Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Respir Res ; 21(1): 208, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32771007

ABSTRACT

BACKGROUND: The carotid body (CB) plays a critical role in cyclic intermittent hypoxia (CIH)-induced chemosensitivity; however, the underlying mechanism remains uncertain. We have demonstrated the presence of multiple inotropic glutamate receptors (iGluRs) in CB, and that CIH exposure alters the level of some iGluRs in CB. This result implicates glutamatergic signaling in the CB response to hypoxia. The glutamatergic neurotransmission is not only dependent on glutamate and glutamate receptors, but is also dependent on glutamate transporters, including vesicular glutamate transporters (VGluTs) and excitatory amino acid transporters (EAATs). Here, we have further assessed the expression and distribution of VGluTs and EAATs in human and rat CB and the effect of CIH exposure on glutamate transporters expression. METHODS: The mRNA of VGluTs and EAATs in the human CB were detected by RT-PCR. The protein expression of VGluTs and EAATs in the human and rat CB were detected by Western blot. The distribution of VGluT3, EAAT2 and EAAT3 were observed by immunohistochemistry staining and immunofluorescence staining. Male Sprague-Dawley (SD) rats were exposed to CIH (FIO2 10-21%, 3 min/3 min for 8 h per day) for 2 weeks. The unpaired Student's t-test was performed. RESULTS: Here, we report on the presence of mRNAs for VGluT1-3 and EAAT1-3 in human CB, which is consistent with our previous results in rat CB. The proteins of VGluT1 and 3, EAAT2 and 3, but not VGluT2 and EAAT1, were detected with diverse levels in human and rat CB. Immunostaining showed that VGluT3, the major type of VGluTs in CB, was co-localized with tyrosine hydroxylase (TH) in type I cells. EAAT2 and EAAT3 were distributed not only in type I cells, but also in glial fibrillary acidic protein (GFAP) positive type II cells. Moreover, we found that exposure of SD rats to CIH enhanced the protein level of EAAT3 as well as TH, but attenuated the levels of VGluT3 and EAAT2 in CB. CONCLUSIONS: Our study suggests that glutamate transporters are expressed in the CB, and that glutamate transporters may contribute to glutamatergic signaling-dependent carotid chemoreflex to CIH.


Subject(s)
Carotid Body/metabolism , Chemoreceptor Cells/metabolism , Glutamate Plasma Membrane Transport Proteins/biosynthesis , Vesicular Glutamate Transport Proteins/biosynthesis , Amino Acid Transport System X-AG/analysis , Amino Acid Transport System X-AG/biosynthesis , Amino Acid Transport System X-AG/genetics , Animals , Carotid Body/chemistry , Chemoreceptor Cells/chemistry , Gene Expression , Glutamate Plasma Membrane Transport Proteins/analysis , Glutamate Plasma Membrane Transport Proteins/genetics , Humans , Male , Rats , Rats, Sprague-Dawley , Vesicular Glutamate Transport Proteins/analysis , Vesicular Glutamate Transport Proteins/genetics
2.
Sci Rep ; 8(1): 1712, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374250

ABSTRACT

Although the cognitive impairment in Alzheimer's disease (AD) is believed to be caused by amyloid-ß (Aß) plaques and neurofibrillary tangles (NFTs), several postmortem studies have reported cognitive normal subjects with AD brain pathology. As the mechanism underlying these discrepancies has not been clarified, we focused the neuroprotective role of astrocytes. After examining 47 donated brains, we classified brains into 3 groups, no AD pathology with no dementia (N-N), AD pathology with no dementia (AD-N), and AD pathology with dementia (AD-D), which represented 41%, 21%, and 38% of brains, respectively. No differences were found in the accumulation of Aß plaques or NFTs in the entorhinal cortex (EC) between AD-N and AD-D. Number of neurons and synaptic density were increased in AD-N compared to those in AD-D. The astrocytes in AD-N possessed longer or thicker processes, while those in AD-D possessed shorter or thinner processes in layer I/II of the EC. Astrocytes in all layers of the EC in AD-N showed enhanced GLT-1 expression in comparison to those in AD-D. Therefore these activated forms of astrocytes with increased GLT-1 expression may exert beneficial roles in preserving cognitive function, even in the presence of Aß and NFTs.


Subject(s)
Alzheimer Disease/pathology , Astrocytes/enzymology , Astrocytes/pathology , Brain/pathology , Cognition Disorders/pathology , Glutamate Plasma Membrane Transport Proteins/analysis , Aged , Aged, 80 and over , Amyloid beta-Peptides/analysis , Excitatory Amino Acid Transporter 2 , Female , Humans , Male , Neurofibrillary Tangles/pathology
3.
Physiol Rev ; 93(4): 1621-57, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24137018

ABSTRACT

L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.


Subject(s)
Glutamate Plasma Membrane Transport Proteins/physiology , Glutamates/metabolism , Vesicular Glutamate Transport Proteins/physiology , Amino Acid Sequence , Animals , Biological Transport/physiology , Central Nervous System/physiology , Glutamate Plasma Membrane Transport Proteins/analysis , Glutamate Plasma Membrane Transport Proteins/chemistry , Humans , Molecular Sequence Data , Signal Transduction/physiology , Vesicular Glutamate Transport Proteins/analysis , Vesicular Glutamate Transport Proteins/chemistry
4.
Am J Hum Genet ; 87(5): 593-603, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21035104

ABSTRACT

Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.


Subject(s)
Enkephalins/genetics , Mutation, Missense , Protein Precursors/genetics , Spinocerebellar Degenerations/genetics , Cerebellum/chemistry , Cerebellum/cytology , Dynorphins/analysis , Enkephalins/analysis , Female , Glutamate Plasma Membrane Transport Proteins/analysis , Humans , Male , Pedigree , Protein Precursors/analysis , Purkinje Cells/chemistry
5.
J Neuropathol Exp Neurol ; 68(2): 199-209, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19151621

ABSTRACT

To determine the relationship between the human immunodeficiency virus type 1 (HIV-1) encephalitis (HIVE) and diffuse poliodystrophy in the acquired immunodeficiency syndrome dementia complex, we examined the neuropathologic features in brain autopsy tissue specimens of HIV-1-infected patients with (n = 11) or without HIVE (n = 9). The brains were free of opportunistic diseases and major cerebrovascular lesions. In both groups, there was diffuse microglial activation, astrocytic gliosis, and decreased excitatory amino acid transporter 2 (EAAT-2) immunoreactivity. These changes did not correlate either with the severity of encephalitis or local HIV-1 infection as detected by p24 immunostaining. Some activated microglia expressed EAAT-2; interleukin-1beta and tumor necrosis factor were detected only in microglial nodules of HIVE cases but not in areas with diffusely activated microglia. There was a significant negative correlation between the areas of EAAT-2 expression and numbers of activated microglia (p < 0.01) in cases with decreased EAAT-2. These data indicate that diffuse cortical changes may occur independently of HIVE in acquired immunodeficiency syndrome patients. The expression of EAAT-2 by activated microglia suggests that they might exert a compensatory effect that protects neurons from glutamate neurotoxicity.


Subject(s)
AIDS Dementia Complex/pathology , Cerebral Cortex/pathology , Gliosis/pathology , Glutamate Plasma Membrane Transport Proteins/metabolism , Microglia/pathology , AIDS Dementia Complex/metabolism , AIDS Dementia Complex/physiopathology , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers/analysis , Biomarkers/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cytoprotection/immunology , Down-Regulation/physiology , Excitatory Amino Acid Transporter 2 , Gliosis/metabolism , Glutamate Plasma Membrane Transport Proteins/analysis , Glutamic Acid/metabolism , HIV Core Protein p24/analysis , HIV Core Protein p24/metabolism , Humans , Immunohistochemistry , Interleukin-1beta/analysis , Interleukin-1beta/metabolism , Microglia/metabolism , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...