Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.261
Filter
1.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38739740

ABSTRACT

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Subject(s)
Apoptosis , Cell Proliferation , Diet, High-Fat , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Pregnancy , Apoptosis/physiology , Lactation/physiology , Testis/metabolism , Testis/pathology , Rats , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Spermatogenesis/physiology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Insulin-Like Growth Factor I/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Rats, Wistar
2.
Neurochem Int ; 177: 105765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750960

ABSTRACT

BACKGROUND: Perioperative neurocognitive disorders (PND) are common complications after surgery in older patients. However, the specific mechanism of this condition remains unclear. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophin that abundantly expressed throughout the brain. It can enhance synaptic plasticity and alleviate learning and memory impairments. Thus, the purpose of this study was to investigate the role of GDNF in PND and the mechanisms involved. METHODS: The PND animal model was established by performing left tibial fracture surgery on 18-month-old C57BL/6 mice under sevoflurane anesthesia. Recombinant adeno-associated virus (rAAV)-GDNF or empty vectors were injected bilaterally into the hippocampal CA1 region of aged mice 3 weeks before anesthesia/surgery. The open field and fear conditioning test were used to assess the behavior changes. Golgi staining and electrophysiology were utilized to evaluate the morphological and functional alterations of neuronal synaptic plasticity. Western blot analysis was carried out to measure the proteins expression levels and immunofluorescence staining was performed to probe the cellular localization of GDNF. RESULTS: Mice with surgery and anesthesia showed a significant decrease in hippocampus-dependent learning and memory, accompanied by a decline in hippocampal synaptic plasticity. Anesthesia/surgery induced a reduction of GDNF, which was colocalized with astrocytes. Overexpression of GDNF in astrocytes could ameliorate the decline in cognitive function by improving hippocampal synaptic plasticity, meanwhile astrocytic GDNF rescued the anesthesia/surgery-induced decrease in GFRα1 and NCAM. CONCLUSION: The study concludes that astrocytic GDNF may improve anesthesia/surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice via the GFRα1/NCAM pathway.


Subject(s)
Astrocytes , Cognitive Dysfunction , Glial Cell Line-Derived Neurotrophic Factor , Hippocampus , Mice, Inbred C57BL , Neuronal Plasticity , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Mice , Astrocytes/metabolism , Male , Hippocampus/metabolism , Hippocampus/drug effects , Cognitive Dysfunction/metabolism , Aging , Anesthesia
3.
Arch Dermatol Res ; 316(6): 235, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795154

ABSTRACT

The aim of this study is to delineate the expression patterns of prolyl cis-trans isomerase NIMA-interacting protein 1 (Pin1), Glial cell-derived neurotrophic factor (GDNF), and Angiotensin II (ANG II) during the process of wound repair, and to ascertain the effects of Pin1, GDNF, and ANG II on the healing of wounds in a rat model. A total of 18 rats were allocated into three groups-sham (control), DMSO (vehicle control), and Pin1 inhibitor (treatment with juglone)-with six animals in each group. An animal model of wound healing was established, followed by the intraperitoneal administration of juglone. Tissue samples from the wounds were subsequently collected for histopathological evaluation. Expression levels of Pin1, GDNF, and Ang II were quantified. In addition, an in vitro model of wound healing was created using human umbilical vein endothelial cells (HUVEC), to assess cell proliferation, migration, and tube formation under conditions of juglone pre-treatment. The expression levels of Pin1, GDNF, and ANG II were notably elevated on 7-, and 10- days post-wound compared to those measured on 3-day. Contrastingly, pre-treatment with juglone significantly inhibited the expression of these molecules. Histological analyses, including HE (Hematoxylin and Eosin), Masson's trichrome, and EVG (Elastic van Gieson) staining, demonstrated that vascular angiogenesis, as well as collagen and elastin deposition, were substantially reduced in the juglone pre-treated group when compared to the normal group. Further, immunohistochemical analysis revealed a considerable decrease in CD31 expression in the juglone pre-treatment group relative to the normal control group. Pin1 serves as a pivotal facilitator of wound repair. The findings indicate that the modulation of Pin1, GDNF, and ANG II expression impacts the wound healing process in rats, suggesting potential targets for therapeutic intervention in human wound repair.


Subject(s)
Angiotensin II , Cell Proliferation , Glial Cell Line-Derived Neurotrophic Factor , Human Umbilical Vein Endothelial Cells , NIMA-Interacting Peptidylprolyl Isomerase , Naphthoquinones , Wound Healing , Animals , Wound Healing/drug effects , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Humans , Rats , Naphthoquinones/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Male , Cell Proliferation/drug effects , Angiotensin II/metabolism , Cell Movement/drug effects , Disease Models, Animal , Rats, Sprague-Dawley , Skin/pathology , Skin/metabolism , Skin/injuries , Skin/drug effects , Adaptor Proteins, Signal Transducing
4.
Theriogenology ; 224: 1-8, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38714023

ABSTRACT

In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.


Subject(s)
Cichlids , Glial Cell Line-Derived Neurotrophic Factor , Ovary , Testis , Tretinoin , Animals , Tretinoin/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Male , Female , Cichlids/genetics , Cichlids/metabolism , Testis/metabolism , Testis/drug effects , Ovary/metabolism , Ovary/drug effects , Phylogeny , Gene Expression Regulation/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism
5.
Sci Rep ; 14(1): 12274, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806540

ABSTRACT

Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.


Subject(s)
Cranial Irradiation , Extracellular Vesicles , GABAergic Neurons , Animals , Extracellular Vesicles/metabolism , Rats , Cranial Irradiation/adverse effects , GABAergic Neurons/metabolism , GABAergic Neurons/radiation effects , Male , Hippocampus/radiation effects , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/radiation effects , Neurons/metabolism , Glutamic Acid/metabolism , Neuronal Plasticity/radiation effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Behavior, Animal/radiation effects
6.
Biochem Biophys Res Commun ; 710: 149861, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581949

ABSTRACT

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards. Observations at E12-13.5 revealed high levels of GFRA1 expression on the anti-mesenteric side of the hindgut, correlating with enhanced ENCC migration. This indicates that GFRA1 in EMCs plays a role in ENCC migration during development. Examining GFRA1 isoforms, we found high levels of GFRA1b, which lacks amino acids 140-144, in EMCs. To assess the impact of GFRA1 isoforms on EMC-ENCC communication, we conducted neurosphere drop assays. This revealed that GFRA1b-expressing cells promoted GDNF-dependent extension and increased neurite density in ENCC neurospheres. Co-culture of ENCC mimetic cells expressing RET and GFRA1a with EMC mimetic cells expressing GFRA1a, GFRA1b, or vector alone showed that only GFRA1b-expressing co-cultured cells sustained RET phosphorylation in ENCC-mimetic cells for over 120 min upon GDNF stimulation. Our study provides evidence that GFRA1b-mediated cell-to-cell communication plays a critical role in ENCC motility in enteric nervous system development. These findings contribute to understanding the cellular interactions and signaling mechanisms that underlie enteric nervous system formation and highlight potential therapeutic targets for gastrointestinal motility disorders.


Subject(s)
Enteric Nervous System , Neural Crest , Animals , Mice , Cell Differentiation/physiology , Cell Movement/physiology , Enteric Nervous System/physiology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neural Crest/metabolism , Protein Isoforms/metabolism
7.
Gene Ther ; 31(5-6): 324-334, 2024 May.
Article in English | MEDLINE | ID: mdl-38627469

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Subject(s)
Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor , Macrophages , Microglia , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Mice , Macrophages/metabolism , Microglia/metabolism , Male , Parkinson Disease/therapy , Parkinson Disease/metabolism , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Dopaminergic Neurons/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Exosomes/metabolism , Substantia Nigra/metabolism
8.
Sheng Li Xue Bao ; 76(2): 301-308, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658378

ABSTRACT

Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Myalgia , Nerve Growth Factor , Humans , Myalgia/physiopathology , Nerve Growth Factor/metabolism , Nerve Growth Factor/physiology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/physiology , Signal Transduction , Animals , Hyperalgesia/physiopathology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Exercise/physiology
9.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674063

ABSTRACT

Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.


Subject(s)
3' Untranslated Regions , Glial Cell Line-Derived Neurotrophic Factor , MicroRNAs , Polymorphism, Single Nucleotide , Schizophrenia , Adult , Female , Humans , Male , Middle Aged , Alleles , Binding Sites , Case-Control Studies , Gene Expression Regulation , Genetic Predisposition to Disease , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , HEK293 Cells , MicroRNAs/genetics , Schizophrenia/genetics , Schizophrenia/metabolism
10.
Pflugers Arch ; 476(6): 963-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38563997

ABSTRACT

Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.


Subject(s)
Fibronectins , Kidney , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Humans , Kidney/metabolism , Kidney/embryology , Wnt Proteins/metabolism , Wnt Proteins/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Cell Proliferation , Integrins/metabolism , Integrins/genetics , Mice, Inbred C57BL , Extracellular Matrix/metabolism , Integrin alpha Chains
11.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38503350

ABSTRACT

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Subject(s)
Acetates , Glial Cell Line-Derived Neurotrophic Factor , Halogenated Diphenyl Ethers , Phenols , Sertoli Cells , Mice , Animals , Male , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Testis/metabolism , Spermatogonia , Spermatogenesis , Tretinoin/metabolism , Tretinoin/pharmacology
12.
J Cell Mol Med ; 28(8): e18234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520214

ABSTRACT

Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Humans , Hepatic Stellate Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Exosomes/genetics , Exosomes/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Luciferases/metabolism
13.
Oncogene ; 43(18): 1341-1352, 2024 May.
Article in English | MEDLINE | ID: mdl-38454138

ABSTRACT

Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.


Subject(s)
Exosomes , Glial Cell Line-Derived Neurotrophic Factor , MicroRNAs , Neoplasm Invasiveness , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Exosomes/metabolism , Exosomes/genetics , RNA, Long Noncoding/genetics , Neoplasm Invasiveness/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Animals , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics
14.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339124

ABSTRACT

Peripheral nerve injury denervates muscle, resulting in muscle paralysis and atrophy. This is reversible if timely muscle reinnervation occurs. With delayed reinnervation, the muscle's reparative ability declines, and muscle-resident fibro-adipogenic progenitor cells (FAPs) proliferate and differentiate, inducing fibro-fatty muscle degradation and thereby physical disability. The mechanisms by which the peripheral nerve regulates FAPs expansion and differentiation are incompletely understood. Using the rat tibial neve transection model, we demonstrated an increased FAPs content and a changing FAPs phenotype, with an increased capacity for adipocyte and fibroblast differentiation, in gastrocnemius muscle post-denervation. The FAPs response was inhibited by immediate tibial nerve repair with muscle reinnervation via neuromuscular junctions (NMJs) and sensory organs (e.g., muscle spindles) or the sensory protection of muscle (where a pure sensory nerve is sutured to the distal tibial nerve stump) with reinnervation by muscle spindles alone. We found that both procedures reduced denervation-mediated increases in glial-cell-line-derived neurotrophic factor (GDNF) in muscle and that GDNF promoted FAPs adipogenic and fibrogenic differentiation in vitro. These results suggest that the peripheral nerve controls FAPs recruitment and differentiation via the modulation of muscle GDNF expression through NMJs and muscle spindles. GDNF can serve as a therapeutic target in the management of denervation-induced muscle injury.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Muscle, Skeletal , Rats , Animals , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Muscle, Skeletal/metabolism , Cell Differentiation , Tibial Nerve/injuries , Adipogenesis , Denervation
15.
J Psychiatry Neurosci ; 49(1): E23-E34, 2024.
Article in English | MEDLINE | ID: mdl-38302136

ABSTRACT

BACKGROUND: Depression is a prevalent nonmotor symptom in Parkinson disease and can greatly reduce the quality of life for patients; the dopamine receptors found in glutamatergic pyramidal cells in the medial prefrontal cortex (mPFC) play a role in regulating local field activity, which in turn affects behavioural and mood disorders. Given research showing that glial cell-derived neurotrophic factor (GDNF) may have an antidepressant effect, we sought to evaluate the impact of exogenous GDNF on depression-like behaviour in mouse models of Parkinson disease. METHODS: We used an established subacute model of Parkinson disease in mice involving intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), followed by brain stereotaxic injection of GDNF into the mPFC region. Subsequently, we assessed depression-like behaviour using the sucrose preference test, forced swimming test and tail suspension test, while also evaluating protein expression in the mPFC. RESULTS: We included 60 mice, divided into 3 groups, including a control group (saline injection), an MPTP plus saline injection group and an MPTP plus GDNF injection group. We found that exogenous GDNF injection into the mPFC led to an increase in dopamine receptor D1 (DRD1) protein levels. We also observed that activating the protein kinase A pathway through DRD1 produced a prolonged antidepressant response. Under GDNF stimulation, the expression of dopamine receptor D2 (DRD2) remained constant, suggesting that the DRD2 signal was ineffective in alleviating depression-like symptoms. Moreover, our investigation involved Golgi staining and Western blot techniques, which found enhanced synaptic plasticity, including increased dendritic branches, dendritic spines and retrograde protection after GDNF treatment in Parkinson disease models. LIMITATIONS: A subtle motor phenotype became evident only toward the conclusion of the behavioural testing period. The study exclusively involved male mice, and no separate control group receiving only GDNF treatment was included in the experimental design. CONCLUSION: Our findings support a positive effect of exogenous GDNF on synaptic plasticity, mediated by DRD1 signalling in the mPFC, which could facilitate depression remission in Parkinson disease.


Subject(s)
Parkinson Disease , Humans , Male , Mice , Animals , Parkinson Disease/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Depression/drug therapy , Quality of Life , Prefrontal Cortex/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Disease Models, Animal
16.
J Cell Physiol ; 239(4): e31202, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38291718

ABSTRACT

In the orchestrated environment of the testicular niche, the equilibrium between self-renewal and differentiation of spermatogonial stem cells (SSCs) is meticulously maintained, ensuring a stable stem cell reserve and robust spermatogenesis. Within this milieu, extracellular vesicles, specifically exosomes, have emerged as critical conveyors of intercellular communication. Despite their recognized significance, the implications of testicular exosomes in modulating SSC fate remain incompletely characterized. Given the fundamental support and regulatory influence of Sertoli cells (SCs) on SSCs, we were compelled to explore the role of SC-derived exosomes (SC-EXOs) in the SSC-testicular niche. Our investigation hinged on the hypothesis that SC-EXOs, secreted by SCs from the testes of 5-day-old mice-a developmental juncture marking the onset of SSC differentiation-participate in the regulation of this process. We discovered that exposure to SC-EXOs resulted in an upsurge of PLZF, MVH, and STRA8 expression in SSC cultures, concomitant with a diminution of ID4 and GFRA1 levels. Intriguingly, obstructing exosomal communication in a SC-SSC coculture system with the exosome inhibitor GW4869 attenuated SSC differentiation, suggesting that SC-EXOs may modulate this process via paracrine signaling. Further scrutiny revealed the presence of miR-493-5p within SC-EXOs, which suppresses Gdnf mRNA in SCs to indirectly restrain SSC differentiation through the modulation of GDNF expression-an indication of autocrine regulation. Collectively, our findings illuminate the complex regulatory schema by which SC-EXOs affect SSC differentiation, offering novel perspectives and laying the groundwork for future preclinical and clinical investigations.


Subject(s)
Autocrine Communication , Cell Differentiation , Exosomes , Paracrine Communication , Sertoli Cells , Spermatogonia , Animals , Male , Mice , Cell Differentiation/physiology , Exosomes/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mice, Inbred ICR , Sertoli Cells/cytology , Sertoli Cells/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism
17.
J Chem Neuroanat ; 136: 102391, 2024 03.
Article in English | MEDLINE | ID: mdl-38219812

ABSTRACT

BACKGROUND: Maternal diabetes during pregnancy can affect the neurological development of offspring. Glial cell-derived neurotrophic factor (GDNF), neurturin (NRTN), and neural cell adhesion molecules (NCAM) are three important proteins for brain development. Therefore, this study aimed to investigate the impacts of the mentioned neurotrophic factors in the hippocampal dentate gyrus (DG) of rat offspring born to diabetic mothers. METHODS: Wistar female rats were randomly allocated into diabetic (STZ-D) [(45 mg/kg BW, STZ (Streptozotocin), i.p)], diabetic + NPH insulin (STZ-INS) [(4-6 unit/kg/day SC)], and control groups. The animals in all groups were mated by non-diabetic male rats. Two weeks after birth, male pups from each group were sacrificed and then protein contents of GDNF, NRTN, and NCAM were evaluated using immunohistochemistry. RESULTS: The study found that the expression of GDNF and NRTN in the hippocampus of diabetic rat offspring was significantly higher compared to the diabetic+ insulin and control groups, respectively (P < 0.01, P < 0.001). Additionally, the expression of NCAM was significantly higher in the diabetic group the diabetic+ insulin and control groups (P < 0.01, P < 0.001). CONCLUSIONS: The results of the study revealed that diabetes during pregnancy significantly impacts the distribution pattern of GDNF, NRTN, and NCAM in the hippocampus of rat neonates.


Subject(s)
Diabetes, Gestational , Insulins , Humans , Pregnancy , Rats , Animals , Male , Female , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neurturin/metabolism , Neurturin/pharmacology , Rats, Wistar , Neural Cell Adhesion Molecules/metabolism , Dentate Gyrus/metabolism
18.
Nutr Neurosci ; 27(2): 106-119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36634108

ABSTRACT

The hypothalamus controls food intake by integrating nutrient signals, of which one of the most important is glucose. Consequently, impairments in hypothalamic glucose-sensing mechanisms are associated with hyperphagia and obesity. Environmental enrichment (EE) is an animal housing protocol that provides complex sensory, motor, and social stimulations and has been proven to reduce adiposity in laboratory mice. However, the mechanism by which EE promotes adiposity-suppressing effect remains incompletely understood. Neurotrophic factors play an important role in the development and maintenance of the nervous system, but they are also involved in the hypothalamic regulation of feeding. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are expressed in the hypothalamus and their expression is stimulated by glucose. EE is associated with increased expression of Bdnf mRNA in the hypothalamus. Therefore, we hypothesized that EE potentiates the anorectic action of glucose by altering the expression of neurotrophic factor genes in the hypothalamus. Male C57BL/6 mice were maintained under standard or EE conditions to investigate the feeding response to glucose and the associated expression of feeding-related neurotrophic factor genes in the hypothalamus. Intraperitoneal glucose injection reduced food intake in both control and EE mice with a significantly greater reduction in the EE group compared to the control group. EE caused a significantly enhanced response of Gdnf mRNA expression to glucose without altering basal Gdnf mRNA expression and Bdnf mRNA response to glucose. These findings suggest that EE enhances glucose-induced feeding suppression, at least partly, by enhancing hypothalamic glucose-sensing ability that involves GDNF.


Subject(s)
Brain-Derived Neurotrophic Factor , Glucose , Animals , Male , Mice , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glucose/metabolism , Hypothalamus/metabolism , Mice, Inbred C57BL , Obesity/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Neurol Sci ; 45(4): 1409-1418, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38082050

ABSTRACT

Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Neurons/metabolism , Neurodegenerative Diseases/metabolism , Neuroglia
20.
Anim Reprod Sci ; 260: 107385, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056175

ABSTRACT

Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Spermatogonia , Male , Animals , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Semen/metabolism , Testis , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...