Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
1.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38716769

ABSTRACT

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Subject(s)
Adenosine , Exfoliation Syndrome , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Exfoliation Syndrome/genetics , Exfoliation Syndrome/metabolism , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Aged , Aqueous Humor/metabolism , Gene Regulatory Networks , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA Methylation , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism
2.
Sci Rep ; 14(1): 10258, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704467

ABSTRACT

In order to identify how differential gene expression in the trabecular meshwork (TM) contributes to racial disparities of caveolar protein expression, TM dysfunction and development of primary open angle glaucoma (POAG), RNA sequencing was performed to compare TM tissue obtained from White and Black POAG surgical (trabeculectomy) specimens. Healthy donor TM tissue from White and Black donors was analyzed by PCR, qPCR, immunohistochemistry staining, and Western blot to evaluate SDPR (serum deprivation protein response; Cavin 2) and CAV1/CAV2 (Caveolin 1/Caveolin 2). Standard transmission electron microscopy (TEM) and immunogold labeled studies were performed. RNA sequencing demonstrated reduced SDPR expression in TM from Black vs White POAG patients' surgical specimens, with no significant expression differences in other caveolae-associated genes, confirmed by qPCR analysis. No racial differences in SDPR gene expression were noted in healthy donor tissue by PCR analysis, but there was greater expression as compared to specimens from patients with glaucoma. Analysis of SDPR protein expression confirmed specific expression in the TM regions, but not in adjacent tissues. TEM studies of TM specimens from healthy donors did not demonstrate any racial differences in caveolar morphology, but a significant reduction of caveolae with normal morphology and immuno-gold staining of SDPR were noted in glaucomatous TM as compared to TM from healthy donors. Linkage of SDPR expression levels in TM, POAG development, and caveolar ultrastructural morphology may provide the basis for a novel pathway of exploration of the pathologic mechanisms of glaucoma. Differential gene expression of SDPR in TM from Black vs White subjects with glaucoma may further our understanding of the important public health implications of the racial disparities of this blinding disease.


Subject(s)
Caveolin 1 , Glaucoma, Open-Angle , Trabecular Meshwork , Humans , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/pathology , Glaucoma, Open-Angle/ethnology , Female , Male , Middle Aged , Caveolin 1/genetics , Caveolin 1/metabolism , Caveolin 2/genetics , Caveolin 2/metabolism , Aged , White People/genetics , Black or African American/genetics
3.
Exp Eye Res ; 243: 109903, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642601

ABSTRACT

Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.


Subject(s)
Aqueous Humor , Exfoliation Syndrome , Eye Proteins , Proteomics , Humans , Exfoliation Syndrome/metabolism , Aqueous Humor/metabolism , Proteomics/methods , Male , Female , Aged , Eye Proteins/metabolism , China/epidemiology , Glaucoma, Open-Angle/metabolism , Middle Aged , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Cataract/metabolism , Intraocular Pressure/physiology
4.
Exp Eye Res ; 243: 109887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609044

ABSTRACT

The pathophysiology of Primary Open Angle Glaucoma (POAG) remains poorly understood. Through proteomic analysis of aqueous humour (AH) from POAG patients, we aim to identify changes in protein composition of these samples compared to control samples. High resolution mass spectrometry-based TMT6plex quantitative proteomics analysis is performed on AH samples collected from POAG patients, and compared against a control group of patients with cataracts. Data are available via ProteomeXchange with identifier PXD033153. 1589 proteins were quantified from the aqueous samples using Proteome Discoverer version 2.2 software. Among these proteins, 210 were identified as unique master proteins. The proteins which were up or down-regulated by ±3 fold-change were considered significant. Human neuroblastoma full-length cDNA clone CS0DD006YL02 was significantly upregulated in patients with severe POAG on >2 medications, while actin, cytoplasmic 1, V2-7 protein (fragment), immunoglobulin-like polypeptide 1 and phosphatidylethanolamine-binding protein 4 were only present in these patients with severe POAG on >2 medications. Beta-crystallin B1 and B2, Gamma-crystallin C, D and S were significantly downregulated in the severe POAG ≤2 glaucoma medications group. Beta-crystallin B2, Gamma-crystallin D and GCT-A9 light chain variable region (fragment) were significantly downregulated in the non-severe POAG group. Actin, cytoplasmic 1 was significantly upregulated in subjects with severe POAG who required more than 2 glaucoma medications. Crystallins (Beta-crystallin B1 and B2, Gamma-crystallin C, D and S) were significantly downregulated in subjects with severe POAG who required less than 2 glaucoma medications.


Subject(s)
Aqueous Humor , Eye Proteins , Glaucoma, Open-Angle , Proteomics , Humans , Glaucoma, Open-Angle/metabolism , Aqueous Humor/metabolism , Female , Male , Eye Proteins/metabolism , Aged , Middle Aged , Proteomics/methods , Intraocular Pressure/physiology , Asian People
5.
Exp Eye Res ; 241: 109859, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467175

ABSTRACT

It is known that the actin cytoskeleton and its associated cellular interactions in the trabecular meshwork (TM) and juxtacanalicular tissues mainly contribute to the formation of resistance to aqueous outflow of the eye. Fibulin-3, encoded by EFEMP1 gene, has a role in extracellular matrix (ECM) modulation, and interacts with enzymatic ECM regulators, but the effects of fibulin-3 on TM cells has not been explored. Here, we report a stop codon variant (c.T1480C, p.X494Q) of EFEMP1 that co-segregates with primary open angle glaucoma (POAG) in a Chinese pedigree. In the human TM cells, overexpression of wild-type fibulin-3 reduced intracellular actin stress fibers formation and the extracellular fibronectin levels by inhibiting Rho/ROCK signaling. TGFß1 up-regulated fibulin-3 protein levels in human TM cells by activating Rho/ROCK signaling. In rat eyes, overexpression of wild-type fibulin-3 decreased the intraocular pressure and the fibronectin expression of TM, however, overexpression of mutant fibulin-3 (c.T1480C, p.X494Q) showed opposite effects in cells and rat eyes. Taken together, the EFEMP1 variant may impair the regulatory capacity of fibulin-3 which has a role for modulating the cell contractile activity and ECM synthesis in TM cells, and in turn may maintain normal resistance of aqueous humor outflow. This study contributes to the understanding of the important role of fibulin-3 in TM pathophysiology and provides a new possible POAG therapeutic approach.


Subject(s)
Aqueous Humor , Glaucoma, Open-Angle , Humans , Aqueous Humor/metabolism , Fibronectins/metabolism , Glaucoma, Open-Angle/metabolism , Codon, Terminator/metabolism , Trabecular Meshwork/metabolism , Intraocular Pressure , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism
6.
Exp Eye Res ; 241: 109855, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453040

ABSTRACT

Transgenic C57BL/6 mice expressing human myocilinY437 (Tg-MYOCY437H) are a well-established model for primary open-angle glaucoma (POAG). While the reduced trabecular meshwork (TM) cellularity due to severe endoplasmic reticulum (ER) stress has been characterized as the etiology of this model, there is a limited understanding of how glaucomatous phenotypes evolve over the lifespan of Tg-MyocY437H mice. In this study, we compiled the model's intraocular pressure (IOP) data recorded in our laboratory from 2017 to 2023 and selected representative eyes to measure the outflow facility (Cr), a critical parameter indicating the condition of the conventional TM pathway. We found that Tg-MYOCY437H mice aged 4-12 months exhibited significantly higher IOPs than age-matched C57BL/6 mice. Notably, a decline in IOP was observed in Tg-MYOCY437H mice at 17-24 months of age, a phenomenon not attributable to the gene dosage of mutant myocilin. Measurements of the Cr of Tg-MYOCY437H mice indicated that the age-related IOP reduction was not a result of ongoing TM damage. Instead, Hematoxylin and Eosin staining, immunohistochemistry analysis, and transmission electron microscopic examination revealed that this reduction might be induced by degenerations of the non-pigmented epithelium in the ciliary body of aged Tg-MYOCY437H mice. Overall, our findings provide a comprehensive profile of mutant myocilin-induced ocular changes over the Tg-MYOCY437H mouse lifespan and suggest a specific temporal window of elevated IOP that may be ideal for experimental purposes.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Animals , Humans , Mice , Eye Proteins/genetics , Eye Proteins/metabolism , Glaucoma/metabolism , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Intraocular Pressure , Longevity , Mice, Inbred C57BL , Trabecular Meshwork/metabolism
7.
Talanta ; 273: 125826, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38479028

ABSTRACT

Primary Open-Angle Glaucoma (POAG) is the most prevalent glaucoma type, and the leading cause of irreversible visual impairment and blindness worldwide. Identification of early POAG biomarkers is of enormous value, as there is not an effective treatment for the glaucomatous optic nerve degeneration (OND). In this pilot study, a metabolomic analysis, by using proton (1H) nuclear magnetic resonance (NMR) spectroscopy was conducted in tears, in order to determine the changes of specific metabolites in the initial glaucoma eyes and to discover potential diagnostic biomarkers. A classification model, based on the metabolomic fingerprint in tears was generated as a non-invasive tool to support the preclinical and clinical POAG diagnosis. 1H NMR spectra were acquired from 30 tear samples corresponding to the POAG group (n = 11) and the control group (n = 19). Data were analysed by multivariate statistics (partial least squares-discriminant analysis: PLS-DA) to determine a model capable of differentiating between groups. The whole data set was split into calibration (65%)/validation (35%), to test the performance and the ability for glaucoma discrimination. The calculated PLS-DA model showed an area under the curve (AUC) of 1, as well as a sensitivity of 100% and a specificity of 83.3% to distinguish POAG group versus control group tear data. This model included 11 metabolites, potential biomarkers of the disease. When comparing the study groups, a decrease in the tear concentration of phenylalanine, phenylacetate, leucine, n-acetylated compounds, formic acid, and uridine, was found in the POAG group. Moreover, an increase in the tear concentration of taurine, glycine, urea, glucose, and unsaturated fatty acids was observed in the POAG group. These results highlight the potential of tear metabolomics by 1H NMR spectroscopy as a non-invasive approach to support early POAG diagnosis and in order to prevent visual loss.


Subject(s)
Glaucoma, Open-Angle , Humans , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/pathology , Pilot Projects , Metabolomics , Biomarkers , Taurine
8.
J Ocul Pharmacol Ther ; 40(3): 189-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502813

ABSTRACT

Purpose: The objective of the present study was to evaluate the effects of low concentrations of benzalkonium chloride (BAC) (10-7%, 10-6%, or 10-5%) on healthy and glaucomatous human trabecular meshwork (HTM) cells. For this purpose, we used in vitro models replicating a healthy HTM and HTM with primary open-angle glaucoma (POAG) or steroid-induced glaucoma (SG) using two-dimensional (2D) cultures of HTM cells not treated or treated with a 5 ng/mL solution of transforming growth factor-ß2 or 250 nM dexamethasone (DEX). Methods: Analyses were carried out for (1) the intercellular affinity function of 2D HTM monolayers, as determined by transepithelial electrical resistance (TEER) measurements; (2) cell viability; (3) cellular metabolism by using a Seahorse bioanalyzer; and (4) expression of extracellular matrix (ECM) molecules, an ECM modulator, and cell junction-related molecules. Results: In the absence and presence of BAC (10-7% or 10-5%), intercellular affinity function determined by TEER and cellular metabolic activities were significantly and dose dependently affected in both healthy and glaucomatous HTM cells despite the fact that there was no significant decrease in cell viabilities. However, the effects based on TEER values were significantly greater in the healthy HTM. The mRNA expression of several molecules that were tested was not substantially modulated by these concentrations of BAC. Conclusions: The findings reported herein suggest that low concentrations of BAC may have unfavorable adverse effects on cellular metabolic capacity by inducing increases in the intercellular affinity properties of the HTM, but those effects of BAC were different in healthy and glaucomatous HTM cells.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Trabecular Meshwork/metabolism , Benzalkonium Compounds/pharmacology , Benzalkonium Compounds/therapeutic use , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/metabolism , Cells, Cultured , Glaucoma/metabolism , Transforming Growth Factor beta2/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology , Transforming Growth Factors/therapeutic use
9.
Sci Rep ; 14(1): 6958, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521856

ABSTRACT

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Subject(s)
Cytoskeletal Proteins , Glaucoma, Open-Angle , Glycoproteins , Animals , Mice , CRISPR-Cas Systems , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/therapy , Glaucoma, Open-Angle/metabolism , Intraocular Pressure/genetics , Lentivirus/genetics , Trabecular Meshwork/metabolism
10.
Sci Rep ; 14(1): 3683, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355836

ABSTRACT

To investigate the association between lactate metabolism and glaucoma, we conducted a multi-institutional cross-sectional clinical study and a retinal metabolomic analysis of mice with elevated intraocular pressure (IOP) induced by intracameral microbead injection. We compared lactate concentrations in serum and aqueous humor in age-matched 64 patients each with primary open-angle glaucoma (POAG) and cataract. Neither serum nor aqueous humor lactate concentrations differed between the two groups. Multiple regression analysis revealed that only body mass index showed a significant positive correlation with serum and aqueous humor lactate concentration in POAG patients (rs = 0.376, P = 0.002, and rs = 0.333, P = 0.007, respectively), but not in cataract patients. L-Lactic acid was one of the most abundantly detected metabolites in mouse retinas with gas chromatography and mass spectrometry, but there were no significant differences among control, 2-week, and 4-week IOP elevation groups. After 4 weeks of elevated IOP, D-glucose and L-glutamic acid ranked as the top two for a change in raised concentration, roughly sevenfold and threefold, respectively (ANOVA, P = 0.004; Tukey-Kramer, P < 0.05). Glaucoma may disrupt the systemic and intraocular lactate metabolic homeostasis, with a compensatory rise in glucose and glutamate in the retina.


Subject(s)
Cataract , Glaucoma, Open-Angle , Animals , Humans , Mice , Aqueous Humor/metabolism , Cataract/metabolism , Cross-Sectional Studies , Gas Chromatography-Mass Spectrometry , Glaucoma, Open-Angle/metabolism , Glutamic Acid/metabolism , Homeostasis , Intraocular Pressure , Lactic Acid/metabolism , Retina/metabolism
11.
Exp Eye Res ; 241: 109835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373629

ABSTRACT

The etiology of elevated intraocular pressure (IOP), a major risk factor for glaucoma (optic nerve atrophy), is poorly understood despite continued efforts. Although the gene variant of CACNA2D1 (encoding α2δ1), a calcium voltage-gated channel auxiliary subunit, has been reported to be associated with primary open-angle glaucoma, and the pharmacological mitigation of α2δ1 activity by pregabalin lowers IOP, the cellular basis for α2δ1 role in the modulation of IOP remains unclear. Our recent findings reveled readily detectable levels of α2δ1 and its ligand thrombospondin in the cytoskeletome fraction of human trabecular meshwork (TM) cells. To understand the direct role of α2δ1 in the modulation of IOP, we evaluated α2δ1 null mice for changes in IOP and found a moderate (∼10%) but significant decrease in IOP compared to littermate wild type control mice. Additionally, to gain cellular insights into α2δ1 antagonist (pregabalin) induced IOP changes, we assessed pregabalin's effects on human TM cell actin cytoskeletal organization and cell adhesive interactions in comparison with a Rho kinase inhibitor (Y27632), a known ocular hypotensive agent. Unlike Y27632, pregabalin did not have overt effects on cell morphology, actin cytoskeletal organization, or cell adhesion in human TM cells. These results reveal a modest but significant decrease in IOP in α2δ1 deficient mice, and this response appears to be not associated with the contractile and cell adhesive characteristics of TM cells based on the findings of pregabalin effects on isolated TM cells. Therefore, the mechanism by which pregabalin lowers IOP remains elusive.


Subject(s)
Amides , Glaucoma, Open-Angle , Glaucoma , Pyridines , Animals , Humans , Mice , Actins/metabolism , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Glaucoma/metabolism , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Intraocular Pressure , Pregabalin , Trabecular Meshwork/metabolism
12.
Front Biosci (Landmark Ed) ; 29(1): 29, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38287812

ABSTRACT

BACKGROUND: Although the current role of cytokines and neuroinflammation in glaucoma remains obscure, it represents an expanding field in research. The purpose of this study was to analyze cytokines in the aqueous humor (AH) of glaucoma patients and in retinas from an ex vivo glaucoma animal model, to aid in determining the role of neuroinflammation in glaucoma. METHODS: AH samples were collected from 20 patients during cataract surgeries (controls: n = 10, age = 70.3 ± 9.742; glaucoma: n = 10, age: 66.5 ± 8.073) in Shanghai East Hospital, an affiliate of Tongji University, between September 2018 and March 2019 and analyzed in duplicate by Luminex cytokine polystyrene color bead-based multiplex assay. Retinas from female Sprague-Dawley rats (n = 6) were harvested ex vivo and cultured with or without 60 mmHg of hydrostatic pressure for 24 hours. Retinal ganglion cells (RGCs) were quantified using Brn3a staining. Cytokines in the retina and culture medium were analyzed by rat cytokine array (Abcam). RESULTS: At baseline, patients with primary angle closure glaucoma (PACG) have significantly lower levels of IL-6 and IP-10 and a higher level of PDGF-BB in their AH, compared to the controls. Postoperatively, patients with PACG have significantly higher levels of IL-1ra, IL-13, and MIP-1α and a lower level of IL-6. Elevated hydrostatic pressure led to significant RGC loss in the retina, ex vivo, as well as the upregulation of ciliary neurotrophic factor (CNTF), IL-6, IL-10, IL-4, and TIMP-1 alongside the downregulation of PDGF-AA, MMP-8, TNF-α, and IFN-γ. Furthermore, eight cytokines were detected as being downregulated in the culture medium, including PDGF-AA, MMP-8, and IL-4. CONCLUSIONS: Proinflammatory cytokines showed changes in both AH and ex vivo. Further studies are needed on the role of these cytokines and their corresponding signaling pathways in both neurodegeneration and glaucoma.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Female , Rats , Animals , Middle Aged , Aged , Aged, 80 and over , Interleukin-6/metabolism , Aqueous Humor/metabolism , Neuroinflammatory Diseases , Interleukin-4/metabolism , Matrix Metalloproteinase 8/metabolism , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/surgery , Rats, Sprague-Dawley , China , Glaucoma/metabolism , Cytokines/metabolism , Models, Animal , Retina
13.
Exp Eye Res ; 239: 109752, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123010

ABSTRACT

Fuchs uveitis syndrome (FUS) is a commonly misdiagnosed uveitis syndrome often presenting as an asymptomatic mild inflammatory condition until complications arise. The diagnosis of this disease remains clinical because of the lack of specific laboratory tests. The aqueous humor (AH) is a complex fluid containing nutrients and metabolic wastes from the eye. Changes in the AH protein provide important information for diagnosing intraocular diseases. This study aimed to analyze the proteomic profile of AH in individuals diagnosed with FUS and to identify potential biomarkers of the disease. We used liquid chromatography-tandem mass spectrometry-based proteomic methods to evaluate the AH protein profiles of all 37 samples, comprising 15 patients with FUS, six patients with Posner-Schlossman syndrome (PSS), and 16 patients with age-related cataract. A total of 538 proteins were identified from a comprehensive spectral library of 634 proteins. Subsequent differential expression analysis, enrichment analysis, and construction of key sub-networks revealed that the inflammatory response, complement activation and hypoxia might be crucial in mediating the process of FUS. The hypoxia inducible factor-1 may serve as a key regulator and therapeutic target. Additionally, the innate and adaptive immune responses are considered dominant in the patients with FUS. A diagnostic model was constructed using machine-learning algorithm to classify FUS, PSS, and normal controls. Two proteins, complement C1q subcomponent subunit B and secretogranin-1, were found to have the highest scores by the Extreme Gradient Boosting, suggesting their potential utility as a biomarker panel. Furthermore, these two proteins as biomarkers were validated in a cohort of 18 patients using high resolution multiple reaction monitoring assays. Therefore, this study contributes to advancing of the current knowledge of FUS pathogenesis and promotes the development of effective diagnostic strategies.


Subject(s)
Glaucoma, Open-Angle , Uveitis , Humans , Aqueous Humor/metabolism , Proteomics , Uveitis/metabolism , Glaucoma, Open-Angle/metabolism , Biomarkers/metabolism , Hypoxia/metabolism
14.
Expert Opin Ther Targets ; 27(12): 1217-1229, 2023.
Article in English | MEDLINE | ID: mdl-38069479

ABSTRACT

INTRODUCTION: Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED: This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-ß as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION: Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/metabolism , Intraocular Pressure , Glaucoma/drug therapy , Trabecular Meshwork/metabolism , Extracellular Matrix/metabolism , Aqueous Humor/metabolism
15.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833870

ABSTRACT

Pigmentary glaucoma has recently been associated with missense mutations in PMEL that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms functional amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis". Preclinical animal models have failed to model this PMEL "dysamyloidosis" pathomechanism and instead cause recessively inherited ocular pigment defects via PMEL loss of function; they have not addressed the consequences of disrupting PMEL's repetitive region. Here, we use CRISPR to engineer a small in-frame mutation in the zebrafish homolog of PMEL that is predicted to subtly disrupt the protein's repetitive region. Homozygous mutant larvae displayed pigmentation phenotypes and altered eye morphogenesis similar to presumptive null larvae. Heterozygous mutants had disrupted eye morphogenesis and disrupted pigment deposition in their retinal melanosomes. The deficits in the pigment deposition of these young adult fish were not accompanied by any detectable glaucomatous changes in intraocular pressure or retinal morphology. Overall, the data provide important in vivo validation that subtle PMEL mutations can cause a dominantly inherited pigment pathology that aligns with the inheritance of pigmentary glaucoma patient pedigrees. These in vivo observations help to resolve controversy regarding the necessity of PMEL's repeat domain in pigmentation. The data foster an ongoing interest in an antithetical dysamyloidosis mechanism that, akin to the amyloidosis of devastating dementias, manifests as a slow progressive neurodegenerative disease.


Subject(s)
Glaucoma, Open-Angle , Neurodegenerative Diseases , Animals , Humans , Young Adult , Amyloid/metabolism , Eye/metabolism , Glaucoma, Open-Angle/metabolism , gp100 Melanoma Antigen/genetics , Melanosomes/genetics , Melanosomes/metabolism , Neurodegenerative Diseases/metabolism , Zebrafish
16.
J Ocul Pharmacol Ther ; 39(9): 585-599, 2023 11.
Article in English | MEDLINE | ID: mdl-37738326

ABSTRACT

Currently, corneal blindness is affecting >10 million individuals worldwide, and there is a significant unmet medical need because only 1.5% of transplantation needs are met globally due to a lack of high-quality grafts. In light of this global health disaster, researchers are developing corneal substitutes that can resemble the human cornea in vivo and replace human donor tissue. Thus, this review examines ROCK (Rho-associated coiled-coil containing protein kinases) inhibitors as a potential corneal wound-healing (CWH) therapy by reviewing the existing clinical and nonclinical findings. The systematic review was done from PubMed, Scopus, Web of Science, and Google Scholar for CWH, corneal injury, corneal endothelial wound healing, ROCK inhibitors, Fasudil, Netarsudil, Ripasudil, Y-27632, clinical trial, clinical study, case series, case reports, preclinical study, in vivo, and in vitro studies. After removing duplicates, all downloaded articles were examined. The literature search included the data till January 2023. This review summarized the results of ROCK inhibitors in clinical and preclinical trials. In a clinical trial, various ROCK inhibitors improved CWH in individuals with open-angle glaucoma, cataract, iris cyst, ocular hypertension, and other ocular diseases. ROCK inhibitors also improved ocular wound healing by increasing cell adhesion, migration, and proliferation in vitro and in vivo. ROCK inhibitors have antifibrotic, antiangiogenic, anti-inflammatory, and antiapoptotic characteristics in CWH, according to the existing research. ROCK inhibitors were effective topical treatments for corneal infections. Ripasudil, Y-27632, H-1152, Y-39983, and AMA0526 are a few new ROCK inhibitors that may help CWH and replace human donor tissue.


Subject(s)
Corneal Injuries , Corneal Transplantation , Glaucoma, Open-Angle , Humans , Endothelium, Corneal/metabolism , Glaucoma, Open-Angle/metabolism , Corneal Injuries/metabolism , rho-Associated Kinases/metabolism
17.
ACS Biomater Sci Eng ; 9(11): 6333-6344, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37725561

ABSTRACT

Primary open-angle glaucoma is characterized by the progressive degeneration of the optic nerve, with the high intraocular pressure (IOP) being one of the main risk factors. The human trabecular meshwork (HTM), specifically the juxtacanalicular tissue (JCT), is responsible for placing resistance to the aqueous humor (AH) outflow and the resulting IOP control. Currently, the lack of a proper in vitro JCT model and the complexity of three-dimensional models impede advances in understanding the relationship between AH outflow and HTM degeneration. Therefore, we design an in vitro JCT model using a polycaprolactone (PCL) nanofibrous scaffold, which supports cells to recapitulate the functional JCT morphology and allow the study of outflow physiology. Mechanical and morphological characterizations of the electrospun membranes were performed, and human trabecular meshwork cells were seeded over the scaffolds. The engineered JCT was characterized by scanning electron microscopy, quantitative real-time polymerase chain reaction, and immunochemistry assays staining HTM cell markers and proteins. A pressure-sensitive perfusion system was constructed and used for the investigation of the outflow facility of the polymeric scaffold treated with dexamethasone (a glucocorticoid) and netarsudil (a novel IOP lowering the rho inhibitor). Cells in the in vitro model exhibited an HTM-like morphology, expression of myocilin, fibronectin, and collagen IV, genetic expression, outflow characteristics, and drug responsiveness. Altogether, the present work develops an in vitro JCT model to better understand HTM cell biology and the relationship between the AH outflow and the HTM and allow further drug screening of pharmacological agents that affect the trabecular outflow facility.


Subject(s)
Glaucoma, Open-Angle , Nanofibers , Humans , Trabecular Meshwork/metabolism , Aqueous Humor/metabolism , Glaucoma, Open-Angle/metabolism , Tissue Engineering
18.
Curr Eye Res ; 48(12): 1089-1099, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37661784

ABSTRACT

PURPOSE: To provide an overview of the existing alternative models for studying trabecular meshwork (TM). METHODS: Literature review. RESULTS: The TM is a complex tissue that regulates aqueous humor outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first step in the disease process, the underlying mechanisms of TM degeneration associate cell loss and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for preclinical screening, to advance research on this disease's pathophysiology, and to develop new therapeutic strategies targeting the TM. Traditional animal models have been used extensively, albeit with inherent limitations, including ethical concerns and limited translatability to humans. Consequently, there has been an increasing focus on developing alternative in vitro models to study the TM. Recent advancements in three-dimensional cell culture and tissue engineering are still in their early stages and do not yet fully reflect the complexity of the outflow pathway. However, they have shown promise in reducing reliance on animal experimentation in certain aspects of glaucoma research. CONCLUSION: This review provides an overview of the existing alternative models for studying TM and their potential for advancing research on the pathophysiology of open-angle glaucoma and developing new therapeutic strategies.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Animals , Humans , Trabecular Meshwork/metabolism , Glaucoma, Open-Angle/metabolism , Aqueous Humor/metabolism , Extracellular Matrix/metabolism , Intraocular Pressure
19.
Exp Eye Res ; 234: 109592, 2023 09.
Article in English | MEDLINE | ID: mdl-37474016

ABSTRACT

Understanding the metabolic dysfunctions and underlying complex pathological mechanisms of neurodegeneration in glaucoma could help discover disease pathways, identify novel biomarkers, and rationalize newer therapeutics. Therefore, we aimed to investigate the local metabolomic alterations in the aqueous humor and plasma of primary glaucomatous patients. This study cohort comprised primary open-angle glaucoma (POAG), primary angle-closure glaucoma (PACG), and cataract control groups. Aqueous humor and plasma samples were collected from patients undergoing trabeculectomy or cataract surgery and subjected to high-resolution mass spectrometry (HRMS) analysis. Spectral information was processed, and the acquired data were subjected to uni-variate as well as multi-variate statistical analyses using MetaboAnalyst ver5.0. To further understand the localized metabolic abnormalities in glaucoma, metabolites affected in aqueous humor were distinguished from metabolites altered in plasma in this study. Nine and twelve metabolites were found to be significantly altered (p < 0.05, variable importance of projection >1 and log2 fold change ≥0.58/≤ -0.58) in the aqueous humor of PACG and POAG patients, respectively. The galactose and amino acid metabolic pathways were locally affected in the PACG and POAG groups, respectively. Based on the observation of the previous findings, gene expression profiles of trace amine-associated receptor-1 (TAAR-1) were studied in rat ocular tissues. The pharmacodynamics of TAAR-1 were explored in rabbits using topical administration of its agonist, ß-phenyl-ethylamine (ß-PEA). TAAR-1 was expressed in the rat's iris-ciliary body, optic nerve, lens, and cornea. ß-PEA elicited a mydriatic response in rabbit eyes, without altering intraocular pressure. Targeted analysis of ß-PEA levels in the aqueous humor of POAG patients showed an insignificant elevation. This study provides new insights regarding alterations in both localized and systemic metabolites in primary glaucomatous patients. This study also demonstrated the propensity of ß-PEA to cause an adrenergic response through the TAAR-1 pathway.


Subject(s)
Cataract , Glaucoma, Angle-Closure , Glaucoma, Open-Angle , Animals , Rabbits , Rats , Aqueous Humor/metabolism , Glaucoma, Open-Angle/metabolism , Intraocular Pressure , Cataract/metabolism , Metabolomics , Glaucoma, Angle-Closure/metabolism
20.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445966

ABSTRACT

Elevated levels of homocysteine (Hcy), a non-proteinogenic amino acid, may lead to a host of manifestations across the biological systems, particularly the nervous system. Defects in Hcy metabolism have been associated with many neurodegenerative diseases including glaucoma, i.e., the leading cause of blindness. However, the pathophysiology of elevated Hcy and its eligibility as a risk factor for glaucoma remain unclear. We aimed to provide a comprehensive review of the relationship between elevated Hcy levels and glaucoma. Through a systemic search of the PubMed and Google Scholar databases, we found that elevated Hcy might play an important role in the pathogenesis of glaucoma. Further research will be necessary to help clarify the specific contribution of elevated Hcy in the pathogenesis of glaucoma. A discovery and conceptual understanding of Hcy-associated glaucoma could be the keys to providing better therapeutic treatment, if not prophylactic treatment, for this disease.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/metabolism , Glaucoma/etiology , Amino Acids , Risk Factors , Homocysteine
SELECTION OF CITATIONS
SEARCH DETAIL
...