Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.047
Filter
1.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825475

ABSTRACT

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Glucose Transport Proteins, Facilitative , Hyperuricemia , Neoplasm Proteins , Organic Anion Transporters , Uric Acid , Xanthine Dehydrogenase , Humans , Hyperuricemia/etiology , Hyperuricemia/metabolism , Hyperuricemia/genetics , Uric Acid/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Xanthine Dehydrogenase/metabolism , Xanthine Dehydrogenase/genetics , Xanthine Dehydrogenase/deficiency , Animals , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/etiology , Renal Tubular Transport, Inborn Errors/metabolism , Urinary Calculi/etiology , Urinary Calculi/metabolism , Urinary Calculi/genetics , Metabolism, Inborn Errors
2.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672484

ABSTRACT

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Subject(s)
Glucose , Metabolic Syndrome , Plant Components, Aerial , Metabolic Syndrome/metabolism , Metabolic Syndrome/drug therapy , Plant Components, Aerial/chemistry , Humans , Glucose/metabolism , Glycyrrhiza/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/genetics
3.
Sci Rep ; 14(1): 9888, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688953

ABSTRACT

Fatty acids have been shown to modulate glucose metabolism in vitro and in vivo. However, there is still a need for substantial evidence and mechanistic understanding in many cell types whether both saturated and unsaturated fatty acids (SFAs and UFAs) pose a similar effect and, if not, what determines the net effect of fatty acid mixes on glucose metabolism. In the present study, we asked these questions by treating granulosa cells (GCs) with the most abundant non-esterified fatty acid species in bovine follicular fluid. Results revealed that oleic and alpha-linolenic acids (UFAs) significantly increased glucose consumption compared to palmitic and stearic acids (SFAs). A significant increase in lactate production, extracellular acidification rate, and decreased mitochondrial activity indicate glucose channeling through aerobic glycolysis in UFA treated GCs. We show that insulin independent glucose transporter GLUT10 is essential for UFA driven glucose consumption, and the induction of AKT and ERK signaling pathways necessary for GLUT10 expression. To mimic the physiological conditions, we co-treated GCs with mixes of SFAs and UFAs. Interestingly, co-treatments abolished the UFA induced glucose uptake and metabolism by inhibiting AKT and ERK phosphorylation and GLUT10 expression. These data suggest that the net effect of fatty acid induced glucose uptake in GCs is determined by SFAs under physiological conditions.


Subject(s)
Fatty Acids, Unsaturated , Fatty Acids , Glucose Transport Proteins, Facilitative , Glucose , Glycolysis , Granulosa Cells , Animals , Cattle , Glucose/metabolism , Glycolysis/drug effects , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Female , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Glucose Transport Proteins, Facilitative/metabolism , Fatty Acids/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured
4.
Brain Res ; 1836: 148933, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604554

ABSTRACT

OBJECTIVE: To investigate the potential changes of glucose metabolism and glucose transporter protein (GLUT) in the visual cortex of formally deprived amblyopic rats, as well as the effects of enriched environments on the levels of nerve conduction and glucose metabolism in the visual cortex of amblyopic rats. METHODS: 36 rats were randomly divided into three groups: CON + SE (n = 12), MD + SE (n = 12) and MD + EE (n = 12). The right eyelids of both MD + SE and MD + EE groups were sutured. After successful modelling, the MD + EE group was maintained in an enriched environment, and the other two groups were kept in the same environment. Pattern visual evoked potentials (PVEP) was used to confirm models' effect, glucose metabolism was analyzed by Micro-PET/CT (18F-FDG), and the protein as well as mRNA expression levels of GLUT were detected by Western Blot and quantitative RT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction) analyses, site of GLUT expression by immunofluorescence (IF). RESULTS: After suture modelling, both the MD + EE and MD + SE groups objective visual nerve conduction function decreased, the glucose metabolism in the visual cortex was markedly lower. After the enriched environment intervention, it recovered in the MD + EE group. The expression levels of GLUT1 and GLUT3 were increased in the MD + EE group in comparison with the MD + SE group. GLUT1 was primarily expressed on astrocytes and endothelial cells, but GLUT3 was mainly expressed on neurons. CONCLUSION: Enrichment of the environment exhibited a therapeutic effect on amblyopia, which could be related to the enhancement of glucose metabolism and GLUT expression in the visual cortex.


Subject(s)
Amblyopia , Environment , Glucose , Rats, Sprague-Dawley , Visual Cortex , Animals , Visual Cortex/metabolism , Amblyopia/metabolism , Amblyopia/therapy , Amblyopia/physiopathology , Glucose/metabolism , Rats , Evoked Potentials, Visual/physiology , Male , Disease Models, Animal , Glucose Transport Proteins, Facilitative/metabolism , Neural Conduction/physiology , Glucose Transporter Type 1/metabolism
5.
Fitoterapia ; 175: 105926, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537887

ABSTRACT

Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Hyperuricemia , Uric Acid , Xanthine Oxidase , Animals , Mice , Hyperuricemia/drug therapy , Male , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Uric Acid/blood , Xanthine Oxidase/metabolism , Disease Models, Animal , Glucose Transport Proteins, Facilitative/metabolism , Kidney/drug effects , Blood Urea Nitrogen , Creatinine/blood , Plant Extracts/pharmacology , Plant Extracts/chemistry , Organic Anion Transporters/metabolism , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Organic Anion Transport Protein 1/metabolism , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/pharmacology
6.
Parasitol Res ; 123(3): 161, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491300

ABSTRACT

Opisthorchis viverrini infection and the subsequent bile duct cancer it induces remains a significant public health problem in Southeast Asia. Opisthorchiasis has been reported to cause reduced plasma glucose levels among infected patients. The underlying mechanism for this phenomenon is unclear. In the present study, evidence is presented to support the hypothesis that O. viverrini exploits host cholangiocyte glucose transporters (GLUTs) in a similar manner to that of rodent intestinal nematodes, to feed on unabsorbed glucose in the bile for survival. GLUT levels in a cholangiocyte H69 cell line co-cultured with excretory-secretory products of O. viverrini were examined using qPCR and immunoblotting. GLUT 8 mRNA and expressed proteins were found to be downregulated in H69 cells in the presence of O. viverrini. This suggests that O. viverrini alters glucose metabolism in cells within its vicinity by limiting transporter expression resulting in increased bile glucose that it can utilize and potentially explains the previously reported anti-insulin effect of opisthorchiasis.


Subject(s)
Antigens, Helminth , Bile Duct Neoplasms , Opisthorchiasis , Opisthorchis , Animals , Humans , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic , Glucose/metabolism , Opisthorchiasis/complications , Opisthorchiasis/metabolism , Opisthorchis/metabolism , Antigens, Helminth/metabolism , Glucose Transport Proteins, Facilitative/metabolism
7.
Biochimie ; 220: 107-121, 2024 May.
Article in English | MEDLINE | ID: mdl-38184121

ABSTRACT

Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.


Subject(s)
Breast Neoplasms , Glycolysis , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Glycolysis/drug effects , Warburg Effect, Oncologic/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Hexokinase/metabolism , Hexokinase/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/metabolism
8.
Biochem Biophys Res Commun ; 696: 149494, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38219491

ABSTRACT

Skeletal muscle is the largest metabolic tissue responsible for systemic glucose handling. Glucose uptake into skeletal tissue is highly dynamic and delicately regulated, in part through the controlled expression and subcellular trafficking of multiple types of glucose transporters. Although the roles of GLUT4 in skeletal muscle metabolism are well established, the physiological significance of other, seemingly redundant, glucose transporters remain incompletely understood. Nonetheless, recent studies have shed light on the roles of several glucose transporters, such as GLUT1 and GLUT10, in skeletal muscle. Mice experiments suggest that GLUT10 could be a novel player in skeletal muscle metabolism in the context of mechanical overload, which is in line with the meta-analytical results of gene expression changes after resistance exercise in humans. Herein we discuss the knowns, unknowns, and implications of these recent findings.


Subject(s)
Glucose Transport Proteins, Facilitative , Monosaccharide Transport Proteins , Humans , Mice , Animals , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Monosaccharide Transport Proteins/genetics , Muscle, Skeletal/metabolism , Glucose/metabolism , Biological Transport , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism
9.
Biochimie ; 219: 55-62, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37967737

ABSTRACT

Glucose transporters (GLUTs) are crucial in maintaining glucose homeostasis and supporting energy production in various tissues, including the testes. This review article delves into the distribution and function of GLUTs in distinct testicular cell types, namely Leydig cells, Sertoli cells, germ cells, and spermatozoa, shedding light on their significance in the context of male reproductive health-an issue of mounting global concern. Furthermore, this article examines the implications of GLUT dysregulation in testicular dysfunction. Altered GLUT expression has been associated with impaired steroidogenesis, spermatogenesis, sperm count, and motility in various animal models. Lastly, the article underscores the potential therapeutic implications of targeting GLUTs concerning testicular toxicity. Insights gleaned from studies in diabetes and cancer suggest that modulating GLUT expression and translocation could present novel strategies for mitigating testicular dysfunction and safeguarding male fertility. In summary, the intricate interplay between GLUTs, glucose metabolism, and testicular health underscores the significance of sustaining testicular glucose homeostasis for male reproductive health. Manipulating GLUTs presents an innovative avenue to address testicular dysfunction, potentially revolutionizing therapeutic strategies to restore male fertility and overall reproductive well-being. Future research in this field holds great promise for advancing male fertility treatments and reproductive health interventions.


Subject(s)
Glucose Transport Proteins, Facilitative , Testis , Animals , Male , Testis/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Semen/metabolism , Spermatozoa/metabolism , Glucose/metabolism
10.
Am J Physiol Renal Physiol ; 326(2): F227-F240, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38031729

ABSTRACT

Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.


Subject(s)
Aristolochic Acids , Balkan Nephropathy , Benzhydryl Compounds , Glucosides , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Humans , Male , Female , Mice , Animals , Balkan Nephropathy/metabolism , Balkan Nephropathy/pathology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Disease Models, Animal , Creatinine/metabolism , Tumor Suppressor Protein p53/metabolism , Mice, Inbred C57BL , Kidney/metabolism , Aristolochic Acids/toxicity , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/metabolism , Fibrosis , Glucose Transport Proteins, Facilitative/metabolism , Sodium/metabolism
11.
Exp Cell Res ; 433(2): 113851, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37940066

ABSTRACT

BACKGROUND: Ovarian cancer has been a worldwide health burden for women and its progression is highly hypoxia-independent. Here, we investigated the exact mechanisms by which hypoxia contributes to the malignant progression of ovarian cancer. METHOD: MTT, transwell, colony formation, and scratch wound healing assays were carried out for cellular functions. The underlying mechanism by which hypoxia functions was explored by RNA-seq, enrichment analysis, western blotting, qRT-PCR, flow cytometry, ChIP, luciferase reporter, and ELISA. Finally, animal experiments including the xenograft model and tumor metastasis model were constructed to validate the role of SLC2A12 in vivo. RESULTS: Hypoxia treatment promoted the cell proliferation, mobility, and colony growth abilities of the two ovarian cancer cell lines HO-8910 and A2780. RNA-seq and enrichment analysis showed that SLC2A12 was hyper-expressed under hypoxia condition and it may be related to glutathione and lipid metabolism. Besides, the expression of SLC2A12 was negatively correlated with overall survival. Hypoxia suppressed ferroptosis by SLC2A12 because silencing SLC2A12 declined the cell viability of HO-8910 and A2780 cells under hypoxia conditions, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) breached that result and upregulated the expression of glutathione peroxidase 4 (GPX4). Moreover, hypoxia increased the expression of hypoxia inducible factor 1 A (HIF-1A), and the accumulated HIF-1A binds to hypoxia inducible factor 1 B (HIF1B) to form HIF-1 complex, then promoted the binding of hypoxic response elements (HRE) to SLC2A12 promoter by HIF-1/HRE signal. Subsequently, SLC2A12 regulated glutathione metabolism and in turn inhibited ferroptosis. The animal experiments indicated that silencing SLC2A12 could significantly inhibit tumor growth and metastasis in vivo. CONCLUSION: Hypoxia promoted ovarian cancer progression by upregulating SLC2A12 and then regulating glutathione metabolism to inhibit ferroptosis.


Subject(s)
Ferroptosis , Glucose Transport Proteins, Facilitative , Ovarian Neoplasms , Animals , Female , Humans , Cell Line, Tumor , Ferroptosis/genetics , Glutathione , Hypoxia , Hypoxia-Inducible Factor 1 , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Ovarian Neoplasms/pathology , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism
12.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003671

ABSTRACT

The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Child , Humans , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Neurophysiology , Glucose/metabolism , Insulin Resistance/physiology , Hippocampus/metabolism , Hyperinsulinism/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Dementia/metabolism , Insulin/metabolism
13.
PLoS One ; 18(10): e0286278, 2023.
Article in English | MEDLINE | ID: mdl-37874822

ABSTRACT

Blood-brain barrier (BBB) dysfunction may be involved in the increased sensitivity of Alzheimer's disease (AD) patients to antipsychotics, including amisulpride. Studies indicate that antipsychotics interact with facilitated glucose transporters (GLUT), including GLUT1, and that GLUT1 BBB expression decreases in AD. We tested the hypotheses that amisulpride (charge: +1) interacts with GLUT1, and that BBB transport of amisulpride is compromised in AD. GLUT1 substrates, GLUT1 inhibitors and GLUT-interacting antipsychotics were identified by literature review and their physicochemical characteristics summarised. Interactions between amisulpride and GLUT1 were studied using in silico approaches and the human cerebral endothelial cell line, hCMEC/D3. Brain distribution of [3H]amisulpride was determined using in situ perfusion in wild type (WT) and 5xFamilial AD (5xFAD) mice. With transmission electron microscopy (TEM) we investigated brain capillary degeneration in WT mice, 5xFAD mice and human samples. Western blots determined BBB transporter expression in mouse and human. Literature review revealed that, although D-glucose has no charge, charged molecules can interact with GLUT1. GLUT1 substrates are smaller (184.95±6.45g/mol) than inhibitors (325.50±14.40g/mol) and GLUT-interacting antipsychotics (369.38±16.04). Molecular docking showed beta-D-glucose (free energy binding: -15.39kcal/mol) and amisulpride (-29.04kcal/mol) interact with GLUT1. Amisulpride did not affect [14C]D-glucose hCMEC/D3 accumulation. [3H]amisulpride uptake into the brain (except supernatant) of 5xFAD mice compared to WT remained unchanged. TEM revealed brain capillary degeneration in human AD. There was no difference in GLUT1 or P-glycoprotein BBB expression between WT and 5xFAD mice. In contrast, caudate P-glycoprotein, but not GLUT1, expression was decreased in human AD capillaries versus controls. This study provides new details about the BBB transport of amisulpride, evidence that amisulpride interacts with GLUT1 and that BBB transporter expression is altered in AD. This suggests that antipsychotics could potentially exacerbate the cerebral hypometabolism in AD. Further research into the mechanism of amisulpride transport by GLUT1 is important for improving antipsychotics safety.


Subject(s)
Alzheimer Disease , Antipsychotic Agents , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Amisulpride , Alzheimer Disease/metabolism , Glucose Transporter Type 1/metabolism , Molecular Docking Simulation , Brain/metabolism , Membrane Transport Proteins/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism
14.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884694

ABSTRACT

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Subject(s)
Glucose Transport Proteins, Facilitative , Glucose , Mice , Humans , Animals , Glucose/metabolism , Biological Transport/physiology , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Cell Differentiation , CD8-Positive T-Lymphocytes/metabolism
15.
Biochim Biophys Acta Gen Subj ; 1867(12): 130490, 2023 12.
Article in English | MEDLINE | ID: mdl-37844739

ABSTRACT

BACKGROUND: The yeast S. cerevisiae preferably metabolizes glucose through aerobic glycolysis. Glucose transport is facilitated by multiple hexose transporters (Hxts), and their expression and activity are tightly regulated by multiple mechanisms. However, detailed structural and functional analyses of Hxts remain limited, largely due to the lack of crystal structure. METHODS: Homology modeling was used to build a 3D structural model for the yeast glucose transporter Hxt1 and investigate the effects of site directed mutations on Hxt1 stability and glucose transport activity. RESULTS: The conserved salt bridge-forming residues observed in the human Glut4 and the yeast glucose receptor Rgt2 were identified within and between the two 6-transmembrane spanning segments of Hxt1. Most of the RGT2 mutations that disrupt the salt bridge networks were known to cause constitutive signal generation, whereas the corresponding substitutions in HXT1 were shown to decrease Hxt1 stability. While substitutions of the two residues in the salt bridge 2 in Glut4-E329Q and E393D-were reported to abolish glucose transport, the equivalent substitutions in Hxt1 (D382Q and E454D) did not affect Hxt1 glucose transport activity. CONCLUSIONS: Substitutions of equivalent salt bridge-forming residues in Hxt1, Rgt2, and Glut4 are predicted to lock them in an inward-facing conformation but lead to different functional consequences. GENERAL SIGNIFICANCE: The salt bridge networks in yeast and human glucose transporters and yeast glucose receptors may play different roles in maintaining their structural and functional integrity.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism
16.
BMC Complement Med Ther ; 23(1): 358, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817130

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS)-induced dysfunction of pancreatic ß-cells leads to impaired insulin (INS) secretion. Astragalus polysaccharide (APS) is a bioactive heteropolysaccharide extracted from Astragalus membranaceus and is a popular Chinese herbal medicine. This study aimed to elucidate the mechanisms by which APS affects INS secretion from ß-cells under LPS stress. METHODS: Rat insulinoma (INS-1) cells were treated with LPS at a low, medium, or high concentration of APS. Glucose-stimulated insulin secretion (GSIS) was evaluated using an enzyme-linked immunosorbent assay (ELISA). Transcriptome sequencing was used to assess genome-wide gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to determine the signaling pathways affected by APS. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression of glucose transporter 2 (GLUT2), glucokinase (GCK), pancreatic duodenal homeobox-1 (PDX-1), and INS. Western blot analysis was used to detect the protein expression of phosphorylated protein kinase B (p-Akt), total Akt (t-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), total mTOR (t-mTOR), and GLUT2. RESULTS: LPS decreased GLUT2, GCK, PDX-1, and INS expression and reduced GSIS. These LPS-induced decreases in gene expression and GSIS were restored by APS treatment. In addition, transcriptome sequencing in combination with KEGG enrichment analysis revealed changes in the INS signaling pathway following APS treatment. LPS decreased p-Akt and p-mTOR expression, which was restored by APS treatment. The restorative effects of APS on GSIS as well as on the expression of GLUT2, GCK, PDX-1, and INS were abolished by treatment with the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin (RPM). CONCLUSIONS: APS restored GSIS in LPS-stimulated pancreatic ß-cells by activating the Akt/mTOR/GLUT2 signaling pathway.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Rats , Animals , Insulin Secretion , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus , Glucose/metabolism , Polysaccharides/pharmacology , TOR Serine-Threonine Kinases/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Mammals/metabolism
17.
Biochem Biophys Res Commun ; 679: 145-159, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37696068

ABSTRACT

Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.


Subject(s)
Podocytes , Rats , Animals , Podocytes/metabolism , Insulin/metabolism , Receptor, Insulin/metabolism , Transcription Factors/metabolism , Lysosomes/metabolism , Signal Transduction , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism
18.
FEBS Open Bio ; 13(11): 2094-2107, 2023 11.
Article in English | MEDLINE | ID: mdl-37731227

ABSTRACT

Glucose transporters (GLUTs) are responsible for transporting hexose molecules across cellular membranes. In adipocytes, insulin stimulates glucose uptake by redistributing GLUT4 to the plasma membrane. In unstimulated adipose-like mouse cell lines, GLUT4 is known to be retained intracellularly by binding to TUG protein, while upon insulin stimulation, GLUT4 dissociates from TUG. Here, we report that the TUG homolog in human, ASPL, exerts similar properties, i.e., forms a complex with GLUT4. We describe the structural details of complex formation by combining biochemical assays with cross-linking mass spectrometry and computational modeling. Combined, the data suggest that the intracellular domain of GLUT4 binds to the helical lariat of ASPL and contributes to the regulation of GLUT4 trafficking by cooperative binding.


Subject(s)
Carrier Proteins , Glucose , Humans , Mice , Animals , Carrier Proteins/metabolism , Protein Transport , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Insulin/metabolism
19.
Thorac Cancer ; 14(27): 2761-2769, 2023 09.
Article in English | MEDLINE | ID: mdl-37549925

ABSTRACT

BACKGROUND: Glucose transporters (GLUTs) are highly expressed in various cancers. However, the implications of these variable expression patterns are unclear. This study aimed to clarify the correlation between class I GLUT expression patterns and clinical outcomes in non-small cell lung cancer (NSCLC), including their potential role in inflammatory signaling. METHODS: Biopsy tissues from 132 patients with NSCLC (92 adenocarcinomas [ADC] and 40 squamous cell carcinomas [SQCC]) were analyzed. mRNA expression levels of class I GLUTs (solute carrier 2A [SLC2A]1, SLC2A2, SLC2A3, and SLC2A4) and inflammation-related molecules (toll-like receptors TLR4, RelA/p65, and interleukins IL8 and IL6) were measured. Cellular localization of GLUT3 and GLUT4 was investigated using immunofluorescence. RESULTS: Single, combined, and negative GLUT (SLC2A) expression were observed in 27/92 (29.3%), 27/92 (29.3%), and 38/92 (41.3%, p < 0.001) of ADC and 8/40 (20.0%), 29/40 (72.5%, p < 0.001), and 3/40 (7.5%) of SQCC, respectively. In ADC, the single SLC2A3-expressed group had a significantly poorer prognosis, whereas the single SLC2A4-expressed group had a significantly better prognosis. The combined expression groups showed no significant difference. SLC2A expression was not correlated with SQCC prognosis. SLC2A4 expression correlated with lower IL8 expression. GLUT3 and GLUT4 expressions were localized in the tumor cytoplasm. CONCLUSIONS: In lung ADC, single SLC2A3 expression correlated with poor prognosis, whereas single SLC2A4 expression correlated with better prognosis and lower IL8 expression. GLUT3 expression, which is increased by IL8 overexpression, may be suppressed by increasing the expression of GLUT4 through decreased IL8 expression.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 3/genetics , Interleukin-8/genetics , Interleukin-8/metabolism , Lung Neoplasms/genetics
20.
Article in English | MEDLINE | ID: mdl-37536429

ABSTRACT

The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.


Subject(s)
Intestinal Absorption , Sodium-Glucose Transport Proteins , Animals , Swine , Sodium-Glucose Transport Proteins/metabolism , Jejunum/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...