , Ghrelin/therapeutic use , Powders/pharmacology , Powders/therapeutic use , Helicobacter Infections/drug therapy , Iran , Double-Blind Method
17.
Article in English | MEDLINE | ID: mdl-37085277

ABSTRACT

INTRODUCTION: Diabetic lung disease is already known as one of the diabetes complications, but report on its therapeutic strategy is rare. The present study aimed to add novel therapeutic strategy for diabetic lung disease, to reveal the protective effect of ghrelin on diabetic lung disease both in vivo and in vitro, and to discuss its probable molecular mechanism. RESEARCH DESIGN AND METHODS: Diabetic mice and 16HBE cells were our research objects. We surveyed the effect of ghrelin on streptozotocin-induced lung tissue morphology changes by H&E staining. Furthermore, the changes of proinflammatory cytokines (interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α)) were detected by ELISA. To expound the molecular mechanism, we detected critical proteins of TLR4 pathway and observed their changes by immunohistochemistry (IHC), real-time PCR and western blot analysis in vivo and in vitro, respectively. RESULTS: The results of H&E staining showed that pathological alterations of the lung induced by hyperglycemia were ameliorated by ghrelin. The results of ELISA demonstrated that the elevated levels of IL-1ß and TNF-α induced by hyperglycemia turned to decrease in the lung after ghrelin treatment. In the results of IHC, real-time PCR and western blot analysis, we found that the TLR4 pathway was elevated by hyperglycemia or high glucose and is remarkably inhibited by the treatment of ghrelin both in vivo and in vitro. CONCLUSIONS: Ghrelin could inhibit inflammation of diabetic lung disease by regulating the TLR4 pathway. This study might affect research on diabetic lung disease, and the therapeutic potential of ghrelin for diabetic lung disease is worth considering.


Subject(s)
Diabetes Mellitus, Experimental , Ghrelin , Hyperglycemia , Lung Diseases , Toll-Like Receptor 4 , Animals , Humans , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ghrelin/pharmacology , Ghrelin/therapeutic use , Hyperglycemia/complications , Hyperglycemia/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Lung Diseases/drug therapy , Lung Diseases/metabolism , Lung Diseases/pathology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
18.
J Cachexia Sarcopenia Muscle ; 14(3): 1337-1348, 2023 06.
Article in English | MEDLINE | ID: mdl-36942661

ABSTRACT

BACKGROUND: Ghrelin is a potential therapy for cachexia due to its orexigenic properties and anabolic effects on muscle and fat. However, its clinical use is limited by the short half-life of active (acylated) ghrelin (~11 min in humans). EXT418 is a novel long-acting, constitutively active ghrelin analog created by covalently linking it to a vitamin D derivative. Here, we evaluated the effects and mechanisms of action of EXT418 on Lewis lung carcinoma (LLC)-induced cachexia in mice. METHODS: Male C57BL/6J mice (5- to 7-month-old) were implanted with 1 × 106 heat-killed (HK) or live LLC cells. When the tumour was palpable, mice were injected with vehicle (T + V) or EXT418 daily (T + 418 Daily, 0.25 mg/kg/day) or every other day (T + 418 EOD, 0.5 mg/kg/EOD) for up to 14 days, whereas HK-treated mice were given vehicle (HK + V). Subsets of T + 418 Daily or EOD-treated mice were pair-fed to the T + V group. Body composition and grip strength were evaluated before tumour implantation and at the end of the experiment. Molecular markers were probed in muscles upon termination. RESULTS: In tumour-bearing mice, administration of EXT418 daily or EOD partially prevented weight loss (T + V vs. T + 418 Daily, P = 0.030; and vs. T + 418 EOD, P = 0.020). Similar effects were observed in whole body fat and lean body mass. Grip strength in tumour-bearing mice was improved by EXT418 daily (P = 0.010) or EOD (P = 0.008) administration compared with vehicle-treated mice. These effects of EXT418 on weight and grip strength were partially independent of food intake. EXT418 daily administration also improved type IIA (P = 0.015), IIB (P = 0.037) and IIX (P = 0.050) fibre cross-sectional area (CSA) in tibialis anterior (TA) and EXT418 EOD improved CSA of IIB fibres in red gastrocnemius (GAS; P = 0.005). In skeletal muscles, tumour-induced increases in atrogenes Fbxo32 and Trim63 were ameliorated by EXT418 treatments (TA and GAS/plantaris, PL), which were independent of food intake. EXT418 administration decreased expression of the mitophagy marker Bnip3 (GAS/PL; P ≤ 0.010). Similar effects of EXT418 EOD were observed in p62 (GAS/PL; P = 0.039). In addition, EXT418 treatments ameliorated the tumour-induced elevation in muscle Il6 transcript levels (TA and GAS/PL), independently of food intake. Il-6 transcript levels in adipose tissue and circulating IL-10 were elevated in response to the tumour but these increases were not significant with EXT418 administration. Tumour mass was not altered by EXT418. CONCLUSIONS: EXT418 mitigates LLC-induced cachexia by attenuating skeletal muscle inflammation, proteolysis, and mitophagy, without affecting tumour mass and partially independent of food intake.


Subject(s)
Cachexia , Carcinoma, Lewis Lung , Animals , Humans , Male , Mice , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/pathology , Ghrelin/pharmacology , Ghrelin/therapeutic use , Ghrelin/metabolism , Mice, Inbred C57BL , Weight Loss
19.
Eur Heart J ; 44(22): 2009-2025, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36916707

ABSTRACT

BACKGROUND AND AIMS: Ghrelin is an endogenous appetite-stimulating peptide hormone with potential cardiovascular benefits. Effects of acylated (activated) ghrelin were assessed in patients with heart failure and reduced ejection fraction (HFrEF) and in ex vivo mouse cardiomyocytes. METHODS AND RESULTS: In a randomized placebo-controlled double-blind trial, 31 patients with chronic HFrEF were randomized to synthetic human acyl ghrelin (0.1 µg/kg/min) or placebo intravenously over 120 min. The primary outcome was change in cardiac output (CO). Isolated mouse cardiomyocytes were treated with acyl ghrelin and fractional shortening and calcium transients were assessed. Acyl ghrelin but not placebo increased cardiac output (acyl ghrelin: 4.08 ± 1.15 to 5.23 ± 1.98 L/min; placebo: 4.26 ± 1.23 to 4.11 ± 1.99 L/min, P < 0.001). Acyl ghrelin caused a significant increase in stroke volume and nominal increases in left ventricular ejection fraction and segmental longitudinal strain and tricuspid annular plane systolic excursion. There were no effects on blood pressure, arrhythmias, or ischaemia. Heart rate decreased nominally (acyl ghrelin: 71 ± 11 to 67 ± 11 b.p.m.; placebo 69 ± 8 to 68 ± 10 b.p.m.). In cardiomyocytes, acyl ghrelin increased fractional shortening, did not affect cellular Ca2+ transients, and reduced troponin I phosphorylation. The increase in fractional shortening and reduction in troponin I phosphorylation was blocked by the acyl ghrelin antagonist D-Lys 3. CONCLUSION: In patients with HFrEF, acyl ghrelin increased cardiac output without causing hypotension, tachycardia, arrhythmia, or ischaemia. In isolated cardiomyocytes, acyl ghrelin increased contractility independently of preload and afterload and without Ca2+ mobilization, which may explain the lack of clinical side effects. Ghrelin treatment should be explored in additional randomized trials. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05277415.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Mice , Animals , Myocytes, Cardiac/metabolism , Calcium/metabolism , Ghrelin/pharmacology , Ghrelin/therapeutic use , Stroke Volume , Ventricular Function, Left , Troponin I/metabolism
20.
Curr Neuropharmacol ; 21(12): 2376-2394, 2023.
Article in English | MEDLINE | ID: mdl-36111771

ABSTRACT

Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Ghrelin , Humans , Ghrelin/therapeutic use , Ghrelin/metabolism , Receptors, Ghrelin/physiology , Amyotrophic Lateral Sclerosis/drug therapy , Secretagogues , Growth Hormone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...