Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
Bioresour Technol ; 401: 130674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642663

ABSTRACT

Chemical production wastewater contains large amounts of organic solvents (OSs), which pose a significant threat to the environment. In this study, a 10 g·L-1 styrene oxide tolerant strain with broad-spectrum OSs tolerance was obtained via adaptive laboratory evolution. The mechanisms underlying the high OS tolerance of tolerant strain were investigated by integrating physiological, multi-omics, and genetic engineering analyses. Physiological changes are one of the main factors responsible for the high OS tolerance in mutant strains. Moreover, the P-type ATPase GOX_RS04415 and the LysR family transcriptional regulator GOX_RS04700 were also verified as critical genes for styrene oxide tolerance. The tolerance mechanisms of OSs can be used in biocatalytic chassis cell factories to synthesize compounds and degrade environmental pollutants. This study provides new insights into the mechanisms underlying the toxicological response to OS stress and offers potential targets for enhancing the solvent tolerance of G. oxydans.


Subject(s)
Epoxy Compounds , Gluconobacter oxydans , Mutation , Mutation/genetics , Epoxy Compounds/pharmacology , Gluconobacter oxydans/metabolism , Gluconobacter oxydans/genetics , Gluconobacter oxydans/drug effects , Solvents , Biodegradation, Environmental , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Chembiochem ; 25(10): e202400107, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38536122

ABSTRACT

This study characterizes the acceptor specificity of levansucrases (LSs) from Gluconobacter oxydans (LS1), Vibrio natriegens (LS2), Novosphingobium aromaticivorans (LS3), and Paraburkholderia graminis (LS4) using sucrose as fructosyl donor and selected phenolic compounds and carbohydrates as acceptors. Overall, V. natriegens LS2 proved to be the best biocatalyst for the transfructosylation of phenolic compounds. More than one fructosyl unit could be attached to fructosylated phenolic compounds. The transfructosylation of epicatechin by P. graminis LS4 resulted in the most diversified products, with up to five fructosyl units transferred. In addition to the LS source, the acceptor specificity of LS towards phenolic compounds and their transfructosylation products were found to greatly depend on their chemical structure: the number of phenolic rings, the reactivity of hydroxyl groups and the presence of aliphatic chains or methoxy groups. Similarly, for carbohydrates, the transfructosylation yield was dependent on both the LS source and the acceptor type. The highest yield of fructosylated-trisaccharides was Erlose from the transfructosylation of maltose catalyzed by LS2, with production reaching 200 g/L. LS2 was more selective towards the transfructosylation of phenolic compounds and carbohydrates, while reactions catalyzed by LS1, LS3 and LS4 also produced fructooligosaccharides. This study shows the high potential for the application of LSs in the glycosylation of phenolic compounds and carbohydrates.


Subject(s)
Biocatalysis , Hexosyltransferases , Phenols , Hexosyltransferases/metabolism , Hexosyltransferases/chemistry , Phenols/metabolism , Phenols/chemistry , Glycosylation , Substrate Specificity , Vibrio/enzymology , Gluconobacter oxydans/enzymology , Gluconobacter oxydans/metabolism , Carbohydrates/chemistry
3.
J Biol Chem ; 300(1): 105494, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006948

ABSTRACT

Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.


Subject(s)
Bacterial Proteins , Gluconobacter oxydans , Models, Molecular , Peptidoglycan , Peptidyl Transferases , Amino Acids/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain/genetics , Peptidoglycan/chemistry , Peptidoglycan/genetics , Peptidoglycan/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Software , Gluconobacter oxydans/enzymology , Gluconobacter oxydans/genetics , Computational Biology , Genetic Complementation Test , Protein Structure, Tertiary
4.
Appl Microbiol Biotechnol ; 108(1): 27, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38157006

ABSTRACT

Gastric and colorectal cancer are among the most frequently diagnosed malignancies of the gastrointestinal tract. Searching for methods of therapy that complements treatment or has a preventive effect is desirable. Bacterial metabolites safe for human health, which have postbiotic effect, are of interest recently. The study aimed to preliminary assessment of the safety, antimicrobial, and anti-cancer activity of cell-free metabolites of Gluconobacter oxydans strains isolated from Kombucha beverages as an example of the potential postbiotic activity of acetic acid bacteria (AAB). The study material consisted of five AAB strains of Kombucha origin and three human cell lines (gastric adenoma-AGS, colorectal adenoma-HT-29, and healthy cells derived from the endothelium of the human umbilical vein-HUVEC). Results of the study confirms the health safety and functional properties of selected AAB strains, including their potential postbiotic properties. The best potential anticancer activity of the AAB cell-free supernatants was demonstrated against AGS gastric adenoma cells. The conducted research proves the postbiotic potential of selected acetic acid bacteria, especially the KNS30 strain. KEY POINTS: •The beneficial and application properties of acetic acid bacteria are poorly studied. •Gluconobacter oxydans from Kombucha show a postbiotic activity. •The best anticancer activity of the G. oxydans showed against gastric adenoma.


Subject(s)
Adenoma , Gluconobacter oxydans , Humans , Gluconobacter oxydans/metabolism , Acetic Acid/metabolism
5.
Biosensors (Basel) ; 13(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38131771

ABSTRACT

Biosensors based on an oxygen electrode, a mediator electrode, and a mediator microbial biofuel cell (MFC) using the bacteria Gluconobacter oxydans B-1280 were formed and tested to determine the integral toxicity. G. oxydans bacteria exhibited high sensitivity to the toxic effects of phenol, 2,4-dinitrophenol, salicylic and trichloroacetic acid, and a number of heavy metal ions. The system "G. oxydans bacteria-ferrocene-graphite-paste electrode" was superior in sensitivity to biosensors formed using an oxygen electrode and MFC, in particular regarding heavy metal ions (EC50 of Cr3+, Mn2+, and Cd2+ was 0.8 mg/dm3, 0.3 mg/dm3 and 1.6 mg/dm3, respectively). It was determined that the period of stable functioning of electrochemical systems during measurements was reduced by half (from 30 to 15 days) due to changes in the enzyme system of microbial cells when exposed to toxicants. Samples of the products made from polymeric materials were analyzed using developed biosensor systems and standard biotesting methods based on inhibiting the growth of duckweed Lemna minor, reducing the motility of bull sperm, and quenching the luminescence of the commercial test system "Ecolum". The developed bioelectrocatalytic systems were comparable in sensitivity to commercial biosensors, which made it possible to correlate the results and identify, by all methods, a highly toxic sample containing diphenylmethane-4,4'-diisocyanate according to GC-MS data.


Subject(s)
Biosensing Techniques , Gluconobacter oxydans , Metals, Heavy , Male , Animals , Cattle , Polymers , Semen , Metals, Heavy/toxicity , Biosensing Techniques/methods , Ions , Oxygen
6.
Bioresour Technol ; 384: 129316, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315626

ABSTRACT

Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.


Subject(s)
Gluconobacter oxydans , Gluconobacter oxydans/metabolism , Glucose/metabolism , Sugar Acids/metabolism , Ascorbic Acid , Fermentation
7.
Biotechnol Adv ; 65: 108127, 2023.
Article in English | MEDLINE | ID: mdl-36924811

ABSTRACT

Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.


Subject(s)
Gluconobacter oxydans , Gluconobacter , Gluconobacter/genetics , Gluconobacter/metabolism , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Biotechnology , Catalysis , Biotransformation
8.
Bioprocess Biosyst Eng ; 46(6): 829-837, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36952003

ABSTRACT

In this study, the synthesis of xylonic acid from xylose by Gluconobacter oxydans NL71 has been investigated. According to the relationship between oxygen transfer rate and oxygen uptake rate, three different kinetic models of product formation were established and the nonlinear fitting was carried out. The results showed that G. oxydans has critical dissolved oxygen under different strain concentrations, and the relationship between respiration intensity and dissolved oxygen conformed to the Monod equation [Formula: see text]. The maximum reaction rate per unit cell mass and the theoretical maximum specific productivity of G. oxydans obtained by the kinetic model are 0.042 mol/L/h and 6.97 g/gx/h, respectively. These results will assist in determining the best balance between the airflow rate and cell concentration in the reaction and improve the production efficiency of xylonic acid.


Subject(s)
Gluconobacter oxydans , Fermentation , Xylose/pharmacology , Hydrodynamics , Oxygen/pharmacology
9.
Bioprocess Biosyst Eng ; 46(4): 589-597, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36670301

ABSTRACT

Pre-hydrolysate liquor, as an inevitable by-product, contains a large amount of xylose, and is therefore an inexpensive feedstock that can be upgraded to value-added chemical xylonic acid. However, inhibitors, simultaneously formed in lignocellulose pretreatment process, are regarded as the major obstacle for effectively bio-converting xylose in pre-hydrolysate into xylonic acid. In this study, Gluconobacter oxydans, with highly selective and efficient, was employed for xylonic acid production; the impacts of five typical toxic inhibitory compounds on xylonic acid productivity and the activity of the membrane-bound dehydrogenase were evaluated. The results revealed that the inhibitors showed different degrees of influence toward xylonic acid production, and the order of inhibitory effect for acidic inhibitors was formic acid > acetic acid > levulinic acid; the inhibitory effect of aldehyde inhibitors was furfural > 5-hydroxymethyl-furfural. This study provides an important basis of metabolic modification and detoxification process for enhancing inhibitor tolerance and xylonic acid productivity.


Subject(s)
Gluconobacter oxydans , Fermentation , Gluconobacter oxydans/metabolism , Xylose/metabolism , Furaldehyde/metabolism , Acids
10.
Biochim Biophys Acta Gen Subj ; 1867(2): 130289, 2023 02.
Article in English | MEDLINE | ID: mdl-36503080

ABSTRACT

BACKGROUND: Gluconobacter oxydans, is used in biotechnology because of its ability to oxidize a wide variety of carbohydrates, alcohols, and polyols in a stereo- and regio-selective manner by membrane-bound dehydrogenases located in periplasmic space. These reactions obey the well-known Bertrand-Hudson's rule. In our previous study (BBA-General Subjects, 2021, 1865:129740), we discovered that Gluconobacter species, including G. oxydans and G. cerinus strain can regio-selectively oxidize the C-3 and C-5 hydroxyl groups of D-galactitol to rare sugars D-tagatose and L-xylo-3-hexulose, which represents an exception to Bertrand Hudson's rule. The enzyme catalyzing this reaction is located in periplasmic space or membrane-bound and is PQQ (pyrroloquinoline quinine) and Ca2+-dependent; we were encouraged to determine which type of enzyme(s) catalyze this unique reaction. METHODS: Enzyme was identified by complementation of multi-deletion strain of Gluconobacter oxydans 621H with all putative membrane-bound dehydrogenase genes. RESULTS AND CONCLUSIONS: In this study, we identified this gene encoding the membrane-bound PQQ-dependent dehydrogenase that catalyzes the unique galactitol oxidation reaction in its 3'-OH and 5'-OH. Complement experiments in multi-deletion G. oxydans BP.9 strains established that the enzyme mSLDH (encoded by GOX0855-0854, sldB-sldA) is responsible for galactitol's unique oxidation reaction. Additionally, we demonstrated that the small subunit SldB of mSLDH was membrane-bound and served as an anchor protein by fusing it to a red fluorescent protein (mRubby), and heterologously expressed in E. coli and the yeast Yarrowia lipolytica. The SldB subunit was required to maintain the holo-enzymatic activity that catalyzes the conversion of D-galactitol to L-xylo-3-hexulose and D-tagatose. The large subunit SldA encoded by GOX0854 was also characterized, and it was discovered that its 24 amino acids signal peptide is required for the dehydrogenation activity of the mSLDH protein. GENERAL SIGNIFICANCE: In this study, the main membrane-bound polyol dehydrogenase mSLDH in G. oxydans 621H was proved to catalyze the unique galactitol oxidation, which represents an exception to the Bertrand Hudson's rule, and broadens its substrate ranges of mSLDH. Further deciphering the explicit enzymatic mechanism will prove this theory.


Subject(s)
Gluconobacter oxydans , L-Iditol 2-Dehydrogenase , Humans , L-Iditol 2-Dehydrogenase/genetics , L-Iditol 2-Dehydrogenase/metabolism , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Galactitol/metabolism , Escherichia coli/metabolism
11.
Microb Cell Fact ; 21(1): 255, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496372

ABSTRACT

BACKGROUND: The global market for sweeteners is increasing, and the food industry is constantly looking for new low-caloric sweeteners. The natural sweetener 5-keto-D-fructose is one such candidate. 5-Keto-D-fructose has a similar sweet taste quality as fructose. Developing a highly efficient 5-keto-D-fructose production process is key to being competitive with established sweeteners. Hence, the 5-keto-D-fructose production process was optimised regarding titre, yield, and productivity. RESULTS: For production of 5-keto-D-fructose with G. oxydans 621H ΔhsdR pBBR1-p264-fdhSCL-ST an extended-batch fermentation was conducted. During fructose feeding, a decreasing respiratory activity occurred, despite sufficient carbon supply. Oxygen and second substrate limitation could be excluded as reasons for the decreasing respiration. It was demonstrated that a short period of oxygen limitation has no significant influence on 5-keto-D-fructose production, showing the robustness of this process. Increasing the medium concentration increased initial biomass formation. Applying a fructose feeding solution with a concentration of approx. 1200 g/L, a titre of 545 g/L 5-keto-D-fructose was reached. The yield was with 0.98 g5-keto-d-fructose/gfructose close to the theoretical maximum. A 1200 g/L fructose solution has a viscosity of 450 mPa∙s at a temperature of 55 °C. Hence, the solution itself and the whole peripheral feeding system need to be heated, to apply such a highly concentrated feeding solution. Thermal treatment of highly concentrated fructose solutions led to the formation of 5-hydroxymethylfurfural, which inhibited the 5-keto-D-fructose production. Therefore, fructose solutions were only heated to about 100 °C for approx. 10 min. An alternative feeding strategy was investigated using solid fructose cubes, reaching the highest productivities above 10 g5-keto-d-fructose/L/h during feeding. Moreover, the scale-up of the 5-keto-D-fructose production to a 150 L pressurised fermenter was successfully demonstrated using liquid fructose solutions (745 g/L). CONCLUSION: We optimised the 5-keto-D-fructose production process and successfully increased titre, yield and productivity. By using solid fructose, we presented a second feeding strategy, which can be of great interest for further scale-up experiments. A first scale-up of this process was performed, showing the possibility for an industrial production of 5-keto-D-fructose.


Subject(s)
Gluconobacter oxydans , Fructose , Fermentation , Sweetening Agents , Oxygen
12.
Microb Cell Fact ; 21(1): 223, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307807

ABSTRACT

BACKGROUND: Adipic acid (AA) is one of the most important industrial chemicals used mainly for the production of Nylon 6,6 but also for making polyurethanes, plasticizers, and unsaturated polyester resins, and more recently as a component in the biodegradable polyester poly(butylene adipate terephthalate) (PBAT). The main route for AA production utilizes benzene as feedstock and generates copious amounts of the greenhouse gas NO2. Hence, alternative clean production routes for AA from renewable bio-based feedstock are drawing increasing attention. We have earlier reported the potential of Gluconobacter oxydans cells to oxidize 1,6-hexanediol, a potentially biobased diol to AA. RESULTS: The present report involves a study on the effect of different parameters on the microbial transformation of 1,6-hexanediol to adipic acid, and subsequently testing the process on a larger lab scale for achieving maximal conversion and yield. Comparison of three wild-type strains of G. oxydans DSM50049, DSM2003, and DSM2343 for the whole-cell biotransformation of 10 g/L 1,6-hexanediol to adipic acid in batch mode at pH 7 and 30 °C led to the selection of G. oxydans DSM50049, which showed 100% conversion of the substrate with over 99% yield of adipic acid in 30 h. An increase in the concentrations of the substrate decreased the degree of conversion, while the product up to 25 g/L in batch and 40 g/L in fed-batch showed no inhibition on the conversion. Moreover, controlling the pH of the reaction at 5-5.5 was required for the cascade oxidation reactions to work. Cell recycling for the biotransformation resulted in a significant decrease in activity during the third cycle. Meanwhile, the fed-batch mode of transformation by intermittent addition of 1,6-hexanediol (30 g in total) in 1 L scale resulted in complete conversion with over 99% yield of adipic acid (approximately 37 g/L). The product was recovered in a pure form using downstream steps without the use of any solvent. CONCLUSION: A facile, efficient microbial process for oxidation of 1,6-hexanediol to adipic acid, having potential for scale up was demonstrated. The entire process is performed in aqueous medium at ambient temperatures with minimal greenhouse gas emissions. The enzymes involved in catalyzing the oxidation steps are currently being identified.


Subject(s)
Gluconobacter oxydans , Greenhouse Gases , Gluconobacter oxydans/metabolism , Greenhouse Gases/metabolism , Adipates/metabolism , Polyesters/metabolism
13.
Appl Environ Microbiol ; 88(18): e0121222, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36073939

ABSTRACT

In industrial production, the precursor of l-ascorbic acid (L-AA, also referred to as vitamin C), 2-keto-l-gulonic acid (2-KLG), is mainly produced using a classic two-step fermentation process performed by Gluconobacter oxydans, Bacillus megaterium, and Ketogulonicigenium vulgare. In the second step of the two-step fermentation process, the microbial consortium of K. vulgare and B. megaterium is used to achieve 2-KLG production. K. vulgare can transform l-sorbose to 2-KLG, but the yield of 2-KLG is much lower in the monoculture than in the coculture fermentation system. The relationship between the two strains is too diverse to analyze and has been a hot topic in the field of vitamin C fermentation. With the development of omics technology, the relationships between the two strains are well explained; nevertheless, the cell-cell communication is unclear. In this review, based on current omics results, the interactions between the two strains are summarized, and the potential cell-cell communications between the two strains are discussed, which will shed a light on the further understanding of synthetic consortia.


Subject(s)
Gluconobacter oxydans , Rhodobacteraceae , Ascorbic Acid , Fermentation , Microbial Interactions , Rhodobacteraceae/genetics , Sorbose , Sugar Acids , Vitamins
14.
Biosensors (Basel) ; 12(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36140084

ABSTRACT

Microbial fuel cells (MFCs) are a variety of bioelectrocatalytic devices that utilize the metabolism of microorganisms to generate electric energy from organic matter. This study investigates the possibility of using a novel PEDOT:PSS/graphene/Nafion composite in combination with acetic acid bacteria Gluconobacter oxydans to create a pure culture MFC capable of effective municipal wastewater treatment. The developed MFC was shown to maintain its activity for at least three weeks. The level of COD in municipal wastewater treatment was reduced by 32%; the generated power was up to 81 mW/m2 with a Coulomb efficiency of 40%. Combining the MFC with a DC/DC boost converter increased the voltage generated by two series-connected MFCs from 0.55 mV to 3.2 V. A maximum efficiency was achieved on day 8 of MFC operation and was maintained for a week; capacitors of 6800 µF capacity were fully charged in ~7 min. Thus, G. oxydans cells can become an important part of microbial consortia in MFCs used for treatment of wastewaters with reduced pH.


Subject(s)
Bioelectric Energy Sources , Gluconobacter oxydans , Graphite , Water Purification , Bioelectric Energy Sources/microbiology , Bridged Bicyclo Compounds, Heterocyclic , Electricity , Electrodes , Fluorocarbon Polymers , Polymers , Wastewater/chemistry
15.
Bioprocess Biosyst Eng ; 45(11): 1849-1855, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36149483

ABSTRACT

Gluconic acid is a widely used food and beverage additive, but its production suffers from low efficiency and high cost. In this study, a preferable gluconic acid biosynthesis method without repeated seed culture was proposed and developed using the superior performance of Gluconobacter oxydans. A high oxygen atmosphere satisfying the demand of bio-oxidation increased the productivity of gluconic acid up to ~ 32 g/L/h and the accumulation up to ~ 420 g/L within 24 h of fed-batch fermentation. However, the productivity remarkably decreased when the gluconic acid content was over 350 g/L. Therefore, a continuous fermentation was designed, which in combination with 5 runs of fed-batch fermentation resulted in the final production of 1700 g gluconic acid from 1750 g glucose within 60 h in a 3 L bioreactor. The results suggest that the validity of this model and can enable cost-competitive gluconic acid production in the industry.


Subject(s)
Gluconobacter oxydans , Fermentation , Gluconates , Oxygen
16.
PeerJ ; 10: e13639, 2022.
Article in English | MEDLINE | ID: mdl-35873911

ABSTRACT

Acetic acid bacteria are well-known for their ability to incompletely oxidize their carbon sources. Many of the products of these oxidations find industrial uses. Metabolic engineering of acetic acid bacteria would improve production efficiency and yield by allowing controllable gene expression. However, the molecular tools necessary for regulating gene expression have only recently started being explored. To this end the ability of the activation-dependent Plux system and two constitutive repression Ptet systems were examined for their ability to modulate gene expression in Gluconobacter oxydans. The activation-dependent Plux system increased gene expression approximately 5-fold regardless of the strength of the constitutive promoter used to express the luxR transcriptional activator. The Ptet system was tunable and had a nearly 20-fold induction when the tetR gene was expressed from the strong constitutive promoters P0169 and P264, but only had a 4-fold induction when a weak constitutive promoter (P452) was used for tetR expression. However, the Ptet system was somewhat leaky when uninduced. To mitigate this background activity, a bicistronic TetR expression system was constructed. Based on molecular modeling, this system is predicted to have low background activity when not induced with anhydrotetracycline. The bicistronic system was inducible up to >3,000-fold and was highly tunable with almost no background expression when uninduced, making this bicistronic system potentially useful for engineering G. oxydans and possibly other acetic acid bacteria. These expression systems add to the newly growing repertoire of suitable regulatable promoter systems in acetic acid bacteria.


Subject(s)
Gluconobacter oxydans , Gluconobacter oxydans/genetics , Promoter Regions, Genetic/genetics , Oxidation-Reduction
17.
Toxins (Basel) ; 14(7)2022 06 21.
Article in English | MEDLINE | ID: mdl-35878161

ABSTRACT

Patulin is a mycotoxin that primarily contaminate apples and apple products. Whole cell or cell-free extracts of Gluconobacter oxydans ATCC 621 were able to transform patulin to E-ascladiol. Proteins from cell-free extracts were separated by anion exchange chromatography and fractions with patulin transformation activity were subjected to peptide mass fingerprinting, enabling the identification of two NADPH dependent short chain dehydrogenases, GOX0525 and GOX1899, with the requisite activity. The genes encoding these enzymes were expressed in E. coli and purified. Kinetic parameters for patulin reduction, as well as pH profiles and thermostability were established to provide further insight on the potential application of these enzymes for patulin detoxification.


Subject(s)
Gluconobacter oxydans , Malus , Patulin , Escherichia coli/metabolism , Furans , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Malus/chemistry , Oxidoreductases , Patulin/metabolism
18.
World J Microbiol Biotechnol ; 38(8): 134, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35688964

ABSTRACT

Gluconobacter oxydans is a well-known acetic acid bacterium that has long been applied in the biotechnological industry. Its extraordinary capacity to oxidize a variety of sugars, polyols, and alcohols into acids, aldehydes, and ketones is advantageous for the production of valuable compounds. Relevant G. oxydans industrial applications are in the manufacture of L-ascorbic acid (vitamin C), miglitol, gluconic acid and its derivatives, and dihydroxyacetone. Increasing efforts on improving these processes have been made in the last few years, especially by applying metabolic engineering. Thereby, a series of genes have been targeted to construct powerful recombinant strains to be used in optimized fermentation. Furthermore, low-cost feedstocks, mostly agro-industrial wastes or byproducts, have been investigated, to reduce processing costs and improve the sustainability of G. oxydans bioprocess. Nonetheless, further research is required mainly to make these raw materials feasible at the industrial scale. The current shortage of suitable genetic tools for metabolic engineering modifications in G. oxydans is another challenge to be overcome. This paper aims to give an overview of the most relevant industrial G. oxydans processes and the current strategies developed for their improvement.


Subject(s)
Gluconobacter oxydans , Acetic Acid/metabolism , Biotechnology , Fermentation , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Metabolic Engineering
19.
Biosci Biotechnol Biochem ; 86(8): 1151-1159, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35675214

ABSTRACT

Protocatechuate (3,4-dihydroxybenzoate) has antioxidant properties and is a raw material for the production of muconic acid, which is a key compound in the synthesis of polymers such as nylon and polyethylene terephthalate. Gluconobacter oxydans strain NBRC3244 has a periplasmic system for oxidation of quinate to produce 3-dehydroquinate. Previously, a periplasmic 3-dehydroshikimate production system was constructed by heterologously expressing Gluconacetobacter diazotrophicus dehydroquinate dehydratase in the periplasm of G. oxydans strain NBRC3244. 3-Dehydroshikimate is converted to protocatechuate by dehydration. In this study, we constructed a G. oxydans strain that expresses the Acinetobacter baylyi quiC gene, which encodes a dehydroshikimate dehydratase of which the subcellular localization is likely the periplasm. We attempted to produce protocatechuate by co-cultivation of two recombinant G. oxydans strains-one expressing the periplasmically targeted dehydroquinate dehydratase and the other expressing A. baylyi dehydroshikimate dehydratase. The co-cultivation system produced protocatechuate from quinate in a nearly quantitative manner.


Subject(s)
Gluconobacter oxydans , Gluconobacter oxydans/genetics , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Oxidation-Reduction , Periplasm/metabolism , Quinic Acid
20.
Bioresour Technol ; 354: 127107, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35381333

ABSTRACT

The direct fermentation of the precursor of vitamin C, 2-keto-L-gulonic acid (2-KLG), has been a long-pursued goal. Previously, a strain of Gluconobacter oxydans WSH-004 was isolated that produced 2.5 g/L 2-KLG, and through adaptive evolution engineering, the strain G. oxydans MMC3 could tolerate 300 g/L D-sorbitol. This study verified that the sndh-sdh gene cluster encoded two key dehydrogenases for the 2-KLG biosynthesis pathway in this strain. Then G. oxydans MMC3 further evolved through adaptive evolution to G. oxydans 2-KLG5, which can tolerate high concentrations of D-sorbitol and 2-KLG. Finally, by increasing the gene expression levels of the sndh-sdh and terminal oxidase cyoBACD in G. oxydans 2-KLG5, the 2-KLG accumulation in the 5-L fermenter increased to 45.14 g/L by batch fermentation. The results showed that combined evolutionary and metabolic engineering efficiently improved the direct production of 2-KLG from D-sorbitol in G. oxydans.


Subject(s)
Gluconobacter oxydans , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Metabolic Engineering , Sorbitol/metabolism , Sugar Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...