Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.491
Filter
1.
Clin Oral Investig ; 28(6): 345, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809289

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effect of restorations made with a glass-hybrid restorative system (GHRS), a high-viscosity glass ionomer restorative material (HVGIC), a high-viscosity bulk-fill composite resin (HVB), a flowable bulk-fill composite resin (FB), and a nanohybrid composite resin (NH), which are commonly preferred in clinical applications on the fracture resistance of teeth in-vitro. MATERIALS AND METHODS: One hundred intact human premolar teeth were included in the study. The teeth were randomly divided into ten groups (n = 10). No treatment was applied to the teeth in Control group. Class II cavities were prepared on the mesial surfaces of the remaining ninety teeth in other groups. For restoration of the teeth, a GHRS, a HVGIC, a HVB, a FB, and a NH were used. Additionally, in four groups, teeth were restored using NH, GHRS, and HVGIC with open and closed-sandwich techniques. After 24 h, fracture resistance testing was performed. One-way ANOVA and Tukey HDS tests were used for statistical analysis of the data. RESULTS: The fracture resistance values of Control group were statistically significantly higher than those of GHRS, HVGIC, FB, NH, HVGIC-CS, GHRS-OS, and HVGIC-OS groups(p < 0.05). There was no statistically significant difference observed between the fracture resistance values of Control, HVB, and GHRS-CS groups (p > 0.05). CONCLUSION: It can be concluded that the use of HVB and the application of GHRS with a closed-sandwich technique may have a positive effect on the fracture resistance of teeth in the restoration of wide Class II cavities. CLINICAL RELEVANCE: The use of high-viscosity bulk-fill composite resin and the application of glass-hybrid restorative system with the closed-sandwich technique in the restoration of teeth with wide Class II cavities could increase the fracture resistance of the teeth.


Subject(s)
Bicuspid , Composite Resins , Dental Restoration, Permanent , Dental Stress Analysis , Glass Ionomer Cements , Materials Testing , Tooth Fractures , Composite Resins/chemistry , Humans , In Vitro Techniques , Dental Restoration, Permanent/methods , Glass Ionomer Cements/chemistry , Tooth Fractures/prevention & control , Viscosity , Surface Properties , Dental Cavity Preparation/methods , Acrylic Resins/chemistry
2.
Int J Prosthodont ; 37(7): 195-202, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38787584

ABSTRACT

PURPOSE: To evaluate the fracture resistance of permanent resin crowns for primary teeth produced using two different 3D-printing technologies (digital light processing [DLP] and stereolithography [SLA]) and cemented with various luting cements (glass ionomer, resin-modified glass ionomer, and self-adhesive resin cement), whether thermally aged or not. MATERIALS AND METHODS: A typodont primary mandibular second molar tooth was prepared and scanned, and a restoration design was created with web-based artificial intelligence (AI) dental software. A total of 96 crowns were prepared, and 12 experimental groups were generated according to the cement type, 3Dprinting technology (DLP or SLA), and thermal aging. Fracture resistance values and failure types of the specimens were noted. The results were statistically analyzed with three-way ANOVA and Tukey HSD tests (α = .05). RESULTS: The results of the three-way ANOVA showed that there was an interaction among the factors (3D-printing technology, cement type, and thermal aging) (P = .003). Thermal aging significantly decreased the fracture resistance values in all experimental groups. DLP-printed crowns showed higher fracture resistance values than SLA-printed crowns. Cement type also affected the fracture resistance, with glass ionomer cement showing the lowest values after aging. Resin-modified glass ionomer and resin cements were more preferable for 3D-printed crowns. CONCLUSIONS: The type of cement and the 3D-printing technology significantly influenced the fracture resistance of 3D-printed permanent resin crowns for primary teeth, and it was decided that these crowns would be able to withstand masticatory forces in children.


Subject(s)
Crowns , Dental Restoration Failure , Printing, Three-Dimensional , Tooth, Deciduous , Humans , Resin Cements/chemistry , Dental Prosthesis Design , Dental Stress Analysis , Glass Ionomer Cements/chemistry , Dental Cements/chemistry , Materials Testing , Molar
3.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
4.
BMC Oral Health ; 24(1): 581, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764034

ABSTRACT

BACKGROUND: This study was conducted to compare chemical, elemental and surface properties of sound and carious dentin after application of two restorative materials resin-modified glassionomer claimed to be bioactive and glass hybrid restorative material after enzymatic chemomechanical caries removal (CMCR) agent. METHODS: Forty carious and twenty non-carious human permanent molars were used. Molars were randomly distributed into three main groups: Group 1 (negative control) - sound molars, Group 2 (positive control) - molars were left without caries removal and Group 3 (Test Group) caries excavated with enzymatic based CMCR agent. After caries excavation and restoration application, all specimens were prepared Vickers microhardness test (VHN), for elemental analysis using Energy Dispersive Xray (EDX) mapping and finally chemical analysis using Micro-Raman microscopy. RESULTS: Vickers microhardness values of dentin with the claimed bioactive GIC specimens was statistically higher than with glass hybrid GIC specimens. EDX analysis at the junction estimated: Calcium and Phosphorus of the glass hybrid GIC showed insignificantly higher mean valued than that of the bioactive GIC. Silica and Aluminum mean values at the junction were significantly higher with bioactive GIC specimens than glass hybrid GIC specimen. Micro-raman spectroscopy revealed that bioactive GIC specimens showed higher frequencies of v 1 PO 4, which indicated high level of remineralization. CONCLUSIONS: It was concluded that ion-releasing bioactive resin-based restorative material had increased the microhardness and remineralization rate of carries affected and sound dentin. In addition, enzymatic caries excavation with papain-based CMCR agent has no adverse effect on dentin substrate.


Subject(s)
Dental Caries , Dental Cavity Preparation , Dentin , Glass Ionomer Cements , Hardness , Humans , Dental Caries/therapy , Glass Ionomer Cements/chemistry , Dental Cavity Preparation/methods , Phosphorus/analysis , Papain/therapeutic use , Surface Properties , Dental Restoration, Permanent/methods , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman , Calcium/analysis , Molar , Tooth Remineralization/methods , Aluminum , Silicon Dioxide , Materials Testing
5.
J Clin Pediatr Dent ; 48(3): 107-119, 2024 May.
Article in English | MEDLINE | ID: mdl-38755989

ABSTRACT

This research study aimed to investigate the impact of probiotic mouthwash and kefir on the surface characteristics, specifically surface roughness and microhardness, of different restorative materials, as well as permanent and deciduous tooth enamels. Thirty disc-shaped specimens were prepared from composite resin (G-ænial Posterior (GP)), polyacid-modified composite resin (compomer) (Dyract-XP (DXP)), and resin-modified glass ionomer cement (Ionoseal (IS)). Additionally, thirty specimens of enamel were obtained from permanent teeth (PT) and thirty from deciduous teeth (DT) by embedding buccal and lingual sections, acquired through vertical sectioning of 15 permanent and 15 deciduous human tooth crowns in the mesiodistal orientation within acrylic resin blocks. The specimens were then categorized into three distinct groups and immersed for 14 days in one of the following solutions: distilled water, kefir or probiotic mouthwash. The mean surface roughness values of all specimens were assessed using an atomic force microscope, while the mean surface microhardness was measured using a Vickers hardness measuring instrument. The results revealed a statistically significant difference in mean surface roughness among the various restorative materials (p < 0.001). Among the restorative materials, the IS material exhibited notably higher mean surface roughness values than other restorative materials and tooth enamel, while no significant differences were observed between the PT and DT groups. Importantly, the main effect of the solutions under investigation was not statistically significant (p = 0.208). No significant difference was found between the surface roughness values of specimens subjected to the different solutions. When evaluating the effects of materials and solutions on microhardness, the main effects of material and solution variables and the influence of material-solution interactions were statistically significant (p < 0.001). Taken together, these results indicate that consistent use of kefir or probiotic mouthwashes may impact the surface properties of various restorative materials and tooth enamel.


Subject(s)
Composite Resins , Dental Enamel , Dental Restoration, Permanent , Glass Ionomer Cements , Hardness , Probiotics , Surface Properties , Humans , Dental Enamel/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Dental Restoration, Permanent/methods , Compomers/chemistry , Tooth, Deciduous , Mouthwashes/chemistry , Mouthwashes/pharmacology , Materials Testing , Dental Materials/chemistry
6.
BMC Oral Health ; 24(1): 504, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685036

ABSTRACT

OBJECTIVE: To evaluate the effect of various surface coating methods on surface roughness, micromorphological analysis and fluoride release from contemporary resin-modified and conventional glass ionomer restorations. MATERIALS & METHODS: A total of 72 permanent human molars were used in this study. The teeth were randomly assigned into 2 groups according to type of restorative materials used; resin modified glass ionomer cement and conventional glass ionomer (SDI Limited. Bayswater Victoria, Australia). Each group was subdivided into 3 subgroups according to the application of coat material; Sub-group1: without application of coat; Sub-group2: manufacturer recommended coat was applied and sub-group3: customized (vaseline) coat was applied. Each group was then subdivided into two divisions according to the time of testing; immediate (after 24 h) and delayed (after 6 months of storage). Three specimens from each sub-group were selected for surface roughness test (AFM) and another 3 specimens for the micromorphological analysis using scanning electron microscope (SEM). For the fluoride release test, a total of 60 cylindrical discs were used (n = 60). The discs were randomly split into 2 groups according to type of restorative materials used (n = 30); resin modified glass ionomer cement and conventional glass ionomer. Each group was subdivided into 3 subgroups (n = 10) according to the application of the coat material; Sub-group1: without application of coat; Sub-group2: with the manufacturer recommended coat and sub-group3: with application of customized (vaseline) coat. Data for each test was then collected, tabulated, were collected, tabulated, and tested for the normality with Shapiro-Wilk test. Based on the outcome of normality test, the significant effects of variables were assessed using appropriate statistical analysis testing methods. RESULTS: Regarding the data obtained from surface roughness test, Shapiro-Wilk test showed normal distribution pattern of all values (p > 0.05). Accordingly, Two-way ANOVA outcome showed that the 'type of restoration' or 'test time' had statistically significant effect on the AFM test (p < 0.05). Regarding Fluoride specific ion electrode test 2-way ANOVA followed by Least Significant Difference (LSD) Post-hoc test revealed significant difference among the groups (p < 0.05). It showed that SDI GIC group after 14 days of measurement had the highest mean of fluoride release (36.38 ± 3.16 PPM) and SDI RMGIC after 30 days of measurement had the second highest mean of fluoride release (43.28 ± 1.89 PPM). Finally, regarding the micromorphological analysis using SEM, a slight difference was observed between the studied groups. CONCLUSIONS: Based on the results of this study, various coatings enhance surface roughness in the initial 24 h of restoration insertion. Different coat types seems that have no influence on fluoride release and the micromorphological features of the restoration/dentin interface.


Subject(s)
Dental Restoration, Permanent , Fluorides , Glass Ionomer Cements , Microscopy, Electron, Scanning , Surface Properties , Humans , Glass Ionomer Cements/chemistry , Fluorides/chemistry , Dental Restoration, Permanent/methods , Materials Testing , Microscopy, Atomic Force , Molar , Cariostatic Agents/chemistry
7.
J Dent ; 145: 104985, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574846

ABSTRACT

OBJECTIVE: Clinical contamination during direct adhesive restorative procedures can affect various adhesive interfaces differently and contribute to bulk failure of the restorations. This review aims to summarise the current knowledge on the influence of a variety of clinical contaminants on the bond strength at various adhesive interfaces during adhesive restorative procedures and identify gaps in the literature for future research. DATA AND SOURCES: An electronic database search was performed in PubMed and EMBASE to identify articles that investigated the influence of contaminants on direct restorative bonding procedures. A data-charting form was developed by two researchers to capture the key characteristics of each eligible study. STUDY SELECTION: The initial search yielded 1,428 articles. Fifty-seven articles published between 1 Jan 2007 and 25 Oct 2023 were included in the final review. Thirty-three of the articles examined the influence of saliva contamination, twelve articles examined the influence of blood contamination, and twenty-five articles examined the influence of other contaminants. CONCLUSION: Saliva contamination exerted less influence on the decrease in bond strength when self-etch systems were used, compared to when etch-and-rinse systems were used. Blood contamination adversely affected the bond strength at the interface between resin composite and dentine, and resin composite and resin-modified glass ionomer cement. Treating contaminated surfaces with water spray for 10-30 s followed by air drying could be effective in recovering bond strength following saliva and blood contamination. CLINICAL SIGNIFICANCE: This scoping review provides a valuable overview of the range of potential clinical contaminants that can influence the bond strength between different interfaces in direct adhesive restorative procedures. Additionally, it identifies potential decontamination protocols that can be followed to restore and enhance bond strength.


Subject(s)
Composite Resins , Dental Bonding , Humans , Composite Resins/chemistry , Dental Restoration, Permanent/methods , Saliva , Glass Ionomer Cements/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Dentin , Dental Cements/chemistry , Dental Stress Analysis , Surface Properties , Resin Cements/chemistry
8.
J Dent ; 145: 105015, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657726

ABSTRACT

OBJECTIVES: To assess and compare the cell viability and ion release profiles of two conventional glass ionomer cements (GICs), Fuji IX and Ketac Molar EasyMix, modified with TiO2 and Mg-doped-HAp nanoparticles (NPs). METHODS: TiO2 NPs, synthesized via a sol-gel method, and Mg-doped hydroxyapatite, synthesized via a hydrothermal process, were incorporated into GICs at a concentration of 5 wt.%. The biocompatibility of prepared materials was assessed by evaluating their effects on the viability of dental pulp stem cells (DPSCs), together with monitoring ion release profiles. Statistical analysis was performed using One-way analysis of variance, with significance level p < 0.05. RESULTS: The addition of NPs did not significantly affect the biocompatibility of GICs, as evidenced by comparable decreased levels in cell viability to their original formulations. Distinct variations in cell viability were observed among Fuji IX and Ketac Molar, including their respective modifications. FUJI IX and its modification with TiO2 exhibited moderate decrease in cell viability, while other groups exhibited severe negative effects. While slight differences in ion release profiles were observed among the groups, significant variations compared to original cements were not achieved. Fluoride release exhibited an initial "burst release" within the initial 24 h in all samples, stabilizing over subsequent days. CONCLUSIONS: The addition of NPs did not compromise biocompatibility, nor anticariogenic potential of tested GICs. However, observed differences among FUJI IX and Ketac Molar, including their respective modifications, as well as induced low viability of DPSC by all tested groups, suggest the need for careful consideration of cement composition in their biological assessments. CLINICAL SIGNIFICANCE: The findings contribute to understanding the complex interaction between NPs and GIC matrices. However, the results should be interpreted recognizing the inherent limitations associated with in vitro studies. Further research avenues could explore long-term effects, in vivo performance, and potential clinical applications.


Subject(s)
Cell Survival , Dental Pulp , Durapatite , Fluorides , Glass Ionomer Cements , Magnesium , Materials Testing , Nanoparticles , Titanium , Titanium/chemistry , Glass Ionomer Cements/chemistry , Cell Survival/drug effects , Durapatite/chemistry , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Nanoparticles/chemistry , Fluorides/chemistry , Magnesium/chemistry , Stem Cells/drug effects , Biocompatible Materials/chemistry , Ions , Cells, Cultured
9.
Biomed Mater ; 19(3)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38636498

ABSTRACT

Dental cement residues exacerbate peri-implant tissue irritation and peri-implantitis. The present study aims to evaluate the cytotoxicity, physiochemical, optical, and rheological properties of carbon quantum dots (CQDs) impregnated glass ionomer cement (GIC). Surface passivated fluorescent CQDs were synthesized using citric acid via thermal decomposition and blended with GIC. Characterization studies and rheological measurements were made to evaluate their performance. 3D-printed dental implant models cemented with GIC and GIC-CQD were compared to analyze excess cement residues. MTT assay was performed with human dental pulp stem cells (hDPSCs) and statistically analyzed using ANOVA and Tukey's test. CQDs with a particle dimension of ∼2 nm were synthesized. The amorphous property of GIC-CQD was confirmed through XRD. The fluorescence properties of GIC-CQD showed three times higher emission intensity than conventional GIC. GIC-CQD attained maturation with a setting time extended by 64 s than GIC. Cement residue of size 2 mm was detected with a UV light excitation at a distance between 5 to 10 cm. Biocompatibility at 0.125 mg ml-1dilution concentrations of GIC-CQD showed viability greater than 80% to hDPSCs. For the first time, we report that CQDs-impregnated GIC is a unique and cost-effective strategy for in-situ detection of excess cement rapidly using a hand-held device. A novel in-situ rapid detection method enables the dentist to identify residual cement of size less than 2 mm during the implantation. Therefore, GIC-CQD would replace conventional GIC and help in the prevention of peri-implant diseases.


Subject(s)
Carbon , Dental Pulp , Glass Ionomer Cements , Materials Testing , Quantum Dots , Quantum Dots/chemistry , Humans , Carbon/chemistry , Glass Ionomer Cements/chemistry , Dental Pulp/cytology , Cell Survival/drug effects , Dental Implants , Peri-Implantitis/prevention & control , Stem Cells/cytology , Printing, Three-Dimensional , Biocompatible Materials/chemistry , Rheology , Citric Acid/chemistry
10.
J Indian Prosthodont Soc ; 24(2): 152-158, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38650340

ABSTRACT

AIM: In routine dental care, various dental luting cements are utilized to cement the dental prosthesis. Thus, the aim of the current study was to assess the Cytotoxic effect of three different dental luting cements on human gingival mesenchymal stem cell and evaluation of cytokines and growth factors release. SETTINGS AND DESIGN: Cytotoxicity of glass ionomer cement (GIC), resin modified glass ionomer cement (RMGIC) and resin cement (RC) on the human gingival mesenchymal stem cells (HGMSCs) was evaluated. Amongst the cements tested, least cytotoxic cement was further tested for the release of cytokines and growth factors. MATERIALS AND METHODS: MTT test was used to evaluate the cytotoxicity of the dental luting cements at 1 h, 24 h, and 48 h on HGMSCs. Cytokines such as interleukin (IL) 1α & IL 8 and growth factors such as platelet derived growth factor & transforming growth factor beta release from the least cytotoxic RC was evaluated using flow cytometry analysis. STATISTICAL ANALYSIS USED: The mean absorbance values by MTT assay and cell viability at various time intervals between four groups were compared using a one way analysis of variance test and Tukey's post hoc test. The least cytotoxic RC group and the control group's mean levels of cytokines and growth factors were compared using the Mann-Whitney test. RESULT: As exposure time increased, the dental luting cement examined in this study were cytotoxic. RC was the least cytotoxic, RMGIC was moderate and glass ionomer cement showed the highest cytotoxic effect. Concomitantly, a significant positive biological response of gingival mesenchymal stem cells with the release of ILs when exposed to the RC was observed. CONCLUSION: For a fixed dental prosthesis to be clinically successful over the long term, it is imperative that the biocompatibility of the luting cement be taken into account in order to maintain a healthy periodontium surrounding the restoration.


Subject(s)
Cytokines , Dental Cements , Gingiva , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Humans , Gingiva/cytology , Gingiva/drug effects , Mesenchymal Stem Cells/drug effects , Cytokines/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Dental Cements/pharmacology , Dental Cements/chemistry , Dental Cements/toxicity , In Vitro Techniques , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/toxicity , Glass Ionomer Cements/chemistry , Cell Survival/drug effects , Cells, Cultured
11.
Int Orthod ; 22(2): 100871, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613861

ABSTRACT

OBJECTIVES: This study aimed to prepare a glass ionomer (GI) cement reinforced with silver-hydroxyapatite-silica (Ag/HA/Si) hybrid nanoparticles and assess its compressive strength and fluoride release profile. MATERIAL AND METHODS: In this in vitro, experimental study, 60 cylindrical specimens were fabricated with 4mm diameter and 6mm height in 6 groups (n=10) using BracePaste composite, GC Fuji II LC pure RMGI, and RMGI reinforced with 0.1wt%, 0.5wt%, 1wt%, and 2wt% Ag/HA/Si hybrid nanoparticles. The specimens were subjected to compressive force in a universal testing machine to measure their compressive strength (MPa). To assess their fluoride release profile, discs with 3mm diameter and 2mm thickness were fabricated from Fuji II LC pure resin-modified glass ionomer (RMGI), and RMGI with 0.1wt%, 0.5wt%, 1wt%, and 2wt% hybrid nanoparticles, and the concentration of released fluoride was measured by a digital ion-selective electrode. Data were analysed by ANOVA and Scheffe test (alpha=0.05). RESULTS: The compressive strength was 114.14MPa for BracePaste composite, and 97.14, 97.84, 100.65, 109.5, and 89.33MPa for GI groups with 0%, 0.1%, 0.5%, 1% and 2% hybrid nanoparticles, respectively, with no significant difference among them (P=0.665). Addition of 1% (0.21±0.07µg/mL, P=0.029) and 2% (0.45±0.22µg/mL, P=0.000) hybrid nanoparticles to RMGI significantly increased the amount of released fluoride, compared with the control group (0.09±0.03µg/mL). CONCLUSIONS: Addition of Ag/HA/Si hybrid nanoparticles to RMGI in the tested concentrations had no significant effect on its compressive strength but addition of 1wt% and 2wt% concentrations of Ag/HA/Si hybrid nanoparticles increased its fluoride release potential.


Subject(s)
Compressive Strength , Durapatite , Fluorides , Glass Ionomer Cements , Materials Testing , Nanoparticles , Silicon Dioxide , Silver , Glass Ionomer Cements/chemistry , Fluorides/chemistry , Silver/chemistry , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Durapatite/chemistry , In Vitro Techniques , Dental Stress Analysis , Humans
12.
Dent Med Probl ; 61(1): 93-98, 2024.
Article in English | MEDLINE | ID: mdl-38426654

ABSTRACT

BACKGROUND: Glass ionomers are widely used for restoring carious primary teeth. However, their ability to bond to primary dentin is considered a challenge in pediatric dentistry. OBJECTIVES: The study aimed to evaluate the microshear bond strength (µSBS) of a resin-modified glass ionomer (RMGI) and a high-viscosity glass ionomer cement (Hv-GIC) to primary dentin using a universal adhesive. MATERIAL AND METHODS: Thirty human primary maxillary canines were cut in half and prepared for the µSBS test. The specimens (N = 60) were assigned to 6 groups. Three groups were defined for RMGI (FUJI II LC) and 3 groups for Hv-GIC (EQUIA Forte): with an immediately curing adhesive (G-Premio); with a delayed curing adhesive; and without an adhesive (control group). After preparing the dentin surfaces, the glass ionomers were bonded using Tygon® tubes with an internal diameter of 0.7 mm. The µSBS test was performed, and the data was analyzed using two-way analysis of variance (ANOVA) followed by Tukey's post hoc test. Additionally, the failure modes were determined using a stereomicroscope. Six specimens, one for each study group, were prepared for scanning electron microscopy (SEM) analysis to observe the glass ionomer-dentin interface. RESULTS: The type of glass ionomer did not have a significant effect on the µSBS (p = 0.305). Groups that received universal adhesive application prior to glass ionomer exhibited a significantly higher µSBS (p < 0.0001). However, there was no significant difference between the immediately curing and delayed curing groups (p = 0.157). The predominant failure mode was mixed failure. CONCLUSIONS: Higher bond strength of glass ionomers to primary teeth can be achieved by using universal adhesives, which, in addition to the proven benefits of glass ionomers, can improve their clinical success.


Subject(s)
Acrylic Resins , Dental Bonding , Dental Cements , Silicon Dioxide , Child , Humans , Dental Cements/chemistry , Glass Ionomer Cements/chemistry , Dentin
13.
J Contemp Dent Pract ; 25(1): 35-40, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38514429

ABSTRACT

AIM: The aim of the present study was to evaluate the shear bond strength of resin-modified glass ionomer cement with two different types of mineral trioxide aggregate at different time intervals. MATERIALS AND METHODS: A total of 80 cylindrical blocks were prepared using a self-cure acrylic resin with a central cavity of 4 mm internal diameter and 2 mm height. The prepared samples were randomly divided into two groups (n = 40 each) according to the type of MTA cements used (ProRoot MTA and MTA Angelus). Two groups were further sub-divided into four sub-groups of 10 samples each according to the different time intervals. ProRoot MTA and MTA Angelus were placed in the prepared cavity and a wet cotton pellet was placed over the filled cavity. A hollow plastic tube was placed over the MTA surface and resin-modified glass ionomer cement (RMGIC) was placed into the hollow plastic tube and light-cured (Spectrum 800, Dentsply Caulk Milford, DE, USA) according to the time intervals decided. After light curing the plastic tubes were removed carefully and the specimens were stored at 37°C and 100% humidity for 24 hours to encourage setting of MTA. The specimens were mounted in a universal testing machine (ADMET) and a crosshead speed of 0.5 mm/min was applied to each specimen by using a knife-edge blade until the bond between the MTA and RMGIC failed. The data were statistically analyzed using ANOVA, post hoc Tukey's t-test and Fisher's t-test and p-value ≤ 0.5 was considered significant. RESULTS: For both ProRoot MTA and MTA Angelus there was no statistically significant difference between 45 minutes and 24 hours (p-value ≥ 0.8). For ProRoot MTA, shear bond strength value at 10 minutes were significantly lower than 45 minutes and 24 hours group. However, for MTA Angelus, shear bond strength value at 10 minute was not significantly different from 45 minutes group (p-value ≥ 0.3). For both ProRoot MTA and MTA Angelus shear bond strength value at 0 minute were the least and were significantly lower than 10 minutes, 45 minutes, and 24 hours, respectively (p-value ≥ 0.000). CONCLUSION: Resin-modified glass ionomer cement can be layered over MTA Angelus after it is allowed to set for 10 minutes. However, ProRoot MTA should be allowed to set for at least 45 minutes before the placement of RMGIC to achieve better shear bond strength. CLINICAL SIGNIFICANCE: Due to the variety of types of mineral trioxide aggregate cements available in dentistry, it is justifiable to emphasize on different time intervals as it may affect the shear bond strength of restorative cements. Such information is pivotal for the clinicians while using mineral aggregate-based cements that receive forces from the condensation of restorative materials or occlusion, as the compressive strength may be affected due to different time intervals. How to cite this article: Tyagi N, Chaman C, Anand S, et al. Comparative Evaluation of Shear Bond Strength of Resin-modified Glass Ionomer Cement with ProRoot MTA and MTA Angelus. J Contemp Dent Pract 2024;25(1):35-40.


Subject(s)
Bismuth , Dental Bonding , Oxides , Root Canal Filling Materials , Silicates , Glass Ionomer Cements/chemistry , Composite Resins/chemistry , Root Canal Filling Materials/chemistry , Shear Strength , Materials Testing
14.
Dent Mater J ; 43(2): 247-254, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38382940

ABSTRACT

This study investigated the potential of BioUnion filler containing glass ionomer cement (GIC) to enhance the properties of enamel surrounding restorations, with a specific focus on the effect on hardness. The hardness of the bovine enamel immersed in the cement was measured using Vickers hardness numbers. Following sliding and impact wear simulations, the enamel facets were examined using confocal-laser-scanning microscopy and scanning-electron microscopy. Surface properties were further analyzed using energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). A significant increase in Vickers hardness numbers was observed in the BioUnion filler GIC after 2 days. Furthermore, the mean depth of enamel facets treated with BioUnion filler GIC was significantly less than that of untreated facets. Characteristic XRD peaks indicating the presence of hydroxyapatite were also observed. Our findings imply that GIC with BioUnion fillers enhances the mechanical properties of the tooth surface adjacent to the cement.


Subject(s)
Dental Enamel , Glass Ionomer Cements , Animals , Cattle , Glass Ionomer Cements/chemistry , Hardness , Surface Properties , Spectrometry, X-Ray Emission , Materials Testing
15.
Eur Arch Paediatr Dent ; 25(2): 161-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334867

ABSTRACT

PURPOSE: A comparative evaluation of fluoride release and re-chargeability in conventional glass ionomer cement (GIC) (type II), Pediatric GIC (type IX), and Cention-N-an in vitro study at an interval of first, fourteenth, and twenty first days. METHODS: Three groups of test materials, each with twenty samples, were prepared. Measurements of the cumulative fluoride release [parts per million (ppm)] and re-release measured on the first, fourteenth, and twenty first days. Analysis of variance (ANOVA) was used to compare the means for different readings, and Tukey's post hoc analysis was used to compare each group with each other. RESULTS: Initial and subsequent fluoride release of Cention-N at days one, fourteen, and twenty-one were all noticeably higher than those of conventional and pediatric GIC. CONCLUSION: Compared to the Conventional and Pediatric GIC restorative materials, Cention-N was more effective in the initial and fluoride re-release.


Subject(s)
Fluorides , Glass Ionomer Cements , Glass Ionomer Cements/chemistry , Fluorides/chemistry , Humans , Materials Testing , Cariostatic Agents/chemistry , Cariostatic Agents/pharmacokinetics , In Vitro Techniques
16.
Dent Mater ; 40(4): 716-727, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395738

ABSTRACT

OBJECTIVES: This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS: Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS: The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT: SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.


Subject(s)
Dental Caries , Fluorides , Humans , Fluorides/pharmacology , Fluorides/chemistry , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Strontium/pharmacology , Strontium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Apatites/pharmacology , Dental Caries/therapy , Materials Testing
17.
Sci Rep ; 14(1): 4725, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413631

ABSTRACT

In this study, our aim was to investigate the effects of restorative materials such as composite, compomer and high viscosity glass ionomer, which are frequently used in dentistry, on L929 fibroblast cells by evaluating the oxidative stress parameters, pro- and anti-inflammatory cytokines, and apoptosis markers. L929 fibroblast cells were cultured, and dental filling materials were applied in two doses (50 and 100 µl). Immunohistochemical staining was performed for experimental groups with Anti-Bax and Anti-Caspase 9 antibodies. Then, ELISA technique was used to detect the level of TNF-alpha, TGF-beta, IL-1-beta, IL-6, IL-10, LPO and CAT. In the light of the data, the examined dental filling materials were effective on increasing the TGF-beta, IL-10, LPO and CAT levels, and decreasing the TNF-alpha, IL-1-beta, and IL-6 levels. The histological micrographs were also support the issues. When the levels of H-score in Caspase 9 labeled micrographs were evaluated, the mean of the control group was lower than the mean of the experimental groups. Biocompatibility varies according to the content of the material, the amount of residual monomer, and its solubility. Although all the experimental groups have cytotoxic effects, the least effect is seen in the Omnichroma group.


Subject(s)
Composite Resins , Interleukin-10 , Composite Resins/chemistry , Tumor Necrosis Factor-alpha , Interleukin-6 , Glass Ionomer Cements/chemistry , Enzyme-Linked Immunosorbent Assay , Fibroblasts , Transforming Growth Factor beta , Interleukin-1 , Dental Restoration, Permanent
18.
BMC Oral Health ; 24(1): 130, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273289

ABSTRACT

BACKGROUND: The aim of the present study was to investigate the micro-shear bond strength (µSBS) of various restorative materials applied on two different fast-setting calcium silicate-based materials and to evaluate the effect of restoration time on µSBS. METHODS: A total of 180 acrylic blocks with a cavity in the center were randomly divided into 2 main groups according to the capping material to be used (Biodentine or RetroMTA). The specimens were also randomly divided into 3 groups according to the restoration time (3 min, 12 min, 24 h). After the specified waiting periods, glass hybrid material (EQUIA Forte HT), resin composite (Filtek Z550) and light-cured calcium silicate material (Theracal LC) were placed on the specimens with tygon tubes. The specimens were kept for 24 h and then subjected to µSBS test. Statistical analysis was performed by 3-way ANOVA followed by Tukey test for pairwise comparisons (α = 0.05). RESULTS: There is a statistically significant difference (p < 0.05) between the µSBS values obtained by applying resin composite on RetroMTA after different setting times (24 h > 12 min > 3 min). The µSBS obtained for the Biodentine-resin composite at the end of the 3 min setting time is significantly lower (p < 0.05) than the µSBS values at 12 min and 24 h. For both calcium silicate cements, at the end of all time periods, the µSBS obtained when resin composite was applied at the end was higher than the other materials (p < 0.05). CONCLUSIONS: For Biodentine-resin composite bonding, the manufacturer's recommendation of 12 min can be considered an appropriate time, whereas for RetroMTA-resin composite bonding, the µSBS increased as the waiting time increased. Regardless of the waiting time, it is recommended to prefer direct composite resin restoration over Biodentine and RetroMTA.


Subject(s)
Aluminum Compounds , Calcium Compounds , Dental Bonding , Glass Ionomer Cements , Oxides , Silicates , Humans , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Composite Resins/therapeutic use , Composite Resins/chemistry , Materials Testing , Shear Strength , Resin Cements/chemistry , Drug Combinations
19.
Dent Mater ; 40(3): 520-526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38212175

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the remineralizing properties of ion-releasing restorative materials on pH cycling-induced carious dentin. METHODS: Fifty sound molars were freshly extracted. The occlusal surfaces were abraded using water-cooled sandpaper (800 grit). The residual crowns were embedded in self-cured acrylic resin with the flat dentin surface exposed. A mesio-distal trench was created using a calibrated 0.5 mm deep occlusal reduction burr, and artificial dentin caries were generated by pH cycling. Then, teeth were randomly assigned to five groups according to the ion-releasing material used. For each sample, micro-CT acquisitions were performed at various intervals. Remineralization was assessed by mean gray value (MGV) measurements after registration and segmentation of the region of interest with 3D Slicer software. One-way repeated-measures ANOVA followed by Tukey's post hoc test was used to investigate the difference in MGVs among the various groups. RESULTS: Only Cention Forte showed significantly increased MGVs after 4 weeks compared to demineralized dentin. MGVs were higher, but not significantly, after placement of the restorative materials, including in the resin composite control group. These results can be explained by the radiopacity of the materials. SIGNIFICANCE: Cention Forte, the material with the highest radiopacity, showed a significant increase in the MGVs of artificially carious dentin after 4 weeks. However, the study of dentin remineralization by micro-CT could be impacted by the radiopacity of the restorative materials used. The relevance of this examination for the study of dentinal remineralization should be investigated.


Subject(s)
Dental Caries , Glass Ionomer Cements , Humans , Glass Ionomer Cements/chemistry , X-Ray Microtomography , Dental Materials/chemistry , Dental Caries/therapy , Composite Resins/chemistry , Dentin/chemistry , Materials Testing
20.
BMC Oral Health ; 24(1): 140, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281948

ABSTRACT

BACKGROUND: A shear bond strength between the biomaterial and restorative material is crucial for minimizing bacterial microleakage and ensuring a favorable long-term prognosis for vital pulp therapy. This study aimed to conduct a comparative evaluation of the shear bond strength between calcium silicate-based biomaterials utilized in vital pulp treatment and various glass ionomer cement materials, both with and without the application of adhesive agents. METHODS: A total of 270 acrylic blocks, each featuring cavities measuring 4 mm in diameter and 2 mm in depth, were prepared. Calcium silicate-containing biomaterials (ProRoot MTA, Medcem Pure Portland Cement, and Medcem MTA), following manufacturers' instructions, were placed within the voids in the acrylic blocks and allowed to set for the recommended durations. The biomaterial samples were randomly categorized into three groups based on the restorative material to be applied: conventional glass ionomer cement, resin-modified glass ionomer cement, and bioactive restorative material. Using cylindrical molds with a diameter of 3.2 mm and a height of 3 mm, restorative materials were applied to the biomaterials in two different methods, contingent on whether adhesive was administered. After all samples were incubated in an oven at 37 °C for 24 h, shear bond strength values were measured utilizing a universal testing device. The obtained data were statistically evaluated using ANOVA and post-hoc Tukey tests. RESULTS: The highest shear bond strength value was noted in the Medcem MTA + ACTIVA bioactive restorative material group with adhesive application, while the lowest shear bond strength value was observed in the ProRoot MTA White + Equia Forte HT Fil group without adhesive application (P < 0.05). CONCLUSION: Activa Bioactive Restorative may be considered a suitable restorative material in combination with calcium silicate-based biomaterials for vital pulp treatment. The application of adhesives to calcium silicate-based biomaterials can effectively address the technical limitations.


Subject(s)
Acrylic Resins , Calcium Compounds , Dental Bonding , Silicates , Silicon Dioxide , Humans , Dental Bonding/methods , Composite Resins/chemistry , Glass Ionomer Cements/therapeutic use , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Biocompatible Materials , Materials Testing , Shear Strength , Resin Cements/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...