Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Virol J ; 21(1): 135, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858684

ABSTRACT

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Subject(s)
Giant Viruses , Brazil , Giant Viruses/isolation & purification , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/ultrastructure , Phylogeny , Polymerase Chain Reaction , Acanthamoeba castellanii/virology , Acanthamoeba castellanii/isolation & purification , Soil Microbiology , Sewage/virology , Sequence Analysis, DNA , Seawater/virology , Water Microbiology
2.
Microbiome ; 12(1): 91, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760842

ABSTRACT

BACKGROUND: Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats. RESULTS: In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales. CONCLUSION: Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.


Subject(s)
Giant Viruses , Ice Cover , Ice Cover/virology , Greenland , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/isolation & purification , Phylogeny , Ecosystem , Genome, Viral , Metagenomics , Chlorophyta/virology , Chlorophyta/genetics , Metagenome , Snow
3.
Nat Microbiol ; 9(6): 1619-1629, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605173

ABSTRACT

Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.


Subject(s)
Giant Viruses , RNA-Seq , Single-Cell Analysis , Single-Cell Analysis/methods , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/isolation & purification , Seawater/virology , Host Microbial Interactions/genetics , Phylogeny , Aquatic Organisms/virology , Aquatic Organisms/genetics , Ecosystem , Eutrophication , Single-Cell Gene Expression Analysis
4.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658525

ABSTRACT

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Subject(s)
Genome, Viral , Giant Viruses , Naegleria , Genome, Viral/genetics , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/ultrastructure , Giant Viruses/isolation & purification , Giant Viruses/physiology , Naegleria/genetics , Naegleria/virology , Naegleria fowleri/genetics , Naegleria fowleri/isolation & purification , Phylogeny , Humans
5.
J Virol ; 97(7): e0041123, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37395647

ABSTRACT

New representatives of the phylum Nucleocytoviricota have been rapidly described in the last decade. Despite this, not all viruses of this phylum are allocated to recognized taxonomic families, as is the case for orpheovirus, pithovirus, and cedratvirus, which form the proposed family Pithoviridae. In this study, we performed comprehensive comparative genomic analyses of 8 pithovirus-like isolates, aiming to understand their common traits and evolutionary history. Structural and functional genome annotation was performed de novo for all the viruses, which served as a reference for pangenome construction. The synteny analysis showed substantial differences in genome organization between these viruses, with very few and short syntenic blocks shared between orpheovirus and its relatives. It was possible to observe an open pangenome with a significant increase in the slope when orpheovirus was added, alongside a decrease in the core genome. Network analysis placed orpheovirus as a distant and major hub with a large fraction of unique clusters of orthologs, indicating a distant relationship between this virus and its relatives, with only a few shared genes. Additionally, phylogenetic analyses of strict core genes shared with other viruses of the phylum reinforced the divergence of orpheovirus from pithoviruses and cedratviruses. Altogether, our results indicate that although pithovirus-like isolates share common features, this group of ovoid-shaped giant viruses presents substantial differences in gene contents, genomic architectures, and the phylogenetic history of several core genes. Our data indicate that orpheovirus is an evolutionarily divergent viral entity, suggesting its allocation to a different viral family, Orpheoviridae. IMPORTANCE Giant viruses that infect amoebae form a monophyletic group named the phylum Nucleocytoviricota. Despite being genomically and morphologically very diverse, the taxonomic categories of some clades that form this phylum are not yet well established. With advances in isolation techniques, the speed at which new giant viruses are described has increased, escalating the need to establish criteria to define the emerging viral taxa. In this work, we performed a comparative genomic analysis of representatives of the putative family Pithoviridae. Based on the dissimilarity of orpheovirus from the other viruses of this putative family, we propose that orpheovirus be considered a member of an independent family, Orpheoviridae, and suggest criteria to demarcate families consisting of ovoid-shaped giant viruses.


Subject(s)
Genome, Viral , Giant Viruses , Phylogeny , Humans , Genome, Viral/genetics , Genomics , Giant Viruses/classification , Giant Viruses/genetics , Genetic Variation , Evolution, Molecular
6.
Nature ; 616(7958): 783-789, 2023 04.
Article in English | MEDLINE | ID: mdl-37076623

ABSTRACT

DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.


Subject(s)
Aquatic Organisms , Giant Viruses , Herpesviridae , Oceans and Seas , Phylogeny , Plankton , Animals , Ecosystem , Eukaryota/virology , Genome, Viral/genetics , Giant Viruses/classification , Giant Viruses/genetics , Herpesviridae/classification , Herpesviridae/genetics , Plankton/virology , Metagenomics , Metagenome , Sunlight , Transcription, Genetic/genetics , Aquatic Organisms/virology
7.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215784

ABSTRACT

Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.


Subject(s)
Amoeba/virology , Giant Viruses/genetics , Giant Viruses/isolation & purification , Virology/history , Biodiversity , Brazil , Ecosystem , Genome, Viral , Giant Viruses/classification , Giant Viruses/ultrastructure , History, 21st Century , Phylogeny
8.
Viruses ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35215800

ABSTRACT

Mimiviruses are giant viruses of amoeba that can be found in association with virophages. These satellite-like viruses are dependent on the mimivirus viral factory to replicate. Mimiviruses can also be associated with linear DNA molecules called transpovirons. Transpovirons and virophages are important drivers of giant virus evolution although they are still poorly studied elements. Here, we describe the isolation and genomic characterization of a mimivirus/virophage/transpoviron tripartite system from Brazil. We analyzed transmission electron microscopy images and performed genome sequencing and assembly, gene annotation, and phylogenetic analysis. Our data confirm the isolation of a lineage A mimivirus (1.2 Mb/1012 ORFs), called mimivirus argentum, and a sputnik virophage (18,880 bp/20 ORFs). We also detected a third sequence corresponding to a transpoviron from clade A (6365 bp/6 ORFs) that presents small terminal inverted repeats (77 nt). The main genomic features of mimivirus argentum and of its virophage/transpoviron elements corroborates with what is described for other known elements. This highlights that this triple genomic and biological interaction may be ancient and well-conserved. The results expand the basic knowledge about unique and little-known elements and pave the way to future studies that might contribute to a better understanding of this tripartite relationship.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Giant Viruses/genetics , Mimiviridae/genetics , Virophages/genetics , Brazil , Genome, Viral , Genomics , Giant Viruses/classification , Mimiviridae/classification , Open Reading Frames , Phylogeny , Viral Proteins/genetics , Virophages/classification
9.
PLoS Biol ; 19(10): e3001430, 2021 10.
Article in English | MEDLINE | ID: mdl-34705818

ABSTRACT

Large DNA viruses of the phylum Nucleocytoviricota have recently emerged as important members of ecosystems around the globe that challenge traditional views of viral complexity. Numerous members of this phylum that cannot be classified within established families have recently been reported, and there is presently a strong need for a robust phylogenomic and taxonomic framework for these viruses. Here, we report a comprehensive phylogenomic analysis of the Nucleocytoviricota, present a set of giant virus orthologous groups (GVOGs) together with a benchmarked reference phylogeny, and delineate a hierarchical taxonomy within this phylum. We show that the majority of Nucleocytoviricota diversity can be partitioned into 6 orders, 32 families, and 344 genera, substantially expanding the number of currently recognized taxonomic ranks for these viruses. We integrate our results within a taxonomy that has been adopted for all viruses to establish a unifying framework for the study of Nucleocytoviricota diversity, evolution, and environmental distribution.


Subject(s)
Biodiversity , Evolution, Molecular , Giant Viruses/genetics , Phylogeny , Genes, Viral , Genetic Markers , Giant Viruses/classification
10.
Microbiol Spectr ; 9(1): e0036821, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34431709

ABSTRACT

Most virus-infected cells show morphological and behavioral changes, which are called cytopathic effects. Acanthamoeba castellanii, an abundant, free-living protozoan, serves as a laboratory host for some viruses of the phylum Nucleocytoviricota-the giant viruses. Many of these viruses cause cell rounding in the later stages of infection in the host cells. Here, we show the changes that lead to cell rounding in the host cells through time-lapse microscopy and image analysis. Time-lapse movies of A. castellanii cells infected with Mimivirus shirakomae, kyotovirus, medusavirus, or Pandoravirus japonicus were generated using a phase-contrast microscope. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) and used it to analyze these time-lapse movies. Image analysis revealed that the process leading to cell rounding varies among the giant viruses; for example, M. shirakomae infection did not cause changes for some time after the infection, kyotovirus infection caused an early decrease in the number of cells with typical morphologies, and medusavirus and P. japonicus infection frequently led to the formation of intercellular bridges and rotational behavior of host cells. These results suggest that in the case of giant viruses, the putative reactions of host cells against infection and the putative strategies of virus spread are diverse. IMPORTANCE Quantitative analysis of the infection process is important for a better understanding of viral infection strategies and virus-host interactions. Here, an image analysis of the phase-contrast time-lapse movies displayed quantitative differences in the process of cytopathic effects due to the four giant viruses in Acanthamoeba castellanii, which were previously unclear. It was revealed that medusavirus and Pandoravirus japonicus infection led to the formation of a significant number of elongated particles related to intercellular bridges, emphasizing the importance of research on the interaction of viruses with host cell nuclear function. Mimivirus shirakomae infection did not cause any changes in the host cells initially, so it is thought that the infected cells can actively move and spread over a wider area, emphasizing the importance of observation in a wider area and analysis of infection efficiency. These results suggest that a kinetic analysis using the phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) reveals the infection strategies of each giant virus.


Subject(s)
Acanthamoeba castellanii/virology , Giant Viruses/physiology , Host Microbial Interactions/physiology , Acanthamoeba castellanii/genetics , DNA Viruses , Genome, Viral , Giant Viruses/classification , Giant Viruses/genetics , Kinetics , Mimiviridae/genetics , Particle Size
11.
Curr Opin Virol ; 49: 102-110, 2021 08.
Article in English | MEDLINE | ID: mdl-34116391

ABSTRACT

Large and giant DNA viruses are a monophyletic group constituting the recently established phylum Nucleocytoviricota. The virus particle morphogenesis of these viruses exhibit striking similarities. Viral factories are established in the host cells where new virions are assembled by recruiting host membranes, forming an inner lipid layer. An outer protein layer starts as a lamellar structure, commonly referred to as viral crescents, coded by the major capsid protein gene. Also, these viruses have a conserved ATPase-coding gene related to genome encapsidation. Similar properties are described for tectiviruses, putative small ancestors of giant viruses. Here we review the morphogenesis of giant viruses and discuss how the process similarities constitute additional evidence to the common origin of Nucleocytoviricota.


Subject(s)
Amoebida/virology , Giant Viruses/classification , Giant Viruses/growth & development , Capsid/physiology , Capsid/ultrastructure , Evolution, Molecular , Giant Viruses/genetics , Giant Viruses/ultrastructure , Morphogenesis , Phylogeny , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly , Virus Replication
12.
Curr Opin Virol ; 49: 58-67, 2021 08.
Article in English | MEDLINE | ID: mdl-34051592

ABSTRACT

Although giant viruses have existed for millennia and possibly exerted great evolutionary influence in their environment. Their presence has only been noticed by virologists recently with the discovery of Acanthamoeba polyphaga mimivirus in 2003. Its virion with a diameter of 500 nm and its genome larger than 1 Mpb shattered preconceived standards of what a virus is and triggered world-wide prospection studies. Thanks to these investigations many giant virus families were discovered, each with its own morphological peculiarities and genomes ranging from 0.4 to 2.5 Mpb that possibly encode more than 400 viral proteins. This review aims to present the morphological diversity, the different aspects observed in host-virus interactions during replication, as well as the techniques utilized during their investigation.


Subject(s)
Amoebida/virology , Giant Viruses/physiology , Giant Viruses/ultrastructure , Host Microbial Interactions , Acanthamoeba castellanii/virology , Genome, Viral , Giant Viruses/classification , Giant Viruses/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Replication Compartments/physiology , Virion/physiology , Virion/ultrastructure , Virus Replication
13.
Curr Opin Virol ; 47: 79-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33647556

ABSTRACT

The virosphere is fascinatingly vast and diverse, but as mandatory intracellular parasites, viral particles must reach the intracellular space to guarantee their species' permanence on the planet. While most known viruses that infect animals explore the endocytic pathway to enter the host cell, a diverse group of ancient viruses that make up the phylum Nucleocytoviricota appear to have evolved to explore new access' routes to the cell's cytoplasm. Giant viruses of amoeba take advantage of the phagocytosis process that these organisms exploit a lot, while phycodnavirus must actively break through a algal cellulose cell wall. The mechanisms of entry into the cell and the viruses themselves are diverse, varying in the steps of adhesion, entry, and uncoating. These are clues left by evolution about how these organisms shaped and were shaped by convoluting with eukaryotes.


Subject(s)
Giant Viruses/physiology , Virus Internalization , Amoeba/virology , Animals , Biological Coevolution , Chlorella/virology , Giant Viruses/classification , Virus Attachment , Virus Uncoating
14.
Viruses ; 13(2)2021 01 20.
Article in English | MEDLINE | ID: mdl-33498382

ABSTRACT

Kaumoebavirus infects the amoeba Vermamoeba vermiformis and has recently been described as a distant relative of the African swine fever virus. To characterize the diversity and evolution of this novel viral genus, we report here on the isolation and genome sequencing of a second strain of Kaumoebavirus, namely LCC10. Detailed analysis of the sequencing data suggested that its 362-Kb genome is linear with covalently closed hairpin termini, so that DNA forms a single continuous polynucleotide chain. Comparative genomic analysis indicated that although the two sequenced Kaumoebavirus strains share extensive gene collinearity, 180 predicted genes were either gained or lost in only one genome. As already observed in another distant relative, i.e., Faustovirus, which infects the same host, the center and extremities of the Kaumoebavirus genome exhibited a higher rate of sequence divergence and the major capsid protein gene was colonized by type-I introns. A possible role of the Vermamoeba host in the genesis of these evolutionary traits is hypothesized. The Kaumoebavirus genome exhibited a significant gene strand bias over the two-third of genome length, a feature not seen in the other members of the "extended Asfarviridae" clade. We suggest that this gene strand bias was induced by a putative single origin of DNA replication located near the genome extremity that imparted a selective force favoring the genes positioned on the leading strand.


Subject(s)
Asfarviridae/genetics , Genome, Viral , Giant Viruses/genetics , Viruses, Unclassified/genetics , Asfarviridae/classification , Capsid Proteins/genetics , DNA Replication , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/isolation & purification , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , Evolution, Molecular , Genes, Viral , Giant Viruses/classification , Giant Viruses/isolation & purification , Giant Viruses/ultrastructure , Lobosea/virology , Phylogeny , Sewage/virology , Viral Proteins/genetics , Viruses, Unclassified/isolation & purification , Viruses, Unclassified/ultrastructure
15.
Viruses ; 13(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498458

ABSTRACT

Giant viruses are widespread in the biosphere and play important roles in biogeochemical cycling and host genome evolution. Also known as nucleo-cytoplasmic large DNA viruses (NCLDVs), these eukaryotic viruses harbor the largest and most complex viral genomes known. Studies have shown that NCLDVs are frequently abundant in metagenomic datasets, and that sequences derived from these viruses can also be found endogenized in diverse eukaryotic genomes. The accurate detection of sequences derived from NCLDVs is therefore of great importance, but this task is challenging owing to both the high level of sequence divergence between NCLDV families and the extraordinarily high diversity of genes encoded in their genomes, including some encoding for metabolic or translation-related functions that are typically found only in cellular lineages. Here, we present ViralRecall, a bioinformatic tool for the identification of NCLDV signatures in 'omic data. This tool leverages a library of giant virus orthologous groups (GVOGs) to identify sequences that bear signatures of NCLDVs. We demonstrate that this tool can effectively identify NCLDV sequences with high sensitivity and specificity. Moreover, we show that it can be useful both for removing contaminating sequences in metagenome-assembled viral genomes as well as the identification of eukaryotic genomic loci that derived from NCLDV. ViralRecall is written in Python 3.5 and is freely available on GitHub: https://github.com/faylward/viralrecall.


Subject(s)
Computational Biology/methods , Cytoplasm/virology , Eukaryotic Cells/virology , Giant Viruses/classification , Metagenomics , Amino Acid Sequence , Biodiversity , Gene Library , Genome, Viral , Giant Viruses/genetics , Phylogeny
16.
Curr Issues Mol Biol ; 40: 1-24, 2021.
Article in English | MEDLINE | ID: mdl-32089519

ABSTRACT

Double-stranded (ds) DNA viruses of the family Lavidaviridae, commonly known as virophages, are a fascinating group of eukaryotic viruses that depend on a coinfecting giant dsDNA virus of the Mimiviridae for their propagation. Instead of replicating in the nucleus, virophages multiply in the cytoplasmic virion factory of a coinfecting giant virus inside a phototrophic or heterotrophic protistal host cell. Virophages are parasites of giant viruses and can inhibit their replication, which may lead to increased survival rates of the infected host cell population. The genomes of virophages are 17-33 kilobase pairs (kbp) long and encode 16-34 proteins. Genetic signatures of virophages can be found in metagenomic datasets from various saltwater and freshwater environments around the planet. Most virophages share a set of conserved genes that code for a major and a minor capsid protein, a cysteine protease, a genome-packaging ATPase, and a superfamily 3 helicase, although the genomes are otherwise diverse and variable. Lavidaviruses share genes with other mobile genetic elements, suggesting that horizontal gene transfer and recombination have been major forces in shaping these viral genomes. Integrases are occasionally found in virophage genomes and enable these DNA viruses to persist as provirophages in the chromosomes of their viral and cellular hosts. As we watch the genetic diversity of this new viral family unfold through metagenomics, additional isolates are still lacking and critical questions regarding their infection cycle, host range, and ecology remain to be answered.


Subject(s)
Genetic Variation , Genome, Viral , Metagenome , Virophages/classification , Virophages/genetics , Capsid/chemistry , Coinfection , DNA, Viral/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Giant Viruses/classification , Giant Viruses/genetics , Host Microbial Interactions , Host Specificity , Metagenomics/methods , Phylogeny , Virus Replication
17.
Curr Biol ; 30(19): R1108-R1110, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33022247

ABSTRACT

Chantal Abergel and Jean-Michel Claverie introduce giant viruses.


Subject(s)
Biological Evolution , Ecosystem , Genome, Viral , Giant Viruses/classification , Giant Viruses/physiology , Host-Pathogen Interactions , Humans
18.
Arch Virol ; 165(10): 2177-2191, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32748179

ABSTRACT

The canonical frameworks of viral evolution describe viruses as cellular predecessors, reduced forms of cells, or entities that escaped cellular control. The discovery of giant viruses has changed these standard paradigms. Their genetic, proteomic and structural complexities resemble those of cells, prompting a redefinition and reclassification of viruses. In a previous genome-wide analysis of the evolution of structural domains in proteomes, with domains defined at the fold superfamily level, we found the origins of viruses intertwined with those of ancient cells. Here, we extend these data-driven analyses to the study of fold families confirming the co-evolution of viruses and ancient cells and the genetic ability of viruses to foster molecular innovation. The results support our suggestion that viruses arose by genomic reduction from ancient cells and validate a co-evolutionary 'symbiogenic' model of viral origins.


Subject(s)
Biological Evolution , DNA, Viral/genetics , Genome, Viral , Giant Viruses/genetics , Phylogeny , Viral Proteins/genetics , Archaea/genetics , Archaea/virology , Bacteria/genetics , Bacteria/virology , DNA, Viral/chemistry , Eukaryota/genetics , Eukaryota/virology , Genome Size , Giant Viruses/classification , Proteogenomics/methods , Proteome/genetics , Viral Proteins/chemistry
20.
Nature ; 578(7795): 432-436, 2020 02.
Article in English | MEDLINE | ID: mdl-31968354

ABSTRACT

Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth's biomes.


Subject(s)
Biodiversity , DNA Viruses/classification , DNA Viruses/genetics , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Host Microbial Interactions/genetics , Metagenomics , Animals , Capsid Proteins/genetics , Gene Transfer, Horizontal , Genome, Viral/genetics , Giant Viruses/classification , Giant Viruses/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...