Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.160
Filter
1.
J Agric Food Chem ; 72(37): 20458-20469, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230615

ABSTRACT

Our previous study proved that epicatechin (EC) and ß-glucan (BG) from whole-grain highland barley synergistically modulate glucose metabolism in insulin-resistant HepG2 cells. However, the main target and the mechanism underlying the modulation of glucose metabolism in vivo remain largely unknown. In this study, cell transfection assay and microscale thermophoresis analysis revealed that EC and BG could directly bind to the insulin receptor (IR) and mammalian receptor for rapamycin (mTOR), respectively. Molecular dynamic analysis indicated that the key amino acids of binding sites were Asp, Met, Val, Lys, Ser, and Tys. EC supplementation upregulated the IRS-1/PI3K/Akt pathway, while BG upregulated the mTOR/Akt pathway. Notably, supplementation with EC + BG significantly increased Akt and glucose transporter type 4 (GLUT4) protein expressions, while decreasing glycogen synthase kinase 3ß (GSK-3ß) expression in liver cells as compared to the individual effects of EC and BG, indicating their synergistic effect on improving hepatic glucose uptake and glycogen synthesis. Consistently, supplementation with EC + BG significantly decreased blood glucose levels and improved oral glucose tolerance compared to EC and BG. Therefore, combined supplementation with EC and BG may bind to corresponding receptors, targeting synergistic activation of Akt expression, leading to the improvement of hepatic glucose metabolism and thereby ameliorating hyperglycemia in vivo.


Subject(s)
Catechin , Glucose , Hordeum , Hyperglycemia , Liver , Mice, Inbred C57BL , beta-Glucans , Hordeum/chemistry , beta-Glucans/pharmacology , beta-Glucans/chemistry , Animals , Mice , Catechin/pharmacology , Catechin/administration & dosage , Liver/metabolism , Liver/drug effects , Male , Humans , Glucose/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Drug Synergism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Hep G2 Cells
2.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125811

ABSTRACT

Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier family 2 member 4) gene and its GLUT4 (solute carrier family 2, facilitated glucose transporter member 4) protein in muscle. However, the mechanisms underlying AGE's effect on adipocytes have not been demonstrated yet. This study investigated the effects of AGEs upon Slc2a4/GLUT4 expression in 3T3-L1 adipocytes, as well as the potential role of NFKB (nuclear factor NF-kappa-B) activity in the effects observed. Adipocytes were cultured in the presence of control albumin (CA) or advanced glycated albumin (GA) at concentrations of 0.4, 3.6, and 5.4 mg/mL for 24 h or 72 h. Slc2a4, Rela, and Nfkb1mRNAs were measured by RT-qPCR, GLUT4, IKKA/B, and p50/p65 NFKB subunits using Western blotting, and p50/p65 binding into the Slc2a4 promoter was analyzed by chromatin immunoprecipitation (ChIP) assay. GA at 0.4 mg/mL increased Slc2a4/GLUT4 expression after 24 h and 72 h (from 50% to 100%), but at 5.4 mg/mL, Slc2a4/GLUT4 expression decreased at 72 h (by 50%). Rela and Nfkb1 expression increased after 24 h at all concentrations, but this effect was not observed at 72 h. Furthermore, 5.4 mg/mL of GA increased the p50/p65 nuclear content and binding into Slc2a4 at 72 h. In summary, this study reveals AGE-induced and NFKB-mediated repression of Slc2a4/GLUT4 expression. This can compromise the adipocyte glucose utilization, contributing not only to the worsening of glycemic control in DM subjects but also the impairment of glycemic homeostasis in non-DM subjects under the high intake of AGE-rich foods.


Subject(s)
3T3-L1 Cells , Adipocytes , Glucose Transporter Type 4 , Glycation End Products, Advanced , Transcription Factor RelA , Animals , Mice , Adipocytes/metabolism , Adipocytes/drug effects , Gene Expression Regulation/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology , NF-kappa B/metabolism , NF-kappa B p50 Subunit/metabolism , NF-kappa B p50 Subunit/genetics , Promoter Regions, Genetic , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics
3.
Mol Metab ; 88: 102014, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39182843

ABSTRACT

OBJECTIVE: Picalm (phosphatidylinositol-binding clathrin assembly protein), a ubiquitously expressed clathrin-adapter protein, is a well-known susceptibility gene for Alzheimer's disease, but its role in white adipose tissue (WAT) function has not yet been studied. Transcriptome analysis revealed differential expression of Picalm in WAT of diabetes-prone and diabetes-resistant mice, hence we aimed to investigate the potential link between Picalm expression and glucose homeostasis, obesity-related metabolic phenotypes, and its specific role in insulin-regulated GLUT4 trafficking in adipocytes. METHODS: Picalm expression and epigenetic regulation by microRNAs (miRNAs) and DNA methylation were analyzed in WAT of diabetes-resistant (DR) and diabetes-prone (DP) female New Zealand Obese (NZO) mice and in male NZO after time-restricted feeding (TRF) and alternate-day fasting (ADF). PICALM expression in human WAT was evaluated in a cross-sectional cohort and assessed before and after weight loss induced by bariatric surgery. siRNA-mediated knockdown of Picalm in 3T3-L1-cells was performed to elucidate functional outcomes on GLUT4-translocation as well as insulin signaling and adipogenesis. RESULTS: Picalm expression in WAT was significantly lower in DR compared to DP female mice, as well as in insulin-sensitive vs. resistant NZO males, and was also reduced in NZO males following TRF and ADF. Four miRNAs (let-7c, miR-30c, miR-335, miR-344) were identified as potential mediators of diabetes susceptibility-related differences in Picalm expression, while 11 miRNAs (including miR-23a, miR-29b, and miR-101a) were implicated in TRF and ADF effects. Human PICALM expression in adipose tissue was lower in individuals without obesity vs. with obesity and associated with weight-loss outcomes post-bariatric surgery. siRNA-mediated knockdown of Picalm in mature 3T3-L1-adipocytes resulted in amplified insulin-stimulated translocation of the endogenous glucose transporter GLUT4 to the plasma membrane and increased phosphorylation of Akt and Tbc1d4. Moreover, depleting Picalm before and during 3T3-L1 differentiation significantly suppressed adipogenesis, suggesting that Picalm may have distinct roles in the biology of pre- and mature adipocytes. CONCLUSIONS: Picalm is a novel regulator of GLUT4-translocation in WAT, with its expression modulated by both genetic predisposition to diabetes and dietary interventions. These findings suggest a potential role for Picalm in improving glucose homeostasis and highlight its relevance as a therapeutic target for metabolic disorders.


Subject(s)
3T3-L1 Cells , Glucose Transporter Type 4 , Obesity , Animals , Mice , Female , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Male , Humans , Obesity/metabolism , Obesity/genetics , Adipose Tissue, White/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Mice, Obese , Adipogenesis , Epigenesis, Genetic , Insulin Resistance , DNA Methylation , Protein Transport
4.
Nat Commun ; 15(1): 6858, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127697

ABSTRACT

Our recent studies have identified p21-activated kinase 4 (PAK4) as a key regulator of lipid catabolism in the liver and adipose tissue, but its role in glucose homeostasis in skeletal muscle remains to be explored. In this study, we find that PAK4 levels are highly upregulated in the skeletal muscles of diabetic humans and mice. Skeletal muscle-specific Pak4 ablation or administering the PAK4 inhibitor in diet-induced obese mice retains insulin sensitivity, accompanied by AMPK activation and GLUT4 upregulation. We demonstrate that PAK4 promotes insulin resistance by phosphorylating AMPKα2 at Ser491, thereby inhibiting AMPK activity. We additionally show that skeletal muscle-specific expression of a phospho-mimetic mutant AMPKα2S491D impairs glucose tolerance, while the phospho-inactive mutant AMPKα2S491A improves it. In summary, our findings suggest that targeting skeletal muscle PAK4 may offer a therapeutic avenue for type 2 diabetes.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Type 2 , Glucose , Insulin Resistance , Muscle, Skeletal , p21-Activated Kinases , Animals , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Glucose/metabolism , Phosphorylation , Muscle, Skeletal/metabolism , AMP-Activated Protein Kinases/metabolism , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Male , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism
5.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125700

ABSTRACT

Chronic lipid overconsumption, associated with the Western diet, causes excessive cardiac lipid accumulation, insulin resistance, and contractile dysfunction, altogether termed lipotoxic cardiomyopathy (LCM). Existing treatments for LCM are limited. Traditional Chinese Medicine (TCM) has been shown as beneficial in diabetes and its complications. The following compounds-Resveratrol, Quercetin, Berberine, Baicalein, and Isorhamnetin-derived from TCM and often used to treat type 2 diabetes. However, virtually nothing is known about their effects in the lipid-overexposed heart. Lipid-induced insulin resistance was generated in HL-1 cardiomyocytes and adult rat cardiomyocytes by 24 h exposure to high palmitate. Upon simultaneous treatment with each of the TCM compounds, we measured myocellular lipid accumulation, insulin-stimulated fatty acid and glucose uptake, phosphorylation levels of AKT and ERK1/2, plasma membrane appearance of GLUT4 and CD36, and expression of oxidative stress-/inflammation-related genes and contractility. In lipid-overloaded cardiomyocytes, all the selected TCM compounds prevented lipid accumulation. These compounds also preserved insulin-stimulated CD36 and GLUT4 translocation and insulin-stimulated glucose uptake in an Akt-independent manner. Moreover, all the TCM compounds prevented and restored lipid-induced contractile dysfunction. Finally, some (not all) of the TCM compounds inhibited oxidative stress-related SIRT3 expression, and others reduced inflammatory TNFα expression. Their ability to restore CD36 trafficking makes all these TCM compounds attractive natural supplements for LCM treatment.


Subject(s)
Medicine, Chinese Traditional , Myocytes, Cardiac , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Rats , Medicine, Chinese Traditional/methods , Insulin Resistance , Myocardial Contraction/drug effects , Glucose/metabolism , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , Oxidative Stress/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Mice , Cell Line , CD36 Antigens/metabolism , CD36 Antigens/genetics , Proto-Oncogene Proteins c-akt/metabolism , Male
6.
Pestic Biochem Physiol ; 203: 106014, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084805

ABSTRACT

Energy metabolism is essential for insect development, reproduction and detoxification. Insects often reallocate energy and resources to manage external stress, balancing the demands of detoxification and reproduction. Glucose transport 4 (Glut4), a glucose transporter, is involved in glucose and lipid metabolism. However, the specific molecular mechanism of Glut4 in insect reproduction, and its role in the response to insecticide-induced oxidative stress remain unclear. In this study, LmGlut4 was identified and analyzed in Locusta migratoria. Silencing of LmGlut4 significantly reduced vitellogenin (Vg) biosynthesis in the fat body and Vg absorption by oocytes, ultimately hindering ovarian development and oocyte maturation. Knockdown of LmGlut4 also inhibited the biosynthesis of key insect hormones, such as juvenile hormone (JH), 20-hydroxyecdysone (20E) and insulin. Furthermore, LmGlut4 knockdown led to reduced triglyceride (TG) and glycogen content in the fat body and ovary, as well as decreased capacity for trehalose biosynthesis in adipocytes. Additionally, dsLmGlut4-treated locusts showed heightened sensitivity to deltamethrin, leading to increased triglyceride depletion during detoxification. This study sheds light on the biological function of LmGlut4 in the ovary and provides potential target genes for exploring biological pest management strategies.


Subject(s)
Glucose Transporter Type 4 , Insecticides , Locusta migratoria , Nitriles , Ovary , Pyrethrins , RNA Interference , Animals , Pyrethrins/pharmacology , Female , Nitriles/pharmacology , Ovary/metabolism , Ovary/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Locusta migratoria/genetics , Locusta migratoria/drug effects , Locusta migratoria/metabolism , Insecticides/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Vitellogenins/metabolism , Vitellogenins/genetics , Energy Metabolism/drug effects , Fat Body/metabolism , Fat Body/drug effects , Juvenile Hormones/metabolism , Juvenile Hormones/pharmacology , Oocytes/metabolism , Oocytes/drug effects , Triglycerides/metabolism
7.
J Cell Sci ; 137(20)2024 10 15.
Article in English | MEDLINE | ID: mdl-38958032

ABSTRACT

Cellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D. Using GFP-tagged GLUT4 as proof of concept, we present here a novel optical mesoscopy approach that allows precise measurement of the spatial location of GLUT4 within specific anatomical structures across the myocardium in ultrathick sections (5 mm×5 mm×3 mm) of intact mouse heart. We reveal distinct GLUT4 distribution patterns across cardiac walls and highlight specific changes in GLUT4 expression levels in response to high fat diet-feeding, and we identify sex-dependent differences in expression patterns. This method is applicable to any target that can be labelled for light microscopy, and to other complex tissues when organ structure needs to be considered simultaneously with cellular detail.


Subject(s)
Glucose Transporter Type 4 , Imaging, Three-Dimensional , Myocardium , Animals , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Imaging, Three-Dimensional/methods , Myocardium/metabolism , Mice , Male , Female , Mice, Inbred C57BL , Diet, High-Fat
8.
Sci Rep ; 14(1): 15996, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987609

ABSTRACT

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Glucose Transporter Type 4 , Hypothalamus , Insulin-Like Growth Factor I , Insulin , Physical Conditioning, Animal , Rats, Wistar , Signal Transduction , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Insulin-Like Growth Factor I/metabolism , Male , Insulin/metabolism , Rats , Hypothalamus/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Administration, Intranasal , Peptide Fragments , Spatial Memory/drug effects , Spatial Learning/drug effects
9.
Free Radic Biol Med ; 223: 199-211, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059512

ABSTRACT

Mitoxantrone (MTX) is a therapeutic agent used in the treatment of solid tumors and multiple sclerosis, recognized for its cardiotoxicity, with underlying molecular mechanisms not fully disclosed. The cardiotoxicity is influenced by risk factors, including age. Our study intended to assess the molecular effect of MTX on the cardiac muscle of old male CD-1 mice. Mice aged 19 months received a total cumulative dose of 4.5 mg/kg of MTX (MTX group) or saline solution (CTRL group). Two months post treatment, blood was collected, animals sacrificed, and the heart removed. MTX caused structural cardiac changes, which were accompanied by extracellular matrix remodeling, as indicated by the increased ratio between matrix metallopeptidase 2 and metalloproteinase inhibitor 2. At the metabolic level, decreased glycerol levels were found, together with a trend towards increased content of the electron transfer flavoprotein dehydrogenase. In contrast, lower glycolysis, given by the decreased content of glucose transporter GLUT4 and phosphofructokinase, seemed to occur. The findings suggest higher reliance on fatty acids oxidation, despite no major remodeling occurring at the mitochondrial level. Furthermore, the levels of glutamine and other amino acids (although to a lesser extent) were decreased, which aligns with decreased content of the E3 ubiquitin-protein ligase Atrogin-1, suggesting a decrease in proteolysis. As far as we know, this was the first study made in old mice with a clinically relevant dose of MTX, evaluating its long-term cardiac effects. Even two months after MTX exposure, changes in metabolic fingerprint occurred, highlighting enduring cardiac effects that may require clinical vigilance.


Subject(s)
Cardiotoxicity , Mitoxantrone , Myocardium , Animals , Mice , Mitoxantrone/pharmacology , Male , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Myocardium/metabolism , Myocardium/pathology , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Aging/metabolism , Aging/drug effects , Glycolysis/drug effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics
10.
FASEB J ; 38(13): e23800, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38979931

ABSTRACT

Insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM), has emerged as a pathological feature in Alzheimer's disease (AD). Given the shared role of insulin resistance in T2DM and AD, repurposing peripheral insulin sensitizers is a promising strategy to preserve neuronal insulin sensitivity and prevent AD. 1-Deoxynojirimycin (DNJ), a bioactive iminosugar, exhibited insulin-sensitizing effects in metabolic tissues and was detected in brain tissue post-oral intake. However, its impact on brain and neuronal insulin signaling has not been described. Here, we investigated the effect of DNJ treatment on insulin signaling and AD markers in insulin-resistant human SK-N-SH neuroblastoma, a cellular model of neuronal insulin resistance. Our findings show that DNJ increased the expression of insulin signaling genes and the phosphorylation status of key molecules implicated in insulin resistance (Y1146-pIRß, S473-pAKT, S9-GSK3B) while also elevating the expression of glucose transporters Glut3 and Glut4, resulting in higher glucose uptake upon insulin stimuli. DNJ appeared to mitigate the insulin resistance-driven increase in phosphorylated tau and Aß1-42 levels by promoting insulin-induced phosphorylation of GSK3B (a major tau kinase) and enhancing mRNA expression of the insulin-degrading enzyme (IDE) pivotal for insulin and Aß clearance. Overall, our study unveils probable mechanisms underlying the potential benefits of DNJ for AD, wherein DNJ attenuates tau and amyloid pathologies by reversing neuronal insulin resistance. This provides a scientific basis for expanding the use of DNJ-containing products for neuroprotective purposes and prompts further research into compounds with similar mechanisms of action.


Subject(s)
1-Deoxynojirimycin , Alzheimer Disease , Insulin Resistance , Neurons , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Humans , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Neurons/metabolism , Neurons/drug effects , Cell Line, Tumor , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 3/genetics , Insulin/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation/drug effects , Biomarkers/metabolism
11.
J Agric Food Chem ; 72(29): 16298-16311, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982710

ABSTRACT

From the fruits of Cordia dichotoma, 11 new phenolic compounds, dichotomins A-K, were isolated, together with 19 known compounds. Through the analysis of detailed NMR data and HRESIMS data, the planar structures of all compounds were confirmed. Using NMR calculations, the absolute configuration of dichotomins A-K was elucidated by comparing their observed and computed electronic circular dichroism (ECD) spectra. Dichotomin H (8) and dichotomin I (9) were determined as two pairs of enantiomers. The enantiomers of compounds 8 and 9 were separated using chiral-phase high-performance liquid chromatography (HPLC), and the stereostructure of each enantiomer was determined by similarly calculating the ECD. Compounds 3, 5, 7, 17, 18, 23-25, and 27-30 increased glucose uptake by 1.04- to 2.85-folds at concentrations of 30 µg/mL. Further studies revealed that compounds 3 and 5 had a moderate effect on glucose transporter 4 (GLUT4) translocation activity in L6 cells. At 30 µg/mL, compound 3 significantly enhanced AMPK phosphorylation and GLUT4 expression. As a whole, compound 3 has the potential to be a drug candidate for the treatment of type 2 diabetes mellitus (T2DM).


Subject(s)
Fruit , Glucose Transporter Type 4 , Glucose , Phenols , Plant Extracts , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Fruit/chemistry , Glucose/metabolism , Phenols/chemistry , Phenols/pharmacology , Phenols/metabolism , Animals , Rats , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Biological Transport/drug effects , Molecular Structure , Cell Line , Protein Transport , Humans , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/chemistry
12.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38690930

ABSTRACT

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Subject(s)
Cell Differentiation , Insulin-Like Growth Factor I , Muscle Contraction , Muscle Fibers, Skeletal , Phenotype , Humans , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Insulin-Like Growth Factor I/metabolism , Cells, Cultured , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Glucose/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167258, 2024 08.
Article in English | MEDLINE | ID: mdl-38788910

ABSTRACT

The increasing prevalence of obesity, type 2 diabetes mellitus (T2DM), and gestational diabetes (GDM) among pregnant women has risen dramatically worldwide. The antihyperglycemic drug metformin is the most common drug for T2DM treatment in non-pregnant individuals; nevertheless, it is increasingly being used for diabetes-complicated pregnancies. Studies on the long-term metabolic effects of this drug in offspring remain scarce. This work aimed to determine the effect of metformin exposure during pregnancy and lactation on the offspring of a model of diet-induced maternal hyperglycemia. Cohorts of pregnant mice were fed a 46% fat diet (HFD) or a control standard diet (SD). A group of dams were exposed to metformin during pregnancy and lactation. After weaning, the offspring were fed SD for 8 weeks and then challenged with a 46% HFD after puberty for 12 weeks. Irrespective of the maternal diet, offspring of metformin-exposed mothers had a lower body weight and reduced inguinal white adipose tissue (iWAT) mass after HFD challenge. This was associated with increased expression of Pparg, Fabp4, Glut4, Srebp1, and Fasn in the iWAT during adulthood in the metabolically impaired dams exposed to metformin, suggesting increased adipogenesis and de novo lipogenesis. Increased expression of Fasn associated with decreased methylation levels at its promoter and proximal coding region in the iWAT was found. These results suggest that metformin modulates gene expression levels by epigenetic mechanisms in maternal metabolic-impaired conditions.


Subject(s)
Body Weight , Diet, High-Fat , Lactation , Metformin , Prenatal Exposure Delayed Effects , Sterol Regulatory Element Binding Protein 1 , Animals , Metformin/pharmacology , Female , Pregnancy , Lactation/drug effects , Mice , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/chemically induced , Diet, High-Fat/adverse effects , Body Weight/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Obesity/metabolism , Obesity/pathology , Obesity/chemically induced , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Male , Mice, Inbred C57BL , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/chemically induced
14.
Biomed Pharmacother ; 176: 116774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820976

ABSTRACT

Type 2 diabetes mellitus (T2DM) remains a global health concern despite current treatment options. This study investigated the potential of Tapinanthus cordifolius (TC) leaf extract as a therapeutic agent for T2DM. T2DM was induced in rats using a high-fat diet and streptozotocin. Diabetic rats received daily oral administration of TC extract (200, 400, or 800 mg/kg) and metformin (400 mg/kg) or remained untreated for 21 days. Blood glucose levels, body weight, diabetic symptoms, oxidative stress markers, and gene expression of metabolic regulators were assessed. TC treatment significantly reduced blood glucose levels and restored body weight in diabetic rats, comparable to the effects of metformin. TC also increased antioxidant enzyme activities (SOD, GST, and CAT) and decreased lipid peroxidation in various tissues. Furthermore, TC upregulated gene expression of glucose transporter type 4 (GLUT-4) and adiponectin receptor 2 (ADIPOR-2) while downregulating pro-inflammatory cytokines TNF-α and IL-6. This study provides the first in vivo evidence supporting TC leaf extract's anti-diabetic and antioxidant efficacy. The findings suggest that TC holds promise as a natural therapeutic agent for managing T2DM through multiple mechanisms, including improved glycemic control, enhanced insulin sensitivity, and protection against oxidative stress and tissue damage. In conclusion, this study validates the ethnobotanical use of TC as an anti-diabetic agent. Further research is warranted to isolate the bioactive compounds responsible for these effects.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Hypoglycemic Agents , Oxidative Stress , Plant Extracts , Plant Leaves , Streptozocin , Animals , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Diabetes Mellitus, Experimental/drug therapy , Plant Leaves/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Male , Rats , Oxidative Stress/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Rats, Wistar , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Body Weight/drug effects , Verbenaceae/chemistry
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732125

ABSTRACT

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Anti-Obesity Agents , Hypoglycemic Agents , PPAR gamma , Plant Extracts , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , alpha-Glucosidases/metabolism , AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Crassulaceae/chemistry , Lipid Metabolism/drug effects , Cell Differentiation/drug effects
16.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38576169

ABSTRACT

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Subject(s)
Garlic , Glycogen , Humans , Glycogen/metabolism , Antioxidants/metabolism , Garlic/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Muscle, Skeletal , Dietary Supplements , RNA, Messenger/metabolism , Mitochondria/metabolism , Blood Glucose/metabolism
17.
J Biol Chem ; 300(6): 107328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679332

ABSTRACT

Management of chronic obesity-associated metabolic disorders is a key challenge for biomedical researchers. During chronic obesity, visceral adipose tissue (VAT) undergoes substantial transformation characterized by a unique lipid-rich hypoxic AT microenvironment which plays a crucial role in VAT dysfunction, leading to insulin resistance (IR) and type 2 diabetes. Here, we demonstrate that obese AT microenvironment triggers the release of miR-210-3p microRNA-loaded extracellular vesicles from adipose tissue macrophages, which disseminate miR-210-3p to neighboring adipocytes, skeletal muscle cells, and hepatocytes through paracrine and endocrine actions, thereby influencing insulin sensitivity. Moreover, EVs collected from Dicer-silenced miR-210-3p-overexpressed bone marrow-derived macrophages induce glucose intolerance and IR in lean mice. Mechanistically, miR-210-3p interacts with the 3'-UTR of GLUT4 mRNA and silences its expression, compromising cellular glucose uptake and insulin sensitivity. Therapeutic inhibition of miR-210-3p in VAT notably rescues high-fat diet-fed mice from obesity-induced systemic glucose intolerance. Thus, targeting adipose tissue macrophage-specific miR-210-3p during obesity could be a promising strategy for managing IR and type 2 diabetes.


Subject(s)
Glucose Transporter Type 4 , Insulin Resistance , Macrophages , MicroRNAs , Obesity , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Macrophages/metabolism , Mice , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Male , Mice, Inbred C57BL , Adipose Tissue/metabolism , Adipose Tissue/pathology , Humans , Diet, High-Fat/adverse effects , Glucose Intolerance/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology
18.
Mol Cell Endocrinol ; 590: 112254, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677465

ABSTRACT

During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 µg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 µg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.


Subject(s)
Glucose Transporter Type 4 , Insulin Resistance , Myocardium , Thyroxine , Animals , Male , Rats , Fatty Acids/metabolism , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Myocardium/metabolism , Protein Transport/drug effects , Rats, Inbred OLETF , Thyroxine/administration & dosage
19.
Diabetes Obes Metab ; 26(6): 2379-2389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38528822

ABSTRACT

BACKGROUND: Glucose overload drives diabetic cardiomyopathy by affecting the tricarboxylic acid pathway. However, it is still unknown how cells could overcome massive chronic glucose influx on cellular and structural level. METHODS/MATERIALS: Expression profiles of hyperglycemic, glucose transporter-4 (GLUT4) overexpressing H9C2 (KE2) cardiomyoblasts loaded with 30 mM glucose (KE230L) and wild type (WT) cardiomyoblasts loaded with 30 mM glucose (WT30L) were compared using proteomics, real-time polymerase quantitative chain reaction analysis, or Western blotting, and immunocytochemistry. RESULTS: The findings suggest that hyperglycemic insulin-sensitive cells at the onset of diabetic cardiomyopathy present complex changes in levels of structural cell-related proteins like tissue inhibitor of metalloproteases-1 (1.3 fold), intercellular adhesion molecule 1 (1.8 fold), type-IV-collagen (3.2 fold), chaperones (Glucose-Regulated Protein 78: 1.8 fold), autophagy (Autophagosome Proteins LC3A, LC3B: 1.3 fold), and in unfolded protein response (UPR; activating transcription factor 6α expression: 2.3 fold and processing: 2.4 fold). Increased f-actin levels were detectable with glucose overload by immnocytochemistry. Effects on energy balance (1.6 fold), sirtuin expression profile (Sirtuin 1: 0.7 fold, sirtuin 3: 1.9 fold, and sirtuin 6: 4.2 fold), and antioxidant enzymes (Catalase: 0.8 fold and Superoxide dismutase 2: 1.5 fold) were detected. CONCLUSION: In conclusion, these findings implicate induction of chronic cell distress by sustained glucose accumulation with a non-compensatory repair reaction not preventing final cell death. This might explain the chronic long lasting pathogenesis observed in developing heart failure in diabetes mellitus.


Subject(s)
Diabetic Cardiomyopathies , Glucose Transporter Type 4 , Glucose , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Glucose/metabolism , Diabetic Cardiomyopathies/metabolism , Animals , Rats , Cell Line , Myocytes, Cardiac/metabolism , Oxidative Stress , Hyperglycemia/metabolism , Autophagy
20.
Mol Nutr Food Res ; 68(5): e2300538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38267744

ABSTRACT

SCOPE: Stimulation of glucose uptake in the skeletal muscle is crucial for the prevention of postprandial hyperglycemia. Insulin and certain polyphenols enhance glucose uptake through the translocation of glucose transporter 4 (GLUT4) in the skeletal muscle. The previous study reports that prenylated chalcones, 4-hydroxyderricin (4-HD), and xanthoangelol (XAG) promote glucose uptake and GLUT4 translocation in L6 myotubes, but their underlying molecular mechanism remains unclear. This study investigates the mechanism in L6 myotubes and confirms antihyperglycemia by 4-HD and XAG. METHODS AND RESULTS: In L6 myotubes, 4-HD and XAG promote glucose uptake and GLUT4 translocation through the activation of adenosine monophosphate-activated protein kinase (AMPK) and liver kinase B1 (LKB1) signaling pathway without activating phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and Janus kinases (JAKs)/signal transducers and activators of transcriptions (STATs) pathways. Moreover, Compound C, an AMPK-specific inhibitor, as well as siRNA targeting AMPK and LKB1 completely canceled 4-HD and XAG-increased glucose uptake. Consistently, oral administration of 4-HD and XAG to male ICR mice suppresses acute hyperglycemia in an oral glucose tolerance test. CONCLUSION: In conclusion, LKB1/AMPK pathway and subsequent GLUT4 translocation in skeletal muscle cells are involved in Ashitaba chalcone-suppressed acute hyperglycemia.


Subject(s)
Chalcone , Chalcone/analogs & derivatives , Chalcones , Hyperglycemia , Mice , Animals , Male , Chalcone/pharmacology , Chalcone/metabolism , Chalcones/pharmacology , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred ICR , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Muscle Fibers, Skeletal/metabolism , Hyperglycemia/prevention & control , Hyperglycemia/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL