Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.351
Filter
1.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727262

ABSTRACT

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.


Subject(s)
Glioblastoma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Tumor Microenvironment/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , T-Lymphocytes/immunology , Animals
2.
Cancer Immunol Immunother ; 73(7): 133, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753169

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a primary brain tumor with a dismal prognosis, often resistant to immunotherapy and associated with immune suppression. This study aimed to assess the impact of steroids and Stupp-regimen treatment on peripheral blood immune parameters in GBM patients and their association with outcomes. METHODS: Using cytometry panels and bioplex assays, we analyzed the immune phenotype and serum cytokines of 54 GBM patients and 21 healthy volunteers. RESULTS: GBM patients exhibited decreased lymphoid cell numbers (CD4, CD8 T cells, NKT cells) with heightened immune checkpoint expression and increased myeloid cell numbers (especially neutrophils), along with elevated pro-inflammatory cytokine levels. Steroid use decreased T and NK cell numbers, while radio-chemotherapy led to decreased lymphoid cell numbers, increased myeloid cell numbers, and heightened immune checkpoint expression. Certain immune cell subsets were identified as potential outcome predictors. CONCLUSION: Overall, these findings shed light on the peripheral immune landscape in GBM, emphasizing the immunosuppressive effects of treatment. Baseline immune parameters may serve as prognostic indicators for treatment response.


Subject(s)
Brain Neoplasms , Chemoradiotherapy , Glioblastoma , Humans , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/drug therapy , Male , Female , Middle Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Chemoradiotherapy/methods , Adult , Aged , Prognosis , Cytokines/metabolism , Cytokines/blood
3.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38703775

ABSTRACT

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Subject(s)
Glioblastoma , Glucose , Histones , Macrophages , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , Histones/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Glucose/metabolism , Humans , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Interleukin-10/metabolism , Glycolysis , Microglia/metabolism , Microglia/immunology , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Immune Tolerance
4.
Neurol India ; 72(2): 297-303, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691473

ABSTRACT

BACKGROUND: Immune microenvironment is involved in tumor initiation and progression, and its effect on glioblastoma (GBM) is still unknown. OBJECT: We sought to investigate the association between immune status and GBM. METHODS: Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, and we identified two immune subtypes based on 29 immune-associated gene sets. RESULTS: Through single-sample gene set enrichment analysis (ssGSEA), we found that the high-immunity subtype had the most tumor-infiltrating immune cells and immune checkpoint molecules in GBM patients. Furthermore, we could more effectively identify immune signature pathways in GBM. CONCLUSION: After validation with the GEO dataset, we conclude that the identified GBM high-immune subtypes may be amenable to the application of novel immune therapy for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Tumor Microenvironment , Humans , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Gene Expression Profiling , Transcriptome , Immune Checkpoint Proteins/genetics , Gene Expression Regulation, Neoplastic
5.
ACS Nano ; 18(22): 14469-14486, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38770948

ABSTRACT

Glioblastoma (GBM) is a lethal brain tumor with high levels of malignancy. Most chemotherapy agents show serious systemic cytotoxicity and restricted delivery effectiveness due to the impediments of the blood-brain barrier (BBB). Immunotherapy has developed great potential for aggressive tumor treatments. Disappointingly, its efficacy against GBM is hindered by the immunosuppressive tumor microenvironment (TME) and BBB. Herein, a multiple synergistic immunotherapeutic strategy against GBM was developed based on the nanomaterial-biology interaction. We have demonstrated that this BM@MnP-BSA-aPD-1 can transverse the BBB and target the TME, resulting in amplified synergetic effects of metalloimmunotherapy and photothermal immunotherapy (PTT). The journey of this nanoformulation within the TME contributed to the activation of the stimulator of the interferon gene pathway, the initiation of the immunogenic cell death effect, and the inhibition of the programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling axis. This nanomedicine revitalizes the immunosuppressive TME and evokes the cascade effect of antitumor immunity. Therefore, the combination of BM@MnP-BSA-aPD-1 and PTT without chemotherapeutics presents favorable benefits in anti-GBM immunotherapy and exhibits immense potential for clinical translational applications.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy , Microglia , Tumor Microenvironment , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/drug therapy , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Humans , Animals , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Photothermal Therapy , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism
6.
Neuromolecular Med ; 26(1): 21, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750318

ABSTRACT

Numerous studies have explored the various functions of Slc40a1 in cancer development. However, the role of Slc40a1 in primary glioblastoma requires further investigation. Initially, we observed that GBM patients with high Slc40a1 expression had a more favorable prognosis than those with low Slc40a1 expression, as evidenced by an analysis of the TIMER database. Subsequent analysis using the cancer genome atlas (TCGA) database enabled us to identify potential underlying mechanisms involved. Further analyses, including GO, KEGG, GSEA, immune infiltration, and correlation analyses, revealed that Slc40a1 primarily affected cytokine interactions, particularly with Ccl14 and Il18, resulting in changes in the immune microenvironment and ultimately leading to a better prognosis in GBM patients. We validated our findings by examining a tissue microarray with 180 samples and confirmed that GBM patients with high SLC40A1 protein expression exhibited more favorable prognostic outcomes than those with low SLC40A1 protein expression. Immunofluorescence analysis also revealed a significant correlation between SLC40A1 protein expression and the protein expression of IL18 and CCL14. These findings suggest that Slc40a1 may play a role in GBM pathogenesis by modulating the tumor immune microenvironment through the regulation of Il18 and Ccl14. Hence, targeting Slc40a1 might offer potential benefits for immunotherapeutic interventions and prognostic assessments in GBM patients.


Subject(s)
Brain Neoplasms , Gene Expression Regulation, Neoplastic , Glioblastoma , Tumor Microenvironment , Glioblastoma/immunology , Glioblastoma/genetics , Humans , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Prognosis , Female , Male , Interleukin-18/genetics , Cytokines , Cation Transport Proteins/genetics , Middle Aged , Aged
7.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791110

ABSTRACT

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.


Subject(s)
Brain Neoplasms , Pericytes , Tumor Microenvironment , Pericytes/immunology , Pericytes/pathology , Pericytes/metabolism , Humans , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Glioma/immunology , Glioma/pathology , Glioma/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Disease Progression , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
8.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791312

ABSTRACT

Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.


Subject(s)
Brain Neoplasms , Dendritic Cells , Glioblastoma , Immunotherapy , Humans , Dendritic Cells/immunology , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/mortality , Glioblastoma/pathology , Immunotherapy/methods , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Male , Female , Middle Aged , B7-H1 Antigen/metabolism , Prognosis , Adult , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
9.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720342

ABSTRACT

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Subject(s)
Brain Neoplasms , Myeloid-Derived Suppressor Cells , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Myeloid-Derived Suppressor Cells/immunology , Glioma/immunology , Glioma/therapy , Glioma/pathology , Glioblastoma/immunology , Glioblastoma/therapy , Glioblastoma/pathology , Animals , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology
10.
Front Immunol ; 15: 1388769, 2024.
Article in English | MEDLINE | ID: mdl-38726003

ABSTRACT

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Subject(s)
Extracellular Vesicles , Glioblastoma , MicroRNAs , Organoids , Tumor Microenvironment , Humans , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Organoids/immunology , MicroRNAs/genetics , Tumor Microenvironment/immunology , Signal Transduction , Tumor Cells, Cultured , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional/methods
12.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724464

ABSTRACT

BACKGROUND: Glioblastoma (GBM) almost invariably becomes resistant towards conventional treatment of radiotherapy and temozolomide (TMZ) chemotherapy, partly due to subpopulations of intrinsically resistant glioma stem-like cells (GSC). The oncolytic herpes simplex virus-1 G207 is a promising approach for GBM virotherapy although its efficacy in patients with GBM is often limited. Natural killer group 2 member D ligands (NKG2DLs) are minimally expressed by healthy cells but are upregulated by the DNA damage response (DDR) and in malignant cells with chronic DDR signaling, resulting in innate immune activation. METHODS: We have designed a bispecific T-cell engager (BiTE) capable of cross-linking CD3 on T cells with NKG2DL-expressing GBM cells. We then engineered the G207 virus to express the NKG2D BiTE and secrete it from infected cells. The efficacy of the free BiTE and BiTE delivered by G207 was evaluated in combination with conventional therapies in GBM cells and against patient-derived GSCs in the context of T-cell activation and target cell viability. RESULTS: NKG2D BiTE-mediated cross-linking of GBM cells and T cells causes antigen-independent T-cell activation, pro-inflammatory cytokine release, and tumor cell death, thereby combining direct viral oncolysis with BiTE-mediated cytotoxicity. Surface NKG2DL expression was further elevated on GBM cells following pretreatment with sublethal doses of TMZ and radiation to induce the DDR, increasing sensitivity towards G207-NKG2D BiTE and achieving synergistic cytotoxicity. We also demonstrate a novel strategy for targeting GSCs that are non-permissive to G207 infection but remain sensitive to NKG2D BiTE. CONCLUSIONS: We propose a potential model for targeting GSCs in heterogeneous tumors, whereby differentiated GBM cells infected with G207-NKG2D BiTE produce NKG2D BiTE locally, directing T-cell cytotoxicity towards the GSC subpopulations in the tumor microenvironment.


Subject(s)
Glioblastoma , NK Cell Lectin-Like Receptor Subfamily K , Neoplastic Stem Cells , Oncolytic Virotherapy , Humans , Glioblastoma/therapy , Glioblastoma/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplastic Stem Cells/metabolism , Oncolytic Virotherapy/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor
13.
Cancer Med ; 13(9): e7218, 2024 May.
Article in English | MEDLINE | ID: mdl-38733169

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a promising immunotherapy approach, but glioblastoma clinical trials have not yielded satisfactory results. OBJECTIVE: To screen glioblastoma patients who may benefit from immunotherapy. METHODS: Eighty-one patients receiving anti-PD1/PD-L1 treatment from a large-scale clinical trial and 364 patients without immunotherapy from The Cancer Genome Atlas (TCGA) were included. Patients in the ICI-treated cohort were divided into responders and nonresponders according to overall survival (OS), and the most critical responder-relevant features were screened using random forest (RF). We constructed an artificial neural network (ANN) model and verified its predictive value with immunotherapy response and OS. RESULTS: We defined two groups of ICI-treated glioblastoma patients with large differences in survival benefits as nonresponders (OS ≤6 months, n = 18) and responders (OS ≥17 months, n = 8). No differentially mutated genes were observed between responders and nonresponders. We performed RF analysis to select the most critical responder-relevant features and developed an ANN with 20 input variables, five hidden neurons and one output neuron. Receiver operating characteristic analysis and the DeLong test demonstrated that the ANN had the best performance in predicting responders, with an AUC of 0.97. Survival analysis indicated that ANN-predicted responders had significantly better OS rates than nonresponders. CONCLUSION: The 20-gene panel developed by the ANN could be a promising biomarker for predicting immunotherapy response and prognostic benefits in ICI-treated GBM patients and may guide oncologists to accurately select potential responders for the preferential use of ICIs.


Subject(s)
B7-H1 Antigen , Glioblastoma , Immune Checkpoint Inhibitors , Immunotherapy , Neural Networks, Computer , Programmed Cell Death 1 Receptor , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/immunology , Glioblastoma/therapy , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Immunotherapy/methods , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/immunology , Aged , Adult , Prognosis , Treatment Outcome
14.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709874

ABSTRACT

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Subject(s)
Exosomes , Glioblastoma , Immunotherapy , Lymph Nodes , Exosomes/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Animals , Mice , Gels/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice, Inbred C57BL
15.
Nat Commun ; 15(1): 4241, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762500

ABSTRACT

Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by invasive behavior and a compromised immune response, presenting treatment challenges. Surgical debulking of GBM fails to address its highly infiltrative nature, leaving neoplastic satellites in an environment characterized by impaired immune surveillance, ultimately paving the way for tumor recurrence. Tracking and eradicating residual GBM cells by boosting antitumor immunity is critical for preventing postoperative relapse, but effective immunotherapeutic strategies remain elusive. Here, we report a cavity-injectable bacterium-hydrogel superstructure that targets GBM satellites around the cavity, triggers GBM pyroptosis, and initiates innate and adaptive immune responses, which prevent postoperative GBM relapse in male mice. The immunostimulatory Salmonella delivery vehicles (SDVs) engineered from attenuated Salmonella typhimurium (VNP20009) seek and attack GBM cells. Salmonella lysis-inducing nanocapsules (SLINs), designed to trigger autolysis, are tethered to the SDVs, eliciting antitumor immune response through the intracellular release of bacterial components. Furthermore, SDVs and SLINs administration via intracavitary injection of the ATP-responsive hydrogel can recruit phagocytes and promote antigen presentation, initiating an adaptive immune response. Therefore, our work offers a local bacteriotherapy for stimulating anti-GBM immunity, with potential applicability for patients facing malignancies at a high risk of recurrence.


Subject(s)
Brain Neoplasms , Glioblastoma , Neoplasm Recurrence, Local , Salmonella typhimurium , Glioblastoma/therapy , Glioblastoma/immunology , Animals , Mice , Salmonella typhimurium/immunology , Male , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/immunology , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Humans , Cell Line, Tumor , Mice, Inbred C57BL , Pyroptosis , Adaptive Immunity , Immunity, Innate , Hydrogels/chemistry , Immunotherapy/methods
16.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189105, 2024 May.
Article in English | MEDLINE | ID: mdl-38701938

ABSTRACT

The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.


Subject(s)
Central Nervous System Neoplasms , Glioblastoma , HMGB1 Protein , Tumor Microenvironment , Humans , HMGB1 Protein/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/immunology , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/drug therapy , Animals , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Signal Transduction , Cell Proliferation
17.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38697107

ABSTRACT

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Subject(s)
Immunotherapy , Lipids , RNA , Tumor Microenvironment , Animals , Dogs , Female , Humans , Mice , Antigens, Neoplasm/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Glioblastoma/therapy , Glioblastoma/immunology , Glioma/therapy , Glioma/immunology , Immunotherapy/methods , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , RNA/chemistry , RNA/therapeutic use , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipids/chemistry
19.
FEBS Open Bio ; 14(6): 1028-1034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740554

ABSTRACT

Glioblastoma (GBM) poses a significant challenge in oncology and stands as the most aggressive form of brain cancer. A primary contributor to its relentless nature is the stem-like cancer cells, called glioblastoma stem cells (GSCs). GSCs have the capacity for self-renewal and tumorigenesis, leading to frequent GBM recurrences and complicating treatment modalities. While natural killer (NK) cells exhibit potential in targeting and eliminating stem-like cancer cells, their efficacy within the GBM microenvironment is limited due to constrained infiltration and function. To address this limitation, novel investigations focusing on boosting NK cell activity against GSCs are imperative. This study presents two streamlined image-based assays assessing NK cell migration and cytotoxicity towards GSCs. It details protocols and explores the strengths and limitations of these methods. These assays could aid in identifying novel targets to enhance NK cell activity towards GSCs, facilitating the development of NK cell-based immunotherapy for improved GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Killer Cells, Natural , Neoplastic Stem Cells , Killer Cells, Natural/immunology , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Movement/immunology , Tumor Microenvironment/immunology , Cell Line, Tumor , Immunotherapy/methods
20.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636895

ABSTRACT

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Subject(s)
Brain Neoplasms , Cell Movement , Cell Proliferation , Galectin 3 , Glioblastoma , Microglia , Tumor Microenvironment , Microglia/metabolism , Microglia/pathology , Galectin 3/metabolism , Galectin 3/genetics , Humans , Animals , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Glioblastoma/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Cell Line, Tumor , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Macrophages/metabolism , Macrophages/immunology , Neoplasm Invasiveness , Blood Proteins/metabolism , Galectins/metabolism , Galectins/genetics , Signal Transduction , Mice , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...