Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 412
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731926

ABSTRACT

The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in ßHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.


Subject(s)
Glucose Transporter Type 2 , Glucose , Histone-Lysine N-Methyltransferase , Insulin Secretion , Insulin-Secreting Cells , Myeloid-Lymphoid Leukemia Protein , Animals , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Gene Expression Regulation , Mice, Knockout , Insulin/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Cell Line , Male
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38619320

ABSTRACT

The present study aimed to investigate the effects of deoxynivalenol (DON) stimulation on inflammatory injury and the expression of the glucose transporters sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter protein 2 (GLU2) in porcine small intestinal epithelial cells (IPEC-J2). Additionally, the study aimed to provide initial insights into the connection between the expression of glucose transporters and the inflammatory injury of IPEC-J2 cells. DON concentration and DON treatment time were determined using the CCK­8 assay. Accordingly, 1.0 µg/mL DON and treatment for 24 h were chosen for subsequent experiments. Then IPEC-J2 cells were treated without DON (CON, N = 6) or with 1 µg/mL DON (DON, N = 6). Lactate dehydrogenase (LDH) content, apoptosis rate, and proinflammatory cytokines including interleukin (IL)-1ß, Il-6, and tumor necrosis factor α (TNF-α) were measured. Additionally, the expression of AMP-activated protein kinase α1 (AMPK-α1), the content of glucose, intestinal alkaline phosphatase (AKP), and sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) activity, and the expression of SGLT1 and GLU2 of IPEC-J2 cells were also analyzed. The results showed that DON exposure significantly increased LDH release and apoptosis rate of IPEC-J2 cells. Stimulation with DON resulted in significant cellular inflammatory damage, as evidenced by a significant increase in proinflammatory cytokines (IL-1ß, IL-6, and TNF-α). Additionally, DON caused damage to the glucose absorption capacity of IPEC-J2 cells, indicated by decreased levels of glucose content, AKP activity, Na+/K+-ATPase activity, AMPK-α1 protein expression, and SGLT1 expression. Correlation analysis revealed that glucose absorption capacity was negatively correlated with cell inflammatory cytokines. Based on the findings of this study, it can be preliminarily concluded that the cell inflammatory damage caused by DON may be associated with decreased glucose absorption.


Glucose is one of the most basic nutrients necessary to sustain animal life and plays a crucial role in animal body composition and energy metabolism. Previous studies suggested a link between glucose absorption and inflammatory injury. In the present study, deoxynivalenol (DON) stimulation caused severe inflammatory injury and reduced the glucose absorption capacity of IPEC-J2 cells. Pearson's correlation analysis revealed a negative correlation between glucose absorption capacity and cell inflammatory cytokines. Ultimately, it can be speculated that the cellular inflammatory response triggered by DON may be related to the altered expression of glucose transporters.


Subject(s)
Epithelial Cells , Glucose , Intestine, Small , Sodium-Glucose Transporter 1 , Trichothecenes , Animals , Trichothecenes/toxicity , Swine , Glucose/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Cell Line , Intestine, Small/drug effects , Inflammation/chemically induced , Cytokines/metabolism , Cytokines/genetics , Biological Transport/drug effects , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Apoptosis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
3.
Mol Biol Rep ; 50(8): 6963-6974, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37358764

ABSTRACT

The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in ß-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.


Subject(s)
Glucose , Islets of Langerhans , Glucose/metabolism , Islets of Langerhans/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Hepatocytes/metabolism , Biological Transport , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism
4.
Genet Test Mol Biomarkers ; 27(5): 149-156, 2023 May.
Article in English | MEDLINE | ID: mdl-37257183

ABSTRACT

Objectives: This study was designed to analyze the association between the SLC2A2 rs1499821 polymorphism and caries susceptibility in the Chinese Han, Zhuang, and Baikuyao populations. Materials and Methods: The present case-control study included 1067 12-year-old children: 481 with caries (142 Han, 166 Zhuang and 173 Baikuyao) and 586 who were caries-free (135 Han, 178 Zhuang and 273 Baikuyao). Questionnaires about diet and oral habits were obtained from all subjects. All of the children received dental examinations and DNA collection. The SLC2A2 rs1499821 SNP was genotyped using the SNPscan technique. Results: The rs1499821 T polymorphism was significantly associated with caries susceptibility in both the Han population and the combined populations of the three ethnic subgroups. SLC2A2 rs1499821 was associated with caries susceptibility in the dominant model in the Han (p = 0.045) population and the combined (p = 0.038) group. The CT+TT genotypes at rs1499821 were associated with a higher risk of caries in the Han (OR = 1.69, adjusted 95% CI: 1.01-2.81) and combined (OR = 1.33, adjusted 95% CI: 1.02-1.74) populations. In both Han (p = 0.009) and the combined populations (p = 0.004), there were statistically significant associations between the frequency of sweet food intake and dental caries. However, the rs1499821 polymorphisms did not associate with the frequency of sweet food intake in these ethnic subgroups. Conclusion: In the Han population, the SLC2A2 rs1499821 T allele and the frequency of sweet food intake may be regarded as risk factors for caries susceptibility. The SLC2A2 rs1499821 T allele had no association with the frequency of sweet food intake in any of the three ethnic groups.


Subject(s)
Dental Caries , Glucose Transporter Type 2 , Child , Humans , Asian People , China/epidemiology , Dental Caries/genetics , Gene Frequency , Genetic Predisposition to Disease , Genotype , Glucose Transporter Type 2/genetics , Polymorphism, Single Nucleotide
5.
J Healthc Eng ; 2022: 3645336, 2022.
Article in English | MEDLINE | ID: mdl-35140900

ABSTRACT

This study investigates the correlation between the gene polymorphism of rs8192675 (C/C) locus of SLC2A2 in patients with type 2 diabetes (T2DM) and the efficacy of metformin. For this purpose, we have selected 110 T2DM patients (T2DM group) and 110 healthy people (control group) who were treated in our hospital from January 2019 to January 2020 as the research subjects. PCR-restriction fragment length polymorphism (PCR-RFLP) method detects the distribution frequency of gene polymorphism. The patients in the T2DM group were treated with metformin and followed up for 90 days to analyze the relationship between the efficacy of metformin and the SLC2A2 gene polymorphism. The genotypes of SLC2A2 rs8192675 in the control group and in the T2DM group conformed to the Hardy-Weinberg equilibrium law. Compared with the control group, the CT type and the CC type at rs8192675 in the T2DM group were significantly higher (P < 0.05). For rs8192675, there was no significant difference in TT, CT, CC FPG, 2hPBG, and HbA1c levels before treatment (P > 0.05); after metformin treatment, the reduction in FPG, 2hPBG, and HbA1c in CC patients was lower than that of TT and CT patients (P < 0.05). SLC2A2 gene polymorphism site rs8192675 CC type T2DM patients are sensitive to metformin and have a better hypoglycemic effect.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/therapeutic use , Glycated Hemoglobin , Humans , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Polymorphism, Single Nucleotide
6.
Sci Rep ; 12(1): 1429, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082341

ABSTRACT

The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma's reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.


Subject(s)
Drug Discovery , Glucose Transporter Type 3/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/drug effects , Small Molecule Libraries/pharmacology , Binding Sites , Biological Transport/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/antagonists & inhibitors , Glucose Transporter Type 2/chemistry , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 3/antagonists & inhibitors , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 4/antagonists & inhibitors , Glucose Transporter Type 4/chemistry , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 5/antagonists & inhibitors , Glucose Transporter Type 5/chemistry , Glucose Transporter Type 5/genetics , Glucose Transporter Type 5/metabolism , Heterocyclic Compounds, 3-Ring/chemistry , High-Throughput Screening Assays , Humans , Models, Molecular , Neoplasms/drug therapy , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Small Molecule Libraries/chemistry
7.
Biomed Pharmacother ; 146: 112494, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891116

ABSTRACT

Cyanidin-3-rutinoside (C3R) is an anthocyanin with anti-diabetic properties found in red-purple fruits. However, the molecular mechanisms of C3R on Ca2+-dependent insulin secretion remains unknown. This study aimed to identify C3R's mechanisms of action in pancreatic ß-cells. Rat INS-1 cells were used to elucidate the effects of C3R on insulin secretion, intracellular Ca2+ signaling, and gene expression. The results showed that C3R at 60, 100, and 300 µM concentrations significantly increased insulin secretion via intracellular Ca2+ signaling. The exposure of cells with C3R concentrations up to 100 µM did not affect cell viability. Pretreatment of cells with nimodipine (voltage-dependent Ca2+ channel (VDCC) blocker), U73122 (PLC inhibitor), and 2-APB (IP3 receptor blocker) inhibited the intracellular Ca2+ signals by C3R. Interestingly, C3R increased intracellular Ca2+ signals and insulin secretion after depletion of endoplasmic reticulum Ca2+ stores by thapsigargin. However, insulin secretion was abolished under extracellular Ca2+-free conditions. Moreover, C3R upregulated mRNA expression for Glut2 and Kir6.2 genes. These findings indicate that C3R stimulated insulin secretion by promoting Ca2+ influx via VDCCs and activating the PLC-IP3 pathway. C3R also upregulates the expression of genes necessary for glucose-induced insulin secretion. This is the first study describing the molecular mechanisms by which C3R stimulates Ca2+-dependent insulin secretion from pancreatic ß-cells. These findings contribute to our understanding on how anthocyanins improve hyperglycemia in diabetic patients.


Subject(s)
Anthocyanins/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Cell Line , Cell Survival/drug effects , Glucose Transporter Type 2/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Insulin-Secreting Cells/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Rats , Type C Phospholipases/metabolism
8.
Life Sci ; 290: 120261, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34968468

ABSTRACT

AIMS: We previously showed that hindlimb ischemia-reperfusion (IR) enhanced glucose uptake in the liver through the activation of the parasympathetic nervous system. Although we suggested that the key glucose transporter (GLUT) in this hepatic glucose uptake was GLUT4 by western blotting, the molecular weight of GLUT4 was nearly the same as that of GLUT2, which is predominantly expressed in the liver. We primarily conducted a histological evaluation to determine whether IR specifically accelerates the overexpression of GLUT4, rather than GLUT2, in the hepatocytes in vitro and in vivo. MAIN METHODS: A total of 54 male C57BL/6J mice were used and subjected to 3 min hindlimb ischemia repeated three times with 3 min interval. Focusing on the area connecting portal and central veins, the GLUT4 and GLUT2 expression in the hepatocytes were examined by real-time PCR and immunohistochemically. Moreover, the alteration of GLUT4 and GLUT2 expression by acetylcholine in the primary hepatocytes were examined by immunofluorescence. KEY FINDINGS: IR significantly upregulated the GLUT4, rather than GLUT2, expression in both mRNA and protein in the liver. Histological examination revealed marked glycogen storage in zone1, the periportal area, coincident with the enhanced GLUT4 immunoreactivity, in the IR-treated liver. Incubation of primary hepatocytes with acetylcholine induced the appearance of GLUT4 on the membrane peripheries. SIGNIFICANCE: The overexpression of GLUT4 on the membrane peripheries contributed to increasing glucose uptake found in IR-treated livers. This acceleration of glucose uptake via GLUT4 may induce marked glycogen storage in zone1 through energy production linked with increased glucose preference.


Subject(s)
Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Ischemic Preconditioning/methods , Animals , Cell Membrane/metabolism , Gene Expression/genetics , Gene Expression Regulation/genetics , Glucose/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 4/genetics , Hepatocytes/metabolism , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/metabolism
9.
Genes (Basel) ; 12(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34828390

ABSTRACT

Fanconi-Bickel syndrome (FBS) is a very rare but distinct clinical entity with the combined features of hepatic glycogen storage disease, generalized proximal renal tubular dysfunction with disproportionately severe glucosuria, and impaired galactose tolerance. Here, we report five cases (out of 93 diagnosed in our lab) with pathogenic variants on both GLUT2 (SLC2A2) alleles. They come from 3 families and presented with an exceptionally mild clinical course. This course was correlated to data from old and most recent expression and transport studies in Xenopus oocytes. GLUT2 genotype in patients 1 and 2 was p.[153_4delLI];[P417R] with the first variant exhibiting normal membrane expression and partially retained transport activity (5.8%) for 2-deoxyglucose. In patient 3, the very first GLUT2 variant ever detected (p.V197I) was found, but for the first time it was present in a patient in the homozygous state. This variant had also shown unaffected membrane expression and remarkable residual activity (8%). The genotype in patient 4, p.[153_4delLI];[(E440A)], again included the 2-amino-acid deletion with residual transporter function, and patient 5 is the first found to be homozygous for this variant. Our results provide further evidence for a genotype-phenotype correlation in patients with GLUT2 variants; non-functional variants result in the full picture of FBS while dysfunctional variants may result in milder presentations, even glucosuria only, without other typical signs of FBS.


Subject(s)
Fanconi Syndrome/genetics , Glucose Transporter Type 2/genetics , Mutation , Phenotype , Adolescent , Adult , Animals , Fanconi Syndrome/pathology , Female , Genotype , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Homozygote , Humans , Infant , Male , Pedigree , Xenopus
10.
BMC Cancer ; 21(1): 1026, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525987

ABSTRACT

BACKGROUND: Current treatment methods for patients with triple-negative breast cancer (TNBC) are very limited, and the prognosis of TNBC is relatively poor. It has been reported that glucose transporter 1 (GLUT1) is overexpressed in breast cancer cells; however, its association with the prognosis is mostly unclear. Moreover, retinoblastoma gene 1 (RB1) might be used as a biomarker for the sensitivity of breast cancer cells to GLUT1 inhibitors, which brought us to the hypothesis that there might be a close correlation between the expression of GLUT1-4 and the expression of RB1. METHODS: In this study, we systematically analyzed the co-expression of GLUT1-4 and the influence of GLUT1-4 gene expression on the prognosis of breast cancer using data mining methods. We also explored possible relationships between GLUT1-4 and RB1 expression in breast cancer tissues. We used public databases such as ONCOMINE, GEPIA, LinkedOmics, and COEXPEDIA. RESULTS: According to the results, the mRNA expression of SLC2A1 was significantly higher in breast cancer, while the expression levels of SLC2A2-4 were downregulated. The results also indicate that GLUT1 expression does not have significant influence on the overall survival of patients with breast cancer. The mRNA expression of SLC2A1 and RB1 is significantly correlated, which means that tissues with high RB1 mRNA expression might have relatively higher mRNA expression of SLC2A1; however, further study analyzing their roles in the expression regulation pathways with human samples is needed to verify the hypothesis. CONCLUSIONS: The mRNA expression of SLC2A1 was significantly higher in breast cancer. The overall survival of breast cancer patients wasn't significantly correlated with GLUT1-4 expression. The mRNA expression of SLC2A1 and RB1 is significantly correlated according to the analysis conducted in LinkedOmics. It provides reference for future possible individualized treatment of TNBC using GLUT1 inhibitors, especially in patients with higher mRNA expression of RB1. Further study analyzing the roles of these two genes in the regulation pathways is needed.


Subject(s)
Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 4/metabolism , Retinoblastoma Binding Proteins/metabolism , Triple Negative Breast Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , Databases, Genetic , Datasets as Topic , Down-Regulation , Female , Genes, Retinoblastoma , Glucose Transporter Type 1/genetics , Glucose Transporter Type 2/genetics , Glucose Transporter Type 3/genetics , Glucose Transporter Type 4/genetics , Humans , Prognosis , RNA, Messenger/metabolism , Retinoblastoma Binding Proteins/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Ubiquitin-Protein Ligases/genetics , Up-Regulation
11.
Cells ; 10(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-34440786

ABSTRACT

The production of functional islet-like cells from human-induced pluripotent stem cells (hiPSCs) is a promising strategy for the therapeutic use and disease modeling for type 1 diabetes. However, the production cost of islet-like cells is extremely high due to the use of expensive growth factors for differentiation. In a conventional culture method, growth factors and beneficial autocrine factors remaining in the culture medium are removed along with toxic metabolites during the medium change, and it limits the efficient utilization of those factors. In this study, we demonstrated that the dialysis suspension culture system is possible to reduce the usage of growth factors to one-third in the differentiation of hiPSC-derived endocrine progenitor cells to islet-like cells by reducing the medium change frequency with the refinement of the culture medium. Furthermore, the expression levels of hormone-secretion-related genes and the efficiency of differentiation were improved with the dialysis suspension culture system, possibly due to the retaining of autocrine factors. In addition, we confirmed several improvements required for the further study of the dialysis culture system. These findings showed the promising possibility of the dialysis suspension culture system for the low-cost production of islet-like cells.


Subject(s)
Cell Differentiation/drug effects , Culture Media/pharmacology , Dialysis Solutions/pharmacology , Induced Pluripotent Stem Cells/drug effects , Islets of Langerhans/drug effects , Renal Dialysis , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Aggregation/drug effects , Cell Aggregation/genetics , Cell Culture Techniques/methods , Cell Differentiation/genetics , Cell Line , Culture Media/chemistry , Dialysis Solutions/chemistry , Endocrine System/cytology , Endocrine System/drug effects , Endocrine System/metabolism , Gene Expression/drug effects , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Trans-Activators/metabolism
12.
Nutrients ; 13(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34444712

ABSTRACT

Glucagon-like peptide 1 (GLP-1) and PAS kinase (PASK) control glucose and energy homeostasis according to nutritional status. Thus, both glucose availability and GLP-1 lead to hepatic glycogen synthesis or degradation. We used a murine model to discover whether PASK mediates the effect of exendin-4 (GLP-1 analogue) in the adaptation of hepatic glycogen metabolism to nutritional status. The results indicate that both exendin-4 and fasting block the Pask expression, and PASK deficiency disrupts the physiological levels of blood GLP1 and the expression of hepatic GLP1 receptors after fasting. Under a non-fasted state, exendin-4 treatment blocks AKT activation, whereby Glucokinase and Sterol Regulatory Element-Binding Protein-1c (Srebp1c) expressions were inhibited. Furthermore, the expression of certain lipogenic genes was impaired, while increasing Glucose Transporter 2 (GLUT2) and Glycogen Synthase (GYS). Moreover, exendin-4 treatment under fasted conditions avoided Glucose 6-Phosphatase (G6pase) expression, while maintaining high GYS and its activation state. These results lead to an abnormal glycogen accumulation in the liver under fasting, both in PASK-deficient mice and in exendin-4 treated wild-type mice. In short, exendin-4 and PASK both regulate glucose transport and glycogen storage, and some of the exendin-4 effects could therefore be due to the blocking of the Pask expression.


Subject(s)
Adaptation, Physiological , Fasting , Liver Glycogen/metabolism , Liver/metabolism , Nutritional Status , Protein Serine-Threonine Kinases/metabolism , Animals , Exenatide/metabolism , Exenatide/pharmacology , Glucagon-Like Peptide 1/blood , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Glucokinase/metabolism , Glucose/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Up-Regulation , Weight Loss
13.
J Mol Endocrinol ; 67(3): 71-82, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34223824

ABSTRACT

Glucose transporter type 2 (GLUT2), encoded by the SLC2A2 gene, is an essential component of glucose-stimulated insulin secretion in pancreatic islet ß-cells. Like that of the gene encoding insulin, expression of the SLC2A2 gene expression is closely linked to ß-cell functionality in rodents, but the mechanism by which ß-cell-specific expression of SLC2A2 is controlled remains unclear. In this report, to identify putative enhancer elements of the mouse Slc2a2 gene, we examined evolutional conservation of the nucleotide sequence of its genomic locus, together with ChIP-seq data of histone modifications and various transcription factors published in previous studies. Using luciferase reporter assays, we found that an evolutionarily conserved region (ECR) located approximately 40 kbp downstream of the transcription start site of Slc2a2 functions as an active enhancer in the MIN6 ß-cell line. We also found that three ß-cell-enriched transcription factors, MafA, NeuroD1, and HNF1ß, synergistically activate transcription through this 3' downstream distal enhancer (ECR3') and the proximal promoter region of the gene. Our data also indicate that the simultaneous binding of HNF1ß to its target sites within the promoter and ECR3' of Slc2a2 is indispensable for transcriptional activation, and that binding of MafA and NeuroD1 to their respective target sites within the ECR3' enhances transcription. Co-immunoprecipitation experiments suggested that MafA, NeuroD1, and HNF1ß interact with each other. Overall, these results suggest that promoter-enhancer communication through MafA, NeuroD1, and HNF1ß is critical for Slc2a2 gene expression. These findings provide clues to help elucidate the mechanism of regulation of Slc2a2 gene expression in ß-cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation , Glucose Transporter Type 2/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism , Insulin-Secreting Cells/metabolism , Maf Transcription Factors, Large/metabolism , Animals , Conserved Sequence , Enhancer Elements, Genetic , Glucose Transporter Type 2/metabolism , Mice , Promoter Regions, Genetic , Protein Binding , Response Elements , Transcriptional Activation
14.
Sci Rep ; 11(1): 13751, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215797

ABSTRACT

Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.


Subject(s)
Drug Discovery , Glucose Transporter Type 2/antagonists & inhibitors , Glucose Transporter Type 5/antagonists & inhibitors , Small Molecule Libraries/chemistry , Computer Simulation , Diabetes Mellitus/drug therapy , Fanconi Syndrome/drug therapy , Glucose/genetics , Glucose/metabolism , Glucose Transporter Type 2/chemistry , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/ultrastructure , Glucose Transporter Type 5/chemistry , Glucose Transporter Type 5/genetics , Glucose Transporter Type 5/ultrastructure , Humans , Ligands , Neoplasms/drug therapy , Protein Conformation/drug effects , User-Computer Interface
15.
Stem Cell Res ; 54: 102433, 2021 07.
Article in English | MEDLINE | ID: mdl-34171785

ABSTRACT

Recessive mutations in the glucose transporter gene SLC2A2 (GLUT2) lead to permanent neonatal diabetes (PNDM) and Fanconi Bickel Syndrome (FBS). Here, we generated an induced pluripotent stem cell (iPSC) line, QBRIi012-A, from a 24-month-old boy with FBS and PNDM due to homozygous nonsense mutation in the SLC2A2 gene (c.901C > T). The QBRIi012-A was fully characterized using different approaches. The cell line showed normal karyotype and was able to differentiate into the three germ layers in vitro. This iPSC line provides a novel human cell model to understand the pathophysiology of FBS and diabetes associated with SLC2A2 defects.


Subject(s)
Diabetes Mellitus , Fanconi Syndrome , Induced Pluripotent Stem Cells , Child, Preschool , Glucose Transporter Type 2/genetics , Homozygote , Humans , Infant, Newborn , Male , Mutation
16.
Mol Biol Rep ; 48(5): 4477-4485, 2021 May.
Article in English | MEDLINE | ID: mdl-34109498

ABSTRACT

In the quest to understand lost ß-cells regeneration in the diabetic condition, we have demonstrated successful differentiation of human haematopoietic stem cells (HSCs) to functional ß-like cells. Costus igneus (Ci) leaf extract is known to exhibit anti-diabetic properties by lowering the blood glucose level as demonstrated in mice models. To establish the anti-diabetic properties of Ci leaf extract on human subjects, we studied the effect of Ci on these differentiated ß-like cells. Ci leaf extract showed its anti-diabetic property through elevated glucokinase activity which catalyzes the rate-limiting step of glucose catabolism in ß-like cells and acts as a sensor for insulin production while decreasing the glucose-6-phosphatase activity. Upon increasing the concentrations of Ci leaf extract (25, 65, 105, 145, 185 µg/ml) and glucose concentrations (5.5, 11.1, and 25 mM) Ci leaf extract treated ß-like cells showed enhanced glucokinase and decreased glucose-6-phosphatase activities and an exponential rise in gene expressions of INS and GLUT2 was observed. The present study shows enhanced INS and GLUT2 gene expression and elevated glucokinase activity in ß-like cells differentiated from HSCs upon treatment with Ci leaf extract explain the anti-diabetic property of Ci leaf extract. This extract can be effectively used in the management of diabetes.


Subject(s)
Cell Differentiation/drug effects , Costus/chemistry , Gene Expression/drug effects , Glucokinase/metabolism , Glucose Transporter Type 2/genetics , Hematopoietic Stem Cells/cytology , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/enzymology , Insulin/genetics , Plant Extracts/pharmacology , Plant Leaves/chemistry , Signal Transduction/drug effects , Blood Donors , Cells, Cultured , Glucose/metabolism , Glucose-6-Phosphatase/metabolism , Healthy Volunteers , Hematopoietic Stem Cells/drug effects , Humans
17.
J Clin Endocrinol Metab ; 106(10): e4142-e4154, 2021 09 27.
Article in English | MEDLINE | ID: mdl-33999151

ABSTRACT

CONTEXT: Developmental disorders of the pituitary gland leading to congenital hypopituitarism can either be isolated or associated with extrapituitary abnormalities (syndromic hypopituitarism). A large number of syndromic hypopituitarism cases are linked to mutations in transcription factors. The forkhead box A2 (FOXA2) is a transcription factor that plays a key role in the central nervous system, foregut, and pancreatic development. OBJECTIVE: This work aims to characterize 2 patients with syndromic hypopituitarism due to FOXA2 gene defects. RESULTS: We report a novel heterozygous nonsense c.616C > T(p.Q206X) variant that leads to a truncated protein that lacks part of the DNA-binding domain of FOXA2, resulting in impaired transcriptional activation of the glucose transporter type 2 (GLUT2)-luciferase reporter. The patient is the sixth patient described in the literature with a FOXA2 mutation, and the first patient exhibiting pancreatic hypoplasia. We also report a second patient with a novel de novo 8.53 Mb deletion of 20p11.2 that encompasses FOXA2, who developed diabetes mellitus that responded to sulfonylurea treatment. CONCLUSION: Our 2 cases broaden the molecular and clinical spectrum of FOXA2-related disease, reporting the first nonsense mutation and the first case of pancreatic dysgenesis.


Subject(s)
Diabetes Mellitus/congenital , Hepatocyte Nuclear Factor 3-beta/genetics , Hypopituitarism/congenital , Pancreas/abnormalities , Pituitary Gland/abnormalities , Codon, Nonsense , Glucose Transporter Type 2/genetics , Humans , Infant , Male , Syndrome , Transcription Factors/genetics , Transcriptional Activation
18.
Nat Commun ; 12(1): 3133, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035238

ABSTRACT

Heterozygous HNF1A gene mutations can cause maturity onset diabetes of the young 3 (MODY3), characterized by insulin secretion defects. However, specific mechanisms of MODY3 in humans remain unclear due to lack of access to diseased human pancreatic cells. Here, we utilize MODY3 patient-derived human induced pluripotent stem cells (hiPSCs) to study the effect(s) of a causal HNF1A+/H126D mutation on pancreatic function. Molecular dynamics simulations predict that the H126D mutation could compromise DNA binding and gene target transcription. Genome-wide RNA-Seq and ChIP-Seq analyses on MODY3 hiPSC-derived endocrine progenitors reveal numerous HNF1A gene targets affected by the mutation. We find decreased glucose transporter GLUT2 expression, which is associated with reduced glucose uptake and ATP production in the MODY3 hiPSC-derived ß-like cells. Overall, our findings reveal the importance of HNF1A in regulating GLUT2 and several genes involved in insulin secretion that can account for the insulin secretory defect clinically observed in MODY3 patients.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose Transporter Type 2/genetics , Glucose/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Mutation , Cells, Cultured , Chromatin Immunoprecipitation Sequencing/methods , Diabetes Mellitus, Type 2/metabolism , Female , Glucose Transporter Type 2/metabolism , Hepatocyte Nuclear Factor 1-alpha/chemistry , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/cytology , Male , Molecular Dynamics Simulation , Pedigree , Protein Domains
19.
J Sci Food Agric ; 101(14): 5984-5991, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33856052

ABSTRACT

BACKGROUND: Nutritional modulations may be considered a strategy to protect mental health. Neuronal homeostasis is highly dependent on the availability of glucose, which represents the primary energy source for the brain. In this study, we evaluated the effects of walnut intake and fructose-rich diet on the expression of glucose transporters (GLUTs) in two rat brain regions: hypothalamus and hippocampus. RESULTS: Our results show that walnut supplementation of fructose-fed animals restored the hypothalamic content of GLUT1 and GLUT3 protein. Furthermore, walnut intake did not affect increased hypothalamic GLUT2 content upon fructose consumption. These effects were accompanied by distinctive alterations of hippocampal GLUTs levels. Specifically, walnut intake increased GLUT1 content, whereas GLUT2 protein was decreased within the rat hippocampus after both individual and combined treatments. CONCLUSION: Overall, our study suggests that walnut supplementation exerted modulatory effects on the glucose transporters within specific brain regions in the presence of developed metabolic disorder. © 2021 Society of Chemical Industry.


Subject(s)
Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 3/metabolism , Hippocampus/metabolism , Hypothalamus/metabolism , Juglans/metabolism , Animals , Fructose/metabolism , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 2/genetics , Glucose Transporter Type 3/genetics , Male , Nuts/metabolism , Rats , Rats, Wistar
20.
Medicine (Baltimore) ; 100(4): e24435, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33530245

ABSTRACT

ABSTRACT: Obstructive sleep apnea (OSA) is a common chronic disease and increases the risk of cardiovascular disease, metabolic and neuropsychiatric disorders, resulting in a considerable socioeconomic burden. This study aimed to identify potential key genes influence the mechanisms and consequences of OSA.Gene expression profiles related to OSA were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in subcutaneous adipose tissues from OSA compared with normal tissues were screened using R software, followed by gene ontology (GO) and pathway enrichment analyses. Subsequently, a protein-protein interaction (PPI) network for these DEGs was constructed by STRING, and key hub genes were extracted from the network with plugins in Cytoscape. The hub genes were further validated in another GEO dataset and assessed by receiver operating characteristic (ROC) analysis and Pearson correlation analysis.There were 373 DEGs in OSA samples in relative to normal controls, which were mainly associated with olfactory receptor activity and olfactory transduction. Upon analyses of the PPI network, GDNF, SLC2A2, PRL, and SST were identified as key hub genes. Decreased expression of the hub genes was association with OSA occurrence, and exhibited good performance in distinguishing OSA from normal samples based on ROC analysis. Besides, the Pearson method revealed a strong correlation between hub genes, which indicates that they may act in synergy, contributing to OSA and related disorders.This bioinformatics research identified 4 hub genes, including GDNF, SLC2A2, PRL, and SST which may be new potential biomarkers for OSA and related disorders.


Subject(s)
Mass Screening/methods , Microarray Analysis/methods , Sleep Apnea, Obstructive/genetics , Biomarkers/analysis , Computational Biology , Databases, Genetic , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glucose Transporter Type 2/genetics , Humans , Prolactin/genetics , Protein Interaction Maps , ROC Curve , Somatostatin/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...