Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.337
Filter
1.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38855909

ABSTRACT

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Subject(s)
Calcium Signaling , Fibroblasts , Gingiva , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Humans , Mice , Fibroblasts/metabolism , Gingiva/metabolism , Gingiva/cytology , Calcium/metabolism , MAP Kinase Signaling System , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology
2.
BMC Oral Health ; 24(1): 651, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831398

ABSTRACT

BACKGROUND: Carious/Non-carious cervical lesions with gingival recessions may require both dental and periodontal reconstructive therapy, where flaps/grafts may be placed in contact with a dental filling material. Human Gingival Fibroblasts (HGF-1) response during the early phase of healing could vary according to the procedures employed to cure the dental composite. Moreover, oxygen diffusion into dental composite inhibits the polymerization reaction, creating an oxygen-inhibited layer (OIL) that presents residual unreacted monomers. The aim of this study was to assess the effect of different polishing techniques and OIL on HGF-1. METHODS: Composite discs polished with different techniques (diamond rubber, abrasive discs and tungsten carbide burr) were used. An additional not polished smooth group obtained with and without OIL was used as control. Samples were physically characterized through the analysis of their hydrophilicity and surface topography through contact angle measurement and SEM, respectively; afterwards the biologic response of HGF-1 when cultured on the different substrates was analyzed in terms of cytotoxicity and gene expression. RESULTS: The finishing systems caused alterations to the wettability, even if without a proportional relation towards the results of the proliferation essay, from which emerges a greater proliferation on surfaces polished with one-step diamond rubber and with abrasive discs as well as a direct effect of the glycerin layer, confirming that surface roughness can heavily influence the biological response of HGF-1. CONCLUSIONS: Surfaces wettability as well as cellular behavior seem to be affected by the selection of the finishing system used to lastly shape the restoration. Especially, the presence of OIL act as a negative factor in the regards of human gingival fibroblasts. The present study may provide the first clinical instruction regarding the best polishing system of composite material when the restoration is placed directly in contact with soft tissue cells. Understanding HGF-1 behavior can help identifying the polishing treatment for direct restoration of carious/non-carious cervical lesions associated with gingival recessions.


Subject(s)
Composite Resins , Dental Polishing , Fibroblasts , Gingiva , Surface Properties , Humans , Gingiva/cytology , Dental Polishing/methods , Microscopy, Electron, Scanning , Cell Proliferation , Wettability , Dental Restoration, Permanent/methods , Tungsten Compounds/pharmacology , Cells, Cultured
3.
IET Nanobiotechnol ; 2024: 4391833, 2024.
Article in English | MEDLINE | ID: mdl-38863970

ABSTRACT

The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium-polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with Staphylococcus aureus, Escherichia coli, and Streptococcus mutans for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 µm, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (P < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 µg/mL HPZP@SST showed a better bactericidal ability than 400 µg/mL after cocultured with S. aureus, E. coli, and S. mutans, respectively (all P < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Orthodontic Brackets , Siloxanes , Stainless Steel , Zirconium , Stainless Steel/chemistry , Stainless Steel/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Orthodontic Brackets/microbiology , Zirconium/chemistry , Zirconium/pharmacology , Siloxanes/chemistry , Siloxanes/pharmacology , Fibroblasts/drug effects , Materials Testing , Amines/chemistry , Amines/pharmacology , Staphylococcus aureus/drug effects , Surface Properties , Escherichia coli/drug effects , Keratinocytes/drug effects , Cell Survival/drug effects , Gingiva/cytology , Gingiva/drug effects
4.
BMC Oral Health ; 24(1): 573, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760715

ABSTRACT

BACKGROUND: The aim of this study is to examine the cytotoxic effects of dental gels with different contents, which are frequently used during teething, on gingival mesenchymal stem cells (G-MSCs). METHOD: The teething gels used in this study were Dentinox, Gengigel, Osanite, and Jack and Jill. The human gingival mesenchimal stem cells (hG-MSCs) were incubated with these teething gel solutions (0.1%, 50% and 80% concentrations). Reproductive behavior of G-MSCs was monitored in real time for 72 h using the xCELLigence real-time cell analyzer (RTCA) system. Two-way repeated Anova test and post hoc Bonferroni test were used to evaluate the effect of concentration and dental gel on 0-hour and 72-hour viability. Significance was evaluated at p < 0.05 level. RESULTS: Teething gels prepared at 50% concentration are added to the G-MSC culture, the "cell index" value of G-MSCs to which Dentinox brand gel is added is significantly lower than all other groups (p = 0.05). There is a statistically significant difference between the concentrations in terms of cell index values at the 72nd hour compared to the 0th hour (p = 0.001). CONCLUSIONS: The local anesthetic dental gels used in children have a more negative effect on cell viability as concentration increases.


Subject(s)
Cell Survival , Gels , Gingiva , Mesenchymal Stem Cells , Humans , Gingiva/cytology , Gingiva/drug effects , Mesenchymal Stem Cells/drug effects , Cell Survival/drug effects , Cells, Cultured , In Vitro Techniques
5.
J Appl Oral Sci ; 32: e20230294, 2024.
Article in English | MEDLINE | ID: mdl-38747782

ABSTRACT

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Subject(s)
Cell Movement , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Hyaluronic Acid , Platelet-Rich Fibrin , Regeneration , Hyaluronic Acid/pharmacology , Humans , Fibroblasts/drug effects , Gingiva/drug effects , Gingiva/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Regeneration/drug effects , Time Factors , Cell Movement/drug effects , Reproducibility of Results , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Collagen , Materials Testing , Wound Healing/drug effects , Biocompatible Materials/pharmacology , Collagen Type I/analysis
6.
J Evid Based Integr Med ; 29: 2515690X241258369, 2024.
Article in English | MEDLINE | ID: mdl-38778767

ABSTRACT

The aim of this study was to evaluate the effect of curcumin combined with Lactobacillus rhamnosus GG cell-free supernatant (LGG CFS) on the proliferation and induction of apoptosis in SCC-9 oral squamous cell carcinoma (OSCC) cells. Curcumin (40 µg/ml) and 25% v/v LGG CFS (108 CFU/ml), both alone and in a combination regimen, significantly decreased the viability of SCC-9 cells and normal human gingival fibroblast (HGF) cells. Interestingly, the combination of low doses of curcumin (5 µg/ml) and 25% v/v LGG CFS (106 CFU/ml) had no effect on the HGF cells but significantly inhibited the viability of SCC-9 cells (p < 0.05). Flow cytometric analysis revealed that SCC-9 cells treated with the combination of low-dose curcumin and low-dose LGG CFS had a higher apoptotic rate than the cells in the control group and the single treatment groups (p < 0.05). The combined treatment also significantly increased the Bax/Bcl2 mRNA and protein expression in SCC-9 cells (p < 0.05) but not in HGF cells, indicating the underlying mechanism of the combination regimen. There was no significant difference in caspase-3 protein expression or the Bcl-xL/Bak and Mcl-1/Bak ratios between the treatment and control groups in both cell lines. These findings suggested that the coadministration of curcumin and LGG could exhibit anticancer effects in SCC-9 cells without causing toxicity to normal fibroblast cells.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Cell Survival , Curcumin , Lacticaseibacillus rhamnosus , Mouth Neoplasms , Humans , Curcumin/pharmacology , Apoptosis/drug effects , Mouth Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Fibroblasts/drug effects , Cell Proliferation/drug effects , Gingiva/cytology , Probiotics/pharmacology , Antineoplastic Agents/pharmacology
7.
BMC Biotechnol ; 24(1): 36, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796454

ABSTRACT

BACKGROUND: To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS: The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS: Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION: Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.


Subject(s)
Collagen , Drug Combinations , Laminin , Mesenchymal Stem Cells , Proteoglycans , Rats, Sprague-Dawley , Tissue Scaffolds , Wound Healing , Animals , Laminin/chemistry , Proteoglycans/chemistry , Collagen/chemistry , Humans , Rats , Mesenchymal Stem Cells/cytology , Tissue Scaffolds/chemistry , Cell Differentiation , Cell Proliferation , Gingiva/cytology , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Tissue Engineering/methods , Male , Mouth Mucosa/cytology
8.
J Trace Elem Med Biol ; 84: 127466, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692230

ABSTRACT

BACKGROUND: Boric acid (BA) has been found to have therapeutic effects on periodontal disease through beneficially affecting antibacterial, anti-viral, and anti-inflammatory actions. METHODS: This study was conducted to determine the effect of BA on cell viability and on mRNA expressions of proinflammatory and anti-inflammatory cytokines and on oxidative stress enzymes induced by IL-1ß (1 ng/mL) in Human Gingival Fibroblasts (HGF) cultured for 24 and 72 h in DMEM media. The BA concentrations added to the media were 0.09 %, 0.18 %, 0.37 %, and 0.75 %. RESULTS: All of the BA concentrations increased the viability of cell cultured in DMEM media only, indicating that these concentrations were not toxic and actually beneficial to cell viability. The addition of 1 ng/m: of IL-1ß decreased cell viability that was overcome by all concentrations of BA at both 24 and 72 h. The IL-1ß addition to the media increased the expressions of the proinflammatory cytokines IL-1ß, IL-6, IL-8, and IL-17; the anti-inflammatory cytokine IL-10; and the oxidative stress enzymes superoxide dismutase (SOD0 and glutathione peroxidase (GPX). The IL-1ß induced increase mRNA expression of IL-1ß was decreased at 24 h by the 0.37 % and 0.75 % BA additions to the media and decreased in a dose-dependent manner by all concentrations of BA at 72 h. The IL-1ß induced increase in the expression of IL-6 was decreased in dose-dependent manner at 72 h by BA. All BA concentrations decreased the IL-1ß induced expression of IL-8 at both 24 and 72 h. The induced increase in IL-17 by IL-1ß was not significantly affected by the BA additions. The increase in the anti-inflammatory cytokine IL10 induced by IL-1ß was increased further by all BA additions in dose dependent manner at both 24 and 72 h. The mRNA expressions of SOD and GPX increased by IL-1ß were further increased by the 0.37 % and 0.75 % BA concentrations at 72 h. CONCLUSIONS: These findings indicate that BA can significantly modulate the cytokines that are involved in inflammatory stress and reactive oxygen species action and thus could be an effective therapeutic agent in the treatment of periodontal disease.


Subject(s)
Boric Acids , Cell Survival , Fibroblasts , Gingiva , Interleukin-1beta , Humans , Boric Acids/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gingiva/cytology , Gingiva/drug effects , Interleukin-1beta/metabolism , Cell Survival/drug effects , Cells, Cultured , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Oxidative Stress/drug effects , Cytokines/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
9.
J Dent ; 145: 105033, 2024 06.
Article in English | MEDLINE | ID: mdl-38697505

ABSTRACT

OBJECTIVES: This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS: 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS: BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS: The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE: Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.


Subject(s)
Anti-Bacterial Agents , Ceramics , Dental Abutments , Fibroblasts , Gingiva , Glass , Surface Properties , Zinc , Zirconium , Zirconium/pharmacology , Zirconium/chemistry , Humans , Zinc/pharmacology , Fibroblasts/drug effects , Anti-Bacterial Agents/pharmacology , Gingiva/cytology , Gingiva/drug effects , Glass/chemistry , Ceramics/pharmacology , Ceramics/chemistry , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Antioxidants/pharmacology , Materials Testing , Collagen , Wound Healing/drug effects , Dental Materials/pharmacology , Dental Materials/chemistry , Cells, Cultured
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732100

ABSTRACT

The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1ß induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1ß compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.


Subject(s)
Composite Resins , Fibroblasts , Gingiva , Interleukin-1beta , Polymethyl Methacrylate , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Gingiva/cytology , Composite Resins/pharmacology , Composite Resins/chemistry , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cells, Cultured , Transcription Factor RelA/metabolism , Cell Adhesion/drug effects
11.
J Indian Prosthodont Soc ; 24(2): 152-158, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38650340

ABSTRACT

AIM: In routine dental care, various dental luting cements are utilized to cement the dental prosthesis. Thus, the aim of the current study was to assess the Cytotoxic effect of three different dental luting cements on human gingival mesenchymal stem cell and evaluation of cytokines and growth factors release. SETTINGS AND DESIGN: Cytotoxicity of glass ionomer cement (GIC), resin modified glass ionomer cement (RMGIC) and resin cement (RC) on the human gingival mesenchymal stem cells (HGMSCs) was evaluated. Amongst the cements tested, least cytotoxic cement was further tested for the release of cytokines and growth factors. MATERIALS AND METHODS: MTT test was used to evaluate the cytotoxicity of the dental luting cements at 1 h, 24 h, and 48 h on HGMSCs. Cytokines such as interleukin (IL) 1α & IL 8 and growth factors such as platelet derived growth factor & transforming growth factor beta release from the least cytotoxic RC was evaluated using flow cytometry analysis. STATISTICAL ANALYSIS USED: The mean absorbance values by MTT assay and cell viability at various time intervals between four groups were compared using a one way analysis of variance test and Tukey's post hoc test. The least cytotoxic RC group and the control group's mean levels of cytokines and growth factors were compared using the Mann-Whitney test. RESULT: As exposure time increased, the dental luting cement examined in this study were cytotoxic. RC was the least cytotoxic, RMGIC was moderate and glass ionomer cement showed the highest cytotoxic effect. Concomitantly, a significant positive biological response of gingival mesenchymal stem cells with the release of ILs when exposed to the RC was observed. CONCLUSION: For a fixed dental prosthesis to be clinically successful over the long term, it is imperative that the biocompatibility of the luting cement be taken into account in order to maintain a healthy periodontium surrounding the restoration.


Subject(s)
Cytokines , Dental Cements , Gingiva , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Humans , Gingiva/cytology , Gingiva/drug effects , Mesenchymal Stem Cells/drug effects , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Dental Cements/pharmacology , Dental Cements/chemistry , Dental Cements/toxicity , In Vitro Techniques , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/toxicity , Glass Ionomer Cements/chemistry , Cell Survival/drug effects , Cells, Cultured
12.
JCI Insight ; 9(10)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652539

ABSTRACT

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.


Subject(s)
Arthritis, Rheumatoid , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , NF-kappa B , T-Lymphocytes, Regulatory , Th17 Cells , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Humans , Animals , Th17 Cells/immunology , Th17 Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , I-kappa B Kinase/metabolism , Signal Transduction , Disease Models, Animal , Gingiva/cytology , Gingiva/metabolism , Gingiva/pathology , Gingiva/immunology , Male , Fibroblasts/metabolism
13.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38593411

ABSTRACT

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Materials Testing , Nitric Oxide , Streptococcus mutans , Streptococcus mutans/drug effects , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Escherichia coli/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Microbial Sensitivity Tests , Particle Size , Biofilms/drug effects , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , Surface Properties , Periodontitis/drug therapy , Periodontitis/microbiology , Gingiva/cytology
14.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38637003

ABSTRACT

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Subject(s)
Endothelial Cells , Gingiva , Human Umbilical Vein Endothelial Cells , Periodontitis , Phosphate-Binding Proteins , Platelet Endothelial Cell Adhesion Molecule-1 , Pyroptosis , Animals , Mice , Humans , Periodontitis/metabolism , Periodontitis/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Gingiva/pathology , Gingiva/metabolism , Gingiva/cytology , Phosphate-Binding Proteins/metabolism , Endothelial Cells/metabolism , Alveolar Bone Loss/pathology , Alveolar Bone Loss/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , X-Ray Microtomography , Disease Models, Animal , Porphyromonas gingivalis
15.
Tissue Cell ; 88: 102358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537379

ABSTRACT

OBJECTIVE: With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN: Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS: Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS: In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.


Subject(s)
Cell Differentiation , Fibroblasts , Gingiva , Osteogenesis , Animals , Mice , Fibroblasts/cytology , Fibroblasts/metabolism , NIH 3T3 Cells , Humans , Gingiva/cytology , Tissue Engineering/methods , Osteoblasts/cytology , Osteoblasts/metabolism
16.
J Periodontal Res ; 59(3): 599-610, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38482719

ABSTRACT

OBJECTIVE: This study investigates the effects of ZNF862 on the proliferation and apoptosis of human gingival fibroblasts and their related mechanisms. BACKGROUND: As a major transcription factor family, zinc finger proteins (ZFPs) regulate cell differentiation, growth, and apoptosis through their conserved zinc finger motifs, which allow high flexibility and specificity in gene regulation. In our previous study, ZNF862 mutation was associated with hereditary gingival fibromatosis. Nevertheless, little is known about the biological function of ZNF862. Therefore, this study was aimed to reveal intracellular localization of ZNF862, the influence of ZNF862 on the growth and apoptosis of human gingival fibroblasts (HGFs) and its potential related mechanisms. METHODS: Immunohistochemistry, immunofluorescence staining, and western blotting were performed to determine the intracellular localization of ZNF862 in HGFs. HGFs were divided into three groups: ZNF862 overexpression group, ZNF862 interference group, and the empty vector control group. Then, the effects of ZNF862 on cell proliferation, migration, cell cycle, and apoptosis were evaluated. qRT-PCR and western blotting were performed to further explore the mechanism related to the proliferation and apoptosis of HGFs. RESULTS: ZNF862 was found to be localized in the cytoplasm of HGFs. In vitro experiments revealed that ZNF862 overexpression inhibited HGFs proliferation and migration, induced cell cycle arrest at the G0/G1-phase and apoptosis. Whereas, ZNF862 knockdown promoted HGFs proliferation and migration, accelerated the transition from the G0/G1 phase into the S and G2/M phase and inhibited cell apoptosis. Mechanistically, the effects of ZNF862 on HGFs proliferation and apoptosis were noted to be dependent on inhibiting the cyclin-dependent kinase inhibitor 1A (p21)-retinoblastoma 1 (RB1) signaling pathway and enhancing the B-cell lymphoma-extra-large (Bcl-xL)-Caspase 3 signaling pathway. CONCLUSION: Our results for the first time reveal that ZNF862 is localized in the cytoplasm of HGFs. ZNF862 can inhibit the proliferation of HGFs by inhibiting the p21-RB1 signaling pathway, and it also promotes the apoptosis of HGFs by enhancing the Bcl-xL-Caspase 3 signaling pathway.


Subject(s)
Apoptosis , Caspase 3 , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21 , Fibroblasts , Gingiva , Signal Transduction , bcl-X Protein , Humans , Apoptosis/genetics , bcl-X Protein/metabolism , Caspase 3/metabolism , Cell Cycle , Cell Movement , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Fibroblasts/metabolism , Gingiva/cytology , Gingiva/metabolism , Transcription Factors/metabolism
17.
J Periodontal Res ; 59(3): 611-621, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38500269

ABSTRACT

BACKGROUND AND OBJECTIVE: Forkhead box-O 1 (FOXO1) is a transcription factor actively involved in oral wound healing at the epithelial barrier. However, less is known regarding the role of FOXO1 during the tissue repair response in the connective tissue compartment. This study explored the involvement of FOXO1 in the modulation of fibroblast activity related to wound healing. METHODS: Primary cultures of human gingival fibroblasts were obtained from four healthy young donors. Myofibroblastic differentiation, collagen gel contraction, cell migration, cell spreading, and integrin activation were evaluated in the presence or absence of a FOXO1 inhibitor (AS1842856). Variations in mRNA and proteins of interest were evaluated through qRT-PCR and western blot, respectively. Distribution of actin, α-smooth muscle actin, and ß1 integrin was evaluated using immunofluorescence. FOXO1 and TGF-ß1 expression in gingival wound healing was assessed by immunohistochemistry in gingival wounds performed in C57BL/6 mice. Images were analyzed using ImageJ/Fiji. ANOVA or Kruskal-Wallis test followed by Tukey's or Dunn's post-hoc test was performed. All data are expressed as mean ± SD. p < .05 was considered statistically significant. RESULTS: FOXO1 inhibition caused a decrease in the expression of the myofibroblastic marker α-SMA along with a reduction in fibronectin, type I collagen, TGF-ß1, and ß1 integrin mRNA level. The FOXO1 inhibitor also caused decreases in cell migration, cell spreading, collagen gel contraction, and ß1 integrin activation. FOXO1 and TGF-ß1 were prominently expressed in gingival wounds in fibroblastic cells located at the wound bed. CONCLUSION: The present study indicates that FOXO1 plays an important role in the modulation of several wound-healing functions in gingival fibroblast. Moreover, our findings reveal an important regulatory role for FOXO1 on the differentiation of gingival myofibroblasts, the regulation of cell migration, and collagen contraction, all these functions being critical during tissue repair and fibrosis.


Subject(s)
Actins , Cell Movement , Fibroblasts , Forkhead Box Protein O1 , Gingiva , Wound Healing , Humans , Gingiva/cytology , Gingiva/metabolism , Wound Healing/physiology , Fibroblasts/metabolism , Forkhead Box Protein O1/metabolism , Animals , Cells, Cultured , Cell Differentiation , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Mice , Integrin beta1 , Myofibroblasts , Quinolones
18.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38457263

ABSTRACT

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Subject(s)
Alloys , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Metal Nanoparticles , Silver , Surface Properties , Thiazoles , Titanium , Humans , Fibroblasts/drug effects , Titanium/toxicity , Titanium/chemistry , Gingiva/cytology , Gingiva/drug effects , Silver/chemistry , Silver/toxicity , Cell Proliferation/drug effects , Metal Nanoparticles/toxicity , Cell Survival/drug effects , Cells, Cultured , Alloys/toxicity , Materials Testing , Dental Alloys/chemistry , Dental Alloys/toxicity , Microscopy, Electron, Scanning , Coloring Agents , Biocompatible Materials/chemistry , Tetrazolium Salts
19.
Int Dent J ; 74(3): 607-615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38228433

ABSTRACT

BACKGROUND: Periodontitis is one of the most common chronic oral inflammatory diseases. Over the past decade, herpes viruses, particularly Epstein-Barr virus (EBV), have been considered promising pathogenic candidates for periodontitis. However, the specific mechanism by which EBV contributes to the development of periodontitis is still unknown. This study aimed to explore the mechanism of EBV underlying the inflammatory response in human gingival fibroblasts (HGFs). MATERIALS AND METHODS: HGFs were stimulated with different concentrations of EBV (104, 105, 106, 107, and 108 DNA copies/mL) for 0, 8, 24, or 48 hours. The mRNA levels of interleukin (IL)-1ß, tumour necrosis factor-α (TNF-α), IL-8, monocyte chemoattractant protein-1 (MCP-1), and Toll-like receptor 9 (TLR9) were measured using quantitative real-time polymerase chain reaction (PCR). Enzyme-linked immunosorbent assays (ELISAs) were performed for determining the mRNA and protein levels of IL-1ß, TNF-α, IL-8, and MCP-1. Real-time PCR and ELISA were performed to determine the protein levels of IL-1ß, TNF-α, IL-8, and MCP-1. Activation of the TLR9/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) pathway was evaluated using western blotting. RESULTS: The expressions of IL-1ß, TNF-α, IL-8, and MCP-1 were significantly upregulated in HGFs under EBV stimulation in a concentration- and time-dependent manner. EBV promoted TLR9 and MyD88 expression and induced NF-κB transcription. On the contrary, the upregulation of these factors and the activation of NF-κB pathway were drastically inhibited by TLR9 antagonists. CONCLUSIONS: Our findings demonstrate that EBV promotes the production of inflammatory cytokines IL-1ß and TNF-α and chemokines IL-8 and MCP-1 in HGFs through the TLR9/MyD88/NF-κB pathway.


Subject(s)
Chemokine CCL2 , Cytokines , Fibroblasts , Gingiva , Herpesvirus 4, Human , Interleukin-1beta , Toll-Like Receptor 9 , Humans , Fibroblasts/virology , Fibroblasts/metabolism , Gingiva/virology , Gingiva/cytology , Cytokines/metabolism , Toll-Like Receptor 9/metabolism , Chemokine CCL2/metabolism , Interleukin-1beta/metabolism , Myeloid Differentiation Factor 88/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Real-Time Polymerase Chain Reaction , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , RNA, Messenger/metabolism , Interleukin-8/metabolism , Periodontitis/virology , Periodontitis/metabolism
20.
J Periodontal Res ; 59(3): 542-551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38146226

ABSTRACT

BACKGROUND AND OBJECTIVE: Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS: The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS: Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION: Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.


Subject(s)
Apoptosis , Gingiva , Glycyrrhizic Acid , Macrophages , Monoterpenes , Phagocytosis , Tropolone , Apoptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Humans , Tropolone/analogs & derivatives , Tropolone/pharmacology , Phagocytosis/drug effects , Gingiva/cytology , Gingiva/metabolism , Gingiva/drug effects , Glycyrrhizic Acid/pharmacology , Monoterpenes/pharmacology , Mice , Animals , Fibroblasts/drug effects , Fibroblasts/metabolism , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Interleukin-6/metabolism , Cells, Cultured , Efferocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...