Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 620
Filter
1.
Arch Dermatol Res ; 316(6): 248, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795152

ABSTRACT

Glucagon-like-peptide-1 (GLP-1) agonists are an emerging class of medications used to manage type 2 diabetes mellitus (T2DM) and weight loss, with demonstrated efficacy in reducing hemoglobin A1c levels, body mass index, and adverse cardiovascular events. While previous studies have reviewed notable cutaneous adverse effects with other antidiabetic medications, little is known about GLP-1 agonist-induced cutaneous reactions. Nevertheless, rare but significant cutaneous adverse reactions have been reported, including but not limited to dermal hypersensitivity reactions, eosinophilic panniculitis, bullous pemphigoid, and morbilliform drug eruptions. As GLP-1 induced cutaneous reactions are diverse, diagnosis requires clinical suspicion, thorough history-taking, and supportive histopathological findings when available. Management involves cessation of the offending agent with a tailored regimen to address inflammatory and/or immunogenic etiologies as well as irritative symptoms. This review aims to consolidate available information from case reports and case series regarding rare skin-related adverse outcomes due to GLP-1 use, aiming to provide a comprehensive overview of the presentation, pathogenesis, and management for dermatologists and other clinicians.


Subject(s)
Diabetes Mellitus, Type 2 , Drug Eruptions , Glucagon-Like Peptide 1 , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/adverse effects , Glucagon-Like Peptide 1/agonists , Hypoglycemic Agents/adverse effects , Drug Eruptions/etiology , Drug Eruptions/diagnosis , Drug Eruptions/pathology , Skin/pathology , Skin/drug effects , Liraglutide/adverse effects , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists
3.
Pharmacoepidemiol Drug Saf ; 33(4): e5790, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575389

ABSTRACT

PURPOSE: The prevalent new user design extends the active comparator new user design to include patients switching to a treatment of interest from a comparator. We examined the impact of adding "switchers" to incident new users on the estimated hazard ratio (HR) of hospitalized heart failure. METHODS: Using MarketScan claims data (2000-2014), we estimated HRs of hospitalized heart failure between patients initiating GLP-1 receptor agonists (GLP-1 RA) and sulfonylureas (SU). We considered three estimands: (1) the effect of incident new use; (2) the effect of switching; and (3) the effect of incident new use or switching, combining the two population. We used time-conditional propensity scores (TCPS) and time-stratified standardized morbidity ratio (SMR) weighting to adjust for confounding. RESULTS: We identified 76 179 GLP-1 RA new users, of which 12% were direct switchers (within 30 days) from SU. Among incident new users, GLP-1 RA was protective against heart failure (adjHRSMR = 0.74 [0.69, 0.80]). Among switchers, GLP-1 RA was not protective (adjHRSMR = 0.99 [0.83, 1.18]). Results in the combined population were largely driven by the incident new users, with GLP-1 RA having a protective effect (adjHRSMR = 0.77 [0.72, 0.83]). Results using TCPS were consistent with those estimated using SMR weighting. CONCLUSIONS: When analyses were conducted only among incident new users, GLP-1 RA had a protective effect. However, among switchers from SU to GLP-1 RA, the effect estimates substantially shifted toward the null. Combining patients with varying treatment histories can result in poor confounding control and camouflage important heterogeneity.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Humans , Diabetes Mellitus, Type 2/epidemiology , Sulfonylurea Compounds/therapeutic use , Risk Factors , Heart Failure/drug therapy , Heart Failure/epidemiology , Heart Failure/chemically induced , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents/therapeutic use
5.
Ann Intern Med ; 177(5): 658-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38639546

ABSTRACT

DESCRIPTION: The American College of Physicians (ACP) developed this clinical guideline to update recommendations on newer pharmacologic treatments of type 2 diabetes. This clinical guideline is based on the best available evidence for effectiveness, comparative benefits and harms, consideration of patients' values and preferences, and costs. METHODS: This clinical guideline is based on a systematic review of the effectiveness and harms of newer pharmacologic treatments of type 2 diabetes, including glucagon-like peptide-1 (GLP-1) agonists, a GLP-1 agonist and glucose-dependent insulinotropic polypeptide agonist, sodium-glucose cotransporter-2 (SGLT-2) inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, and long-acting insulins, used either as monotherapy or in combination with other medications. The Clinical Guidelines Committee prioritized the following outcomes, which were evaluated using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach: all-cause mortality, major adverse cardiovascular events, myocardial infarction, stroke, hospitalization for congestive heart failure, progression of chronic kidney disease, serious adverse events, and severe hypoglycemia. Weight loss, as measured by percentage of participants who achieved at least 10% total body weight loss, was a prioritized outcome, but data were insufficient for network meta-analysis and were not rated with GRADE. AUDIENCE AND PATIENT POPULATION: The audience for this clinical guideline is physicians and other clinicians. The population is nonpregnant adults with type 2 diabetes. RECOMMENDATION 1: ACP recommends adding a sodium-glucose cotransporter-2 (SGLT-2) inhibitor or glucagon-like peptide-1 (GLP-1) agonist to metformin and lifestyle modifications in adults with type 2 diabetes and inadequate glycemic control (strong recommendation; high-certainty evidence). • Use an SGLT-2 inhibitor to reduce the risk for all-cause mortality, major adverse cardiovascular events, progression of chronic kidney disease, and hospitalization due to congestive heart failure. • Use a GLP-1 agonist to reduce the risk for all-cause mortality, major adverse cardiovascular events, and stroke. RECOMMENDATION 2: ACP recommends against adding a dipeptidyl peptidase-4 (DPP-4) inhibitor to metformin and lifestyle modifications in adults with type 2 diabetes and inadequate glycemic control to reduce morbidity and all-cause mortality (strong recommendation; high-certainty evidence).


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Hypoglycemic Agents , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/therapeutic use , Adult , Drug Therapy, Combination , Insulin/therapeutic use
6.
Ann Intern Med ; 177(5): 618-632, 2024 May.
Article in English | MEDLINE | ID: mdl-38639549

ABSTRACT

BACKGROUND: Newer diabetes medications may have beneficial effects on mortality, cardiovascular outcomes, and renal outcomes. PURPOSE: To evaluate the effectiveness, comparative effectiveness, and harms of sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP1) agonists, dipeptidyl peptidase-4 (DPP4) inhibitors, and long-acting insulins as monotherapy or combination therapy in adults with type 2 diabetes mellitus (T2DM). DATA SOURCES: MEDLINE and EMBASE for randomized controlled trials (RCTs) published from 2010 through January 2023. STUDY SELECTION: RCTs lasting at least 52 weeks that included at least 500 adults with T2DM receiving eligible medications and reported any outcomes of interest. DATA EXTRACTION: Data were abstracted by 1 reviewer and verified by a second. Independent, dual assessments of risk of bias and certainty of evidence (CoE) were done. DATA SYNTHESIS: A total of 130 publications from 84 RCTs were identified. CoE was appraised using GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria for direct, indirect, and network meta-analysis (NMA); the highest CoE was reported. Compared with usual care, SGLT2 inhibitors and GLP1 agonists reduce all-cause mortality (high CoE) and major adverse cardiovascular events (MACE) (moderate to high CoE), SGLT2 inhibitors reduce progression of chronic kidney disease (CKD) and heart failure hospitalizations and GLP1 agonists reduce stroke (high CoE), and SGLT2 inhibitors reduce serious adverse events and severe hypoglycemia (high CoE). The threshold for minimally important differences, which was predefined with the American College of Physicians Clinical Guidelines Committee, was not met for these outcomes. Compared with usual care, insulin, tirzepatide, and DPP4 inhibitors do not reduce all-cause mortality (low to high CoE). Compared with insulin, SGLT2 inhibitors and GLP1 agonists reduce all-cause mortality (low to moderate CoE). Compared with DPP4 inhibitors, GLP1 agonists reduce all-cause mortality (moderate CoE). Compared with DPP4 inhibitors and sulfonylurea (SU), SGLT2 inhibitors reduce MACE (moderate to high CoE). Compared with SU and insulin, SGLT2 inhibitors and GLP1 agonists reduce severe hypoglycemia (low to high CoE). LIMITATIONS: Infrequent direct comparisons between drugs of interest; sparse data for NMA on most outcomes; possible incoherence due to differences in baseline patient characteristics and usual care; insufficient data on predefined subgroups, including demographic subgroups, patients with prior cardiovascular disease, and treatment-naive persons. CONCLUSION: In adults with T2DM, SGLT2 inhibitors and GLP1 agonists (but not DPP4 inhibitors, insulin, or tirzepatide) reduce all-cause mortality and MACE compared with usual care. SGLT2 inhibitors reduce CKD progression and heart failure hospitalization and GLP1 agonists reduce stroke compared with usual care. Serious adverse events and severe hypoglycemia are less frequent with SGLT2 inhibitors and GLP1 agonists than with insulin or SU. PRIMARY FUNDING SOURCE: American College of Physicians. (PROSPERO: CRD42022322129).


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Hypoglycemic Agents , Network Meta-Analysis , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/adverse effects , Insulin/therapeutic use , Adult , Cardiovascular Diseases/prevention & control , Glucagon-Like Peptide 1/agonists , Hypoglycemia/chemically induced , Drug Therapy, Combination
9.
JAAPA ; 37(5): 12-14, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662894

ABSTRACT

ABSTRACT: Glucagon-like peptide 1 agonists (GLP1s) and the novel glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 agonist are effective drugs for reducing A1C and weight in patients with type 2 diabetes. However, clinicians may find it difficult to discern which drug to prescribe in specific clinical scenarios. This article discusses evidence-based clinical use of these drugs.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Hypoglycemic Agents , Weight Loss , Humans , Diabetes Mellitus, Type 2/drug therapy , Weight Loss/drug effects , Glucagon-Like Peptide 1/agonists , Hypoglycemic Agents/therapeutic use , Liraglutide/therapeutic use , Gastric Inhibitory Polypeptide/therapeutic use , Gastric Inhibitory Polypeptide/agonists , Exenatide/therapeutic use , Exenatide/administration & dosage , Peptides/therapeutic use , Glycated Hemoglobin , Glucagon-Like Peptide-1 Receptor/agonists
10.
Diabetes Obes Metab ; 26(7): 2634-2644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38562018

ABSTRACT

AIMS: To establish which components of energy balance mediate the clinically significant weight loss demonstrated with use of cotadutide, a glucagon-like peptide-1 (GLP-1)/glucagon receptor dual agonist, in early-phase studies. MATERIALS AND METHODS: We conducted a phase 2a, single-centre, randomized, placebo-controlled trial in overweight and obese adults with type 2 diabetes. Following a 16-day single-blind placebo run-in, participants were randomized 2:1 to double-blind 42-day subcutaneous treatment with cotadutide (100-300 µg daily) or placebo. The primary outcome was percentage weight change. Secondary outcomes included change in energy intake (EI) and energy expenditure (EE). RESULTS: A total of 12 participants (63%) in the cotadutide group and seven (78%) in the placebo group completed the study. The mean (90% confidence interval [CI]) weight change was -4.0% (-4.9%, -3.1%) and -1.4% (-2.7%, -0.1%) for the cotadutide and placebo groups, respectively (p = 0.011). EI was lower with cotadutide versus placebo (-41.3% [-66.7, -15.9]; p = 0.011). Difference in EE (per kJ/kg lean body mass) for cotadutide versus placebo was 1.0% (90% CI -8.4, 10.4; p = 0.784), assessed by doubly labelled water, and -6.5% (90% CI -9.3, -3.7; p < 0.001), assessed by indirect calorimetry. CONCLUSION: Weight loss with cotadutide is primarily driven by reduced EI, with relatively small compensatory changes in EE.


Subject(s)
Diabetes Mellitus, Type 2 , Energy Intake , Energy Metabolism , Obesity , Weight Loss , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Male , Female , Middle Aged , Double-Blind Method , Obesity/drug therapy , Obesity/complications , Energy Intake/drug effects , Weight Loss/drug effects , Energy Metabolism/drug effects , Adult , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Receptors, Glucagon/agonists , Glucagon-Like Peptide 1/agonists , Single-Blind Method , Aged , Glucagon-Like Peptide-1 Receptor/agonists , Treatment Outcome , Peptides
13.
Front Endocrinol (Lausanne) ; 15: 1347684, 2024.
Article in English | MEDLINE | ID: mdl-38524632

ABSTRACT

Introduction: Global phase III clinical trials have shown superior hypoglycemic efficacy to insulin and other oral hypoglycemic agents. However, there is a scarcity of real-world data comparing different glucagon-like peptide 1 receptor agonist (GLP-1RA) directly. This study aimed to assess the safety and effectiveness of various GLP-1RA in treating type 2 diabetes mellitus (T2DM) in a real-world clinical setting and identify predictive factors for favorable treatment outcomes. Methods: This was a retrospective, single-center, real-world study. The changes in HbA1c, fasting plasma glucose (FPG), body weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), and the percentage of participants who achieved HbA1c of <7%, 7%-8%, and ≥ 8% after GLP-1RA treatment was analyzed. The clinical factors that affect the effectiveness of GLP-1RA were analyzed. Results: At baseline, the 249 participants had a mean baseline HbA1c of 8.7 ± 1.1%. After at least three months of follow-up, the change in HbA1c was -0.89 ± 1.3% from baseline. Dulaglutide exerted a more significant hypoglycemic effect than immediate-release exenatide. The percentage of participants who achieved HbA1c<7% was substantial, from 6.0% at baseline to 28.9%. Average body weight decreased by 2.02 ± 3.8 kg compared to baseline. After GLP-1RA treatment, the reduction in SBP was 2.4 ± 7.1 mmHg from baseline. A shorter duration of diabetes and a higher baseline HbA1c level were more likely to achieve a good response in blood glucose reduction. Conclusions: This study provided real-world evidence showing that GLP-1RA significantly improved HbA1c, body weight, and SBP. The results can inform the decision-making about GLP-1RA treatment in daily clinical practice.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Blood Glucose , Body Weight , Glucagon-Like Peptide 1/agonists , Glycated Hemoglobin , Hypoglycemic Agents/therapeutic use , Retrospective Studies
14.
Eur J Med Chem ; 269: 116342, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38531211

ABSTRACT

Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Glucagon-Like Peptide 1/agonists , Diabetes Mellitus, Type 2/drug therapy , Insulin Secretion , Obesity/drug therapy , Glucagon-Like Peptide-1 Receptor/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
15.
Diabetes Obes Metab ; 26(6): 2046-2053, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38516874

ABSTRACT

Aggressive therapy of diabetic kidney disease (DKD) can not only slow the progression of DKD to renal failure but, if utilized at an early enough stage of DKD, can also stabilize and/or reverse the decline in renal function. The currently recognized standard of therapy for DKD is blockade of the renin-angiotensin system with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs). However, unless utilized at a very early stage, monotherapy with these drugs in DKD will only prevent or slow the progression of DKD and will neither stabilize nor reverse the progression of DKD to renal decompensation. Recently, the addition of a sodium-glucose cotransporter-2 inhibitor and/or a mineralocorticoid receptor blocker to ACE inhibitors or ARBs has been clearly shown to further decelerate the decline in renal function. The use of glucagon-like peptide-1 (GLP-1) agonists shown promise in decelerating the progression of DKD. Other drugs that may aid in the deceleration the progression of DKD are dipeptidyl peptidase-4 inhibitors, pentoxifylline, statins, and vasodilating beta blockers. Therefore, aggressive therapy with combinations of these drugs (stacking) should improve the preservation of renal function in DKD.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Diabetic Nephropathies , Drug Therapy, Combination , Mineralocorticoid Receptor Antagonists , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Mineralocorticoid Receptor Antagonists/therapeutic use , Disease Progression , Renin-Angiotensin System/drug effects , Treatment Outcome , Angiotensin Receptor Antagonists/therapeutic use , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/therapeutic use , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use
16.
Biomed Pharmacother ; 174: 116485, 2024 May.
Article in English | MEDLINE | ID: mdl-38518602

ABSTRACT

BACKGROUND: Glucagon-like peptide-1 (GLP-1)/glucagon (GCG) dual receptor agonists with different receptor selectivity are under investigation and have shown significant improvement in both weight loss and glycemic control, but the optimal potency ratio between the two receptors to balance efficacy and safety remains unclear. EXPERIMENTAL APPROACH: We designed and constructed several dual receptor agonists with different receptor potency ratios using Fc fusion protein technology. The long-term effects of the candidates on body weight and metabolic dysfunction-associated steatotic liver disease (MASLD) were evaluated in diet-induced obese (DIO) model mice, high-fat diet (HFD)-ob/ob mice and AMLN diet-induced MASLD mice. Repeat dose toxicity assays were performed to investigate the safety profile of the candidate (HEC-C070) in Sprague Dawley (SD) rats. KEY RESULTS: The high GCG receptor (GCGR) selectivity of HEC-C046 makes it more prominent than other compounds for weight loss and most MASLD parameters but may lead to safety concerns. The weight change of HEC-C052 with the lowest GCG agonism was inferior to that of selective GLP-1 receptor agonist (GLP-1RA) semaglutide in DIO model mice. The GLP-1R selectivity of HEC-C070 with moderate GCG agonism has a significant effect on weight loss and liver function in obese mice, and its lowest observed adverse effect level (LOAEL) was 30 nmol/kg in the repeat dose toxicity study. CONCLUSION: We compared the potential of the Fc fusion protein GLP-1/GCG dual receptor agonists with different receptor selectivity to provide the setting for future GLP-1/GCG dual receptor agonists to treat obesity and MASLD.


Subject(s)
Diet, High-Fat , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Immunoglobulin Fc Fragments , Obesity , Receptors, Glucagon , Recombinant Fusion Proteins , Animals , Humans , Mice , Rats , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptides/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Recombinant Fusion Proteins/pharmacology , Weight Loss/drug effects
17.
J Cardiovasc Pharmacol ; 83(6): 621-634, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38547520

ABSTRACT

ABSTRACT: Type 2 diabetes mellitus increases the risk of cardiovascular diseases. Therefore, elucidation of the cardiovascular effects of antidiabetics is crucial. Incretin-based therapies are increasingly used for type 2 diabetes mellitus treatment as monotherapy and in combination. We aimed to study the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sitagliptin on beating rates in isolated atria from diabetic rats. The chronotropic responses to GLP-1 RAs and sitagliptin as monotherapy and in combinations with metformin, pioglitazone, and glimepiride in isolated atria from control and diabetic rats were determined. GLP-1 (7-36), GLP-1 (9-36), and exendin-4 (1-39) produced increases in beating rates in both control and diabetic rat atria. However, sitagliptin increased the beating frequency only in the diabetic group. Exendin (9-39), nitro- l -arginine methyl ester hydrochloride, and indomethacin blocked responses to GLP-1 RAs but not the response to sitagliptin. Glibenclamide, 4-aminopyridine, apamin, charybdotoxin, superoxide dismutase, and catalase incubations did not change responses to GLP-1 RAs and sitagliptin. GLP-1 RAs increase beating rates in isolated rat atrium through GLP-1 receptor, nitric oxide, and cyclooxygenase pathways but not potassium channels and reactive oxygen radicals.


Subject(s)
Diabetes Mellitus, Experimental , Glucagon-Like Peptide-1 Receptor , Heart Atria , Heart Rate , Hypoglycemic Agents , Sitagliptin Phosphate , Animals , Sitagliptin Phosphate/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , Heart Atria/drug effects , Heart Atria/physiopathology , Heart Atria/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Heart Rate/drug effects , Hypoglycemic Agents/pharmacology , Rats , Rats, Wistar , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Exenatide/pharmacology , Incretins/pharmacology , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/metabolism , Pyrazines/pharmacology , Glucagon-Like Peptide-1 Receptor Agonists
19.
Bioorg Med Chem ; 100: 117630, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38330849

ABSTRACT

Tirzepatide, the first approved dual GLP-1/GIP receptor agonist (RA), has achieved better clinical outcomes than other GLP-1RAs. However, it is an imbalanced dual GIP/GLP-1 RA, and it remains unclear whether the degree of imbalance is optimal. Here, we present a novel long-acting dual GLP-1/GIP RA that exhibits better activity than tirzepatide toward GLP-1R. A candidate conjugate, D314, identified via peptide design, synthesis, conjugation, and experimentation, was evaluated using chronic studies in db/db and diet induced obese (DIO) mice. D314 achieved favorable blood glucose and body weight-lowering effects, equal to those of tirzepatide. Its half-life in dogs (T1/2: 78.3 ± 14.01 h) reveals its suitability for once-weekly administration in humans. This preclinical study suggests the potential role of D314 as an effective agent for treating T2DM and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Receptors, Gastrointestinal Hormone , Animals , Dogs , Humans , Mice , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/pharmacology , Obesity/drug therapy , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/therapeutic use
20.
JAMA ; 331(12): 1007-1008, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38421659

ABSTRACT

This Viewpoint discusses the drawbacks of using glucagon-like peptide 1 (GLP-1) agonists to treat obesity and presents an alternative approach of initial, staged GLP-1 agonist treatment supported by long-term lifestyle programming, including medically appropriate groceries or meals ("Food Is Medicine"), to address the cost, health, and equity burdens of obesity.


Subject(s)
Anti-Obesity Agents , Glucagon-Like Peptide 1 , Obesity , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/agonists , Hypoglycemic Agents/therapeutic use , Obesity/complications , Obesity/drug therapy , Anti-Obesity Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...