Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.328
Filter
1.
Sci Rep ; 14(1): 10589, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719926

ABSTRACT

Maturity Onset Diabetes of the Young (MODY) is a young-onset, monogenic form of diabetes without needing insulin treatment. Diagnostic testing is expensive. To aid decisions on who to test, we aimed to develop a MODY probability calculator for paediatric cases at the time of diabetes diagnosis, when the existing "MODY calculator" cannot be used. Firth logistic regression models were developed on data from 3541 paediatric patients from the Swedish 'Better Diabetes Diagnosis' (BDD) population study (n = 46 (1.3%) MODY (HNF1A, HNF4A, GCK)). Model performance was compared to using islet autoantibody testing. HbA1c, parent with diabetes, and absence of polyuria were significant independent predictors of MODY. The model showed excellent discrimination (c-statistic = 0.963) and calibrated well (Brier score = 0.01). MODY probability > 1.3% (ie. above background prevalence) had similar performance to being negative for all 3 antibodies (positive predictive value (PPV) = 10% v 11% respectively i.e. ~ 1 in 10 positive test rate). Probability > 1.3% and negative for 3 islet autoantibodies narrowed down to 4% of the cohort, and detected 96% of MODY cases (PPV = 31%). This MODY calculator for paediatric patients at time of diabetes diagnosis will help target genetic testing to those most likely to benefit, to get the right diagnosis.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Child , Male , Female , Adolescent , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Child, Preschool , Autoantibodies/blood , Autoantibodies/immunology , Glycated Hemoglobin/analysis , Germinal Center Kinases/genetics , Sweden , Glucokinase/genetics
2.
J Diabetes ; 16(6): e13563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783768

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a complicated disease related to metabolism that results from resistance to insulin and sustained hyperglycemia. Traditional antidiabetic drugs cannot meet the demand of different diabetes patients for reaching the glycemic targets; thus, the identification of new antidiabetic drugs is urgently needed for the treatment of T2DM to enhance glycemic control and the prognosis of patients suffering from T2DM. Recently, glucokinase (GK) has attracted much attention and is considered to be an effective antidiabetic agent. Glucokinase activators (GKA) represented by dorzagliatin could activate GK and mimic its function that triggers a counter-regulatory response to blood glucose changes. Dorzagliatin has shown great potential for glycemic control in diabetic patients in a randomized, double-blind, placebo-controlled Phase 3 trial (SEED study) and had a favorable safety profile and was well tolerated (DAWN study). In the SEED study, dorzagliatin significantly reduced glycosylated hemoglobin (HbA1c) by 1.07% and postprandial blood glucose by 2.83 mol/L, showing the great potential of this drug to control blood glucose in diabetic patients, with good safety and good tolerance. An extension of the SEED study, the DREAM study, confirmed that dorzagliatin monotherapy significantly improved 24-h glucose variability and increased time in range (TIR) to 83.7% over 46 weeks. Finally, the clinical study of dorzagliatin combined with metformin (DAWN study) confirmed that dorzagliatin could significantly reduce HbA1c by 1.02% and postprandial blood glucose by 5.45 mol/L. The current review summarizes the development of GK and GKA, as well as the prospects, trends, applications, and shortcomings of these treatments, especially future directions of clinical studies of dorzagliatin.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Hypoglycemic Agents/therapeutic use , Glucokinase/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Drug Development , Enzyme Activators/therapeutic use , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis
3.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673904

ABSTRACT

Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.


Subject(s)
Benzopyrans , Glucokinase , Trypanocidal Agents , Trypanosoma cruzi , Animals , Humans , Mice , Benzopyrans/pharmacology , Benzopyrans/chemistry , Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Glucokinase/metabolism , Glucokinase/antagonists & inhibitors , High-Throughput Screening Assays , Molecular Docking Simulation , NIH 3T3 Cells , Structure-Activity Relationship , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
4.
Genome Biol ; 25(1): 98, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627865

ABSTRACT

BACKGROUND: Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS: Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS: In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Amino Acid Substitution , Diabetes Mellitus, Type 2/genetics , Glucokinase/genetics , Glucokinase/chemistry , Glucokinase/metabolism , Mutation
5.
J Diabetes ; 16(5): e13544, 2024 May.
Article in English | MEDLINE | ID: mdl-38664885

ABSTRACT

As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Homeostasis , Humans , Glucokinase/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Enzyme Activators/therapeutic use , Enzyme Activators/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Blood Glucose/metabolism , Animals , Glucose/metabolism
7.
Clin Drug Investig ; 44(4): 223-250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460077

ABSTRACT

Despite advances in the management of type 2 diabetes mellitus (T2DM), one-third of patients with diabetes do not achieve the desired glycemic goal. Considering this inadequacy, many agents that activate glucokinase have been investigated over the last two decades but were withdrawn before submission for marketing permission. Dorzagliatin is the first glucokinase activator that has been granted approval for T2DM, only in China. As overstimulation of glucokinase is linked with pathophysiological disturbances such as fatty liver and cardiovascular issues and a loss of therapeutic efficacy with time. This review aims to highlight the benefits of glucokinase activators vis-à-vis the risks associated with chronic enzymatic activation. We discuss the multisystem disturbances expected with chronic activation of the enzyme, the lessons learned with glucokinase activators of the past, the major efficacy and safety findings with dorzagliatin and its pharmacological properties, and the status of other glucokinase activators in the pipeline. The approval of dorzagliatin in China was based on the SEED and the DAWN trials, the major pivotal phase III trials that enrolled patients with T2DM with a mean glycosylated hemoglobin of 8.3-8.4%, and a mean age of 53-54.5 years from multiple sites in China. Patients with uncontrolled diabetes, cardiac diseases, organ dysfunction, and a history of severe hypoglycemia were excluded. Both trials had a randomized double-blind placebo-controlled phase of 24 weeks followed by an open-label phase of 28 weeks with dorzagliatin. Drug-naïve patients with T2DM with a disease duration of 11.7 months were enrolled in the SEED trial while the DAWN trial involved patients with T2DM with a mean duration of 71.5 months and receiving background metformin therapy. Compared with placebo, the decline in glycosylated hemoglobin at 24 weeks was more with dorzagliatin with an estimated treatment difference of - 0.57% in the SEED trial and - 0.66% in the DAWN trial. The desired glycosylated hemoglobin (< 7%) was also attained at more than two times higher rates with dorzagliatin. The glycemic improvement was sustained in the SEED trial but decreased over 52 weeks in the DAWN trial. Hyperlipidemia was observed in 12-14% of patients taking dorzagliatin versus 9-11% of patients receiving a placebo. Additional adverse effects noticed over 52 weeks with dorzagliatin included an elevation in liver enzymes, hyperuricemia, hyperlacticacidemia, renal dysfunction, and cardiovascular disturbances. Considering the statistically significant improvement in glycosylated hemoglobin with dorzagliatin in patients with T2DM, the drug may be given a chance in treatment-naïve patients with a shorter disease history. However, with the waning therapeutic efficacy witnessed in patients with long-standing diabetes, which was also one of the potential concerns with previously tested molecules, extended studies involving patients with chronic and uncontrolled diabetes are needed to comment upon the long-term therapeutic performance of dorzagliatin. Likewise, evidence needs to be generated from other countries, patients with organ dysfunction, a history of severe hypoglycemia, cardiac diseases, and elderly patients before extending the use of dorzagliatin. Apart from monitoring lipid profiles, long-term safety studies of dorzagliatin should involve the assessment of serum uric acid, lactate, renal function, liver function, and cardiovascular parameters.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Diseases , Hypoglycemia , Pyrazoles , Humans , Aged , Middle Aged , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Glycated Hemoglobin , Glucokinase , Multiple Organ Failure/chemically induced , Multiple Organ Failure/drug therapy , Uric Acid , Hypoglycemia/chemically induced , Hypoglycemia/drug therapy , Heart Diseases/chemically induced , Heart Diseases/drug therapy , Blood Glucose , Randomized Controlled Trials as Topic
8.
Bioorg Med Chem ; 103: 117695, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38522346

ABSTRACT

Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.


Subject(s)
Flavonoids , Insulin-Secreting Cells , Insulin Secretion , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Resveratrol , Glucokinase/metabolism , Glucose/metabolism
9.
Medicine (Baltimore) ; 103(8): e36916, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394489

ABSTRACT

OBJECT: To evaluate the efficacy and safety of dorzagliatin for the treatment of type 2 diabetes (T2DM). METHODS: Seven databases were systematically searched, spanning the interval from 2016 to August 2023. Randomized controlled trials (RCTS) comparing dorzagliatin with placebo for the treatment of T2DM were applicable for containing this study. The relevant data were extracted, and a meta-analysis was implemented using RevMan 5.4 software. RESULTS: A total of 3 studies involving 1332 patients were included. We use glycated hemoglobin (HbA1c) levels as the major indicator of efficacy, FBG, 2h postprandial blood glucose, Homa-ß and Homa-IR to be Secondary outcome measures. Compared with placebo group, dorzagliatin significantly reduced blood glucose levels as well as enhanced insulin resistance. In terms of safety, no serious adverse events occurred. However, lipid-related indicators, especially triglycerides levels, and the incidence of hypoglycemia were higher in patients in the dorzagliatin group compared with those in the control group, but the increase from baseline was mild. CONCLUSIONS: Dorzagliatin exerted favorable effects in hypoglycemic control, effectively reduced the HbA1c, FBG, and 2h postprandial blood glucose levels in T2DM patients, stimulated the secretion of insulin during the initial phase, and exerted a consistent hypoglycemic effect. However, the incidence of adverse events such as elevated blood lipids and cardiovascular risk warrants further investigations through long-term clinical trials.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Pyrazoles , Humans , Glycated Hemoglobin , Blood Glucose/analysis , Randomized Controlled Trials as Topic , Diabetes Mellitus, Type 2/complications , Hypoglycemic Agents/adverse effects
11.
12.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203742

ABSTRACT

Achieving glycemic control and sustaining functional pancreatic ß-cell activity remains an unmet medical need in the treatment of type 2 diabetes mellitus (T2DM). Glucokinase activators (GKAs) constitute a class of anti-diabetic drugs designed to regulate blood sugar levels and enhance ß-cell function in patients with diabetes. A significant progression in GKA development is underway to address the limitations of earlier generations. Dorzagliatin, a dual-acting GKA, targets both the liver and pancreas and has successfully completed two phase III trials, demonstrating favorable results in diabetes treatment. The hepato-selective GKA, TTP399, emerges as a strong contender, displaying clinically noteworthy outcomes with minimal adverse effects. This paper seeks to review the current literature, delve into the mechanisms of action of these new-generation GKAs, and assess their efficacy and safety in treating T2DM based on published preclinical studies and recent clinical trials.


Subject(s)
Diabetes Mellitus, Type 2 , Drug-Related Side Effects and Adverse Reactions , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucokinase , Pancreas , Glycemic Control
13.
J Biomater Sci Polym Ed ; 35(4): 535-558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38234041

ABSTRACT

Bio-synthesized silver nanoparticles (AgNPs) were successfully obtained using the leaf extract from Ventilago maderaspatana. Extensive analysis was conducted to evaluate the physical and chemical characteristics of the bioderived AgNPs. XRD analysis confirmed their cubic structure, and revealed a well-defined size distribution with average crystallite size of 11.7 nm. FE-SEM and TEM images visually supported the observed size range. The presence of plant-mediated phytochemicals on the surface of AgNPs was confirmed through DLS, FTIR, and TGA/DTA studies. To assess their antidiabetic potential, rats were induced with streptozotocin, resulting in elevated levels of biochemical parameters associated with diabetes. Conversely, serum insulin levels (2.50 ± 0.55) and glucokinase activity (64.50 ± 8.66) decreased. However, treatment with AgNPs demonstrated a dose-dependent reduction in blood glucose, total protein, albumin, and HbA1c levels, effectively restoring them to normal ranges. Moreover, the treatment significantly increased insulin levels (7.55 ± 0.63) and glucokinase activity (121.50 ± 4.60), indicating the antidiabetic potential of V. maderaspatana-mediated AgNPs. Notably, the exitance of phytochemicals, like flavonoids and phenols, on the surface of AgNPs facilitated their ability to neutralize reactive oxygen species (ROS) through electron donation. This property enhanced their overall antidiabetic efficiency.


Subject(s)
Diabetes Mellitus , Insulins , Metal Nanoparticles , Rats , Animals , Antioxidants/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Metal Nanoparticles/chemistry , Silver/chemistry , Streptozocin , Glucokinase
14.
Cell Signal ; 114: 111009, 2024 02.
Article in English | MEDLINE | ID: mdl-38092300

ABSTRACT

AIMS: Glucokinase (GCK) acts as the glucose sensor in maintaining glucose homeostasis. The inactivating mutation of the GCK gene leads to glucokinase-maturity onset diabetes of the young (GCK-MODY). This study aims to gain further insights into the molecular alterations triggered by GCK partial inactivation in hepatocytes, potentially underlying the favorable prognosis of GCK-MODY. MAIN METHODS: A GCK knockdown HepG2 cell model was established, and the integration of proteomics and metabolomics was used to gain a comprehensive understanding of the molecular pathway changes caused by GCK inactivation in the liver. KEY FINDINGS: Proteomic analysis identified 257 differential proteins. KEGG pathway enrichment analysis showed that protein expression changes in the GCK knockdown group were significantly enriched in central carbon metabolism, the TCA cycle, amino acid metabolism and the oxidative phosphorylation pathway. Among them, enzymes in the TCA cycle (PC, IDH2, SDH) were significantly downregulated in GCK-knockdown group. Targeted metabolomics revealed that in the GCK knockdown hepatocytes, TCA cycle intermediates were significantly decreased, including pyruvate, oxaloacetate, citrate and succinic acid, and three metabolites increased including glycine, betaine and homocysteine. These metabolic alterations in turn reduced the accumulation of reactive oxygen species in GCK knockdown hepatocytes. Correlation analysis indicated that TCA cycle metabolites were positively correlated with proteins involved in the TCA cycle, carbon metabolism, glycolysis, Ras signaling, fibrosis and inflammation. SIGNIFICANCE: In conclusion, GCK knockdown reduced TCA cycle flux and oxidative stress in hepatocytes by influencing the levels of key transcription factors and enzymes, providing a comprehensive understanding of the effects of GCK partial inactivation on liver metabolism and molecular mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Glucokinase/genetics , Glucokinase/metabolism , Proteomics , Hepatocytes/metabolism , Liver/metabolism , Glucose , Mutation
15.
J Biomol Struct Dyn ; 42(6): 2846-2858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37199320

ABSTRACT

GCK is a protein that plays a crucial role in the sensing and regulation of glucose homeostasis, which associates it with disorders of carbohydrate metabolism and the development of several pathologies, including gestational diabetes. This makes GCK an important therapeutic target that has aroused the interest of researchers to discover GKA that are simultaneously effective in the long term and free of side effects. TNKS is a protein that interacts directly with GCK; recent studies have shown that it inhibits GCK action, which affects glucose detection and insulin secretion. This justifies our choice of TNKS inhibitors as ligands to test their effects on the GCK-TNKS complex. For this purpose, we investigated the interaction of the GCK-TNKS complex with 13 compounds (TNKS inhibitors and their analogues) using the molecular docking approach as a first step, after which the compounds that generated the best affinity scores were evaluated for drug similarity and pharmacokinetic properties. Subsequently, we selected the six compounds that generated high affinity and that were in accordance with the parameters of the drug rules as well as pharmacokinetic properties to ensure a molecular dynamics study. The results allowed us to favor the two compounds (XAV939 and IWR-1), knowing that even the tested compounds (TNKS 22, (2215914) and (46824343)) produced good results that can also be exploited. These results are therefore interesting and encouraging, and they can be exploited experimentally to discover a treatment for diabetes, including gestational diabetes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Diabetes, Gestational , Tankyrases , Humans , Female , Pregnancy , Molecular Dynamics Simulation , Molecular Docking Simulation , Glucokinase/metabolism , Diabetes, Gestational/drug therapy , Glucose/metabolism
16.
Acta Diabetol ; 61(1): 131-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37730861

ABSTRACT

Maturity Onset Diabetes of the Young (MODY) is a monogenic autosomal dominant disorder affecting 1-5 % of all patients with diabetes mellitus. In Caucasians, GCK and HNF1A mutations are the most common cause of MODY. Here, we report two family members carrying a genetic variant of both GCK and HNF1A gene and their nine year clinical follow-up. Our report urges physicians to be cautious when variants in two genes are found in a single patient and suggests that collaboration with MODY genetics experts is necessary for correct diagnosis and treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Nuclear Family , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Family , Glucokinase/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Italy , Mutation
17.
Acta Diabetol ; 61(1): 107-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37704826

ABSTRACT

AIMS: Maturity-onset diabetes of the young (MODY) is an autosomal dominant monogenic form of diabetes, and glucokinase-maturity-onset diabetes of the young (GCK-MODY), or MODY 2, being the most prevalent type. However, the presence of copy number variants (CNVs) may lead to misdiagnoses, as genetic testing for MODY is typically reliant on sequencing techniques. This study aimed to describe the process of diagnosis in a Chinese pedigree with an exon 8-10 deletion of the GCK gene. METHODS: This study collected clinical data and medical history through direct interviews with the patient and reviewing relevant medical records. Sanger sequencing and whole exome sequencing (WES) were conducted over years of follow up. WES-based CNV sequencing technology was used to detect CNVs and the results were validated by multiplex ligation-dependent amplification dosage assay (MLPA). Additionally, we reviewed the previously reported cases caused by heterozygous exon deletion of the GCK gene. RESULTS: WES-based CNV detection revealed a heterozygous exon 8-10 deletion in the GCK gene within this particular pedigree after Sanger sequencing and WES failed to find causal variants in single nucleotide variations (SNVs) and small indels. The deletion was considered pathogenic according to ACMG/AMP and ClinGen guidelines. Most of the previously reported cases caused by heterozygous exon deletion or whole gene deletion of the GCK gene present similarly to GCK-MODY caused by SNVs and small indels. CONCLUSIONS: This study contributed to progress in our comprehension of the mutation spectrum of the GCK gene and underscored the significance of CNV detection in the genetic testing of MODY.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Gene Deletion , Genetic Testing/methods , Glucokinase/genetics , Mutation
18.
Biochimie ; 218: 8-19, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37741546

ABSTRACT

The hole mutagenesis approach was used to interrogate the importance of F337 in Trypanosoma cruzi glucokinase (TcGlcK) in order to understand the complete set of binding interactions that are made by d-glucosamine analogue inhibitors containing aromatic tail groups that can extend to the outer part of the active site. An interesting inhibitor of this analogue class includes 2-N-carboxybenzyl-2-deoxy-d-glucosamine (CBZ-GlcN), which exhibits strong TcGlcK binding with a Ki of 710 nM. The residue F337 is found at the outer part of the active site that stems from the second protein subunit of the homodimeric assembly. In this study, F337 was changed to leucine and alanine so as to diminish phenylalanine's side chain size and attenuate intermolecular interactions in this region of the binding cavity. Results from enzyme - inhibitor assays revealed that the phenyl group of F337 made dominant hydrophobic interactions with the phenyl group of CBZ-GlcN as opposed to π - π stacking interactions. Moreover, enzymatic activity assays and X-ray crystallographic experiments indicated that each of these site-directed mutants primarily retained their activity and had high structural similarity of their protein fold. A computed structure model of T. cruzi hexokinase (TcHxK), which was produced by the artificial intelligence system AlphaFold, was compared to an X-ray crystal structure of TcGlcK. Our structural analysis revealed that TcHxK lacked an F337 counterpart residue and probably exists in the monomeric form. We proposed that the d-glucosamine analogue inhibitors that are structurally similar to CBZ-GlcN may not bind as strongly in TcHxK as they do in TcGlcK because of absent van der Waals contact from residue side chains.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Glucokinase/chemistry , Glucokinase/metabolism , Catalytic Domain , Phenylalanine , Artificial Intelligence , Models, Molecular , Glucosamine , Binding Sites , Crystallography, X-Ray
19.
Endocrine ; 83(1): 92-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847371

ABSTRACT

PURPOSE: Heterozygous inactivating mutations in the glucokinase (GCK) gene result in the asymptomatic fasting hyperglycemia named as GCK-MODY or MODY2. The genetic testing can effectively avoid the misdiagnosis and inappropriate treatment for GCK-MODY. METHODS: A total of 25 unrelated families with MODY were screened for mutations in coding region of GCK by using direct sequencing. Three different bioinformatics tools such as PolyPhen2, Mutation Taster and PROVEAN were performed to predict the function of mutant proteins. The glucose profile was recorded by continuous glucose monitoring system (CGMS) to evaluate the glycemic variability for the GCK-MODY patient. RESULTS: Our study identified five GCK mutations in 24% of the families (6/25): two novel mutations (I126fs and G385A) and three already described mutations (G44S, H50fs and S383L). In silico analyses predicted that these mutations altered structural conformational changes. The values of mean amplitude of glycemic excursions (MAGE), an important index of blood glucose fluctuation in CGMS system, were 0.81 in the first 24 h and 1.61 in the second 24 h record in the patient with GCK-MODY (F3), suggesting little glucose fluctuation. CONCLUSION: The genetic testing is suggested to be important to differentiate GCK-MODY from other types of diabetes. CGMS might be used to screen GCK-MODY cases prior to genetic testing.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Blood Glucose , Blood Glucose Self-Monitoring , China , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Glucokinase/genetics , Glucose , Mutation
20.
Biotechnol Appl Biochem ; 71(2): 295-313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037220

ABSTRACT

Many synthetic glucokinase activators (GKAs), modulating glucokinase (GK), an important therapeutic target in diabetes have failed to clear clinical trials. In this study, an in silico structural similarity search with differing scaffolds of reference GKAs have been used to identify derivatives from natural product databases. Ten molecules with good binding score and similar interactions to that in the co-crystallized GK as well good activation against recombinant human GK experimentally were identified. Tetrahydropalmatine, an alkaloid present in formulations and drugs from medicinal plants, has not been explored as an antidiabetic agent and no information regarding its mechanism of action or GK activation exists. Tetrahydropalmatine activates GK with EC50 value of 71.7 ± 17.9 µM while lowering the S0.5 (7.1 mM) and increasing Vmax (9.22 µM/min) as compared to control without activator (S0.5 = 10.37 mM; Vmax = 4.8 µM/min). Kinetic data (α and ß values) suggests it to act as mixed, nonessential type activator. Using microscale thermophoresis, Kd values of 3.8 µM suggests a good affinity for GK. In HepG2 cell line, the compound potentiated the uptake of glucose and maintained glucose homeostasis by increasing the expression of GK, glycogen synthase, and insulin receptor genes and lowering the expression of glucokinase regulatory protein (GKRP) and glucagon. Tetrahydropalmatine at low concentrations could elicit a good response by reducing expression of GKRP, increasing expression of GK while also activating it. Thus, it could be used alone or in combination as therapeutic drug as it could effectively modulate GK and alter glucose homeostasis.


Subject(s)
Berberine Alkaloids , Glucokinase , Plants, Medicinal , Humans , Glucokinase/genetics , Glucokinase/metabolism , Glucose , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...