Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.921
Filter
1.
Nat Commun ; 15(1): 4537, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806470

ABSTRACT

The multidrug efflux transporter EmrE from Escherichia coli requires anionic residues in the substrate binding pocket for coupling drug transport with the proton motive force. Here, we show how protonation of a single membrane embedded glutamate residue (Glu14) within the homodimer of EmrE modulates the structure and dynamics in an allosteric manner using NMR spectroscopy. The structure of EmrE in the Glu14 protonated state displays a partially occluded conformation that is inaccessible for drug binding by the presence of aromatic residues in the binding pocket. Deprotonation of a single Glu14 residue in one monomer induces an equilibrium shift toward the open state by altering its side chain position and that of a nearby tryptophan residue. This structural change promotes an open conformation that facilitates drug binding through a conformational selection mechanism and increases the binding affinity by approximately 2000-fold. The prevalence of proton-coupled exchange in efflux systems suggests a mechanism that may be shared in other antiporters where acid/base chemistry modulates access of drugs to the substrate binding pocket.


Subject(s)
Antiporters , Escherichia coli Proteins , Escherichia coli , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Antiporters/metabolism , Antiporters/chemistry , Antiporters/genetics , Binding Sites , Protein Binding , Protons , Protein Conformation , Magnetic Resonance Spectroscopy , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Models, Molecular
2.
PLoS One ; 19(5): e0295735, 2024.
Article in English | MEDLINE | ID: mdl-38696486

ABSTRACT

The stability of monoclonal antibodies (mAbs) is vital for their therapeutic success. Sorbitol, a common mAb stabilizer used to prevent aggregation, was evaluated for any potential adverse effects on the chemical stability of mAb X. An LC-MS/MS based analysis focusing on the post-translational modifications (PTMs) of mAb X was conducted on samples that had undergone accelerated aging at 40°C. Along with PTMs that are known to affect mAbs' structure function and stability (such as deamidation and oxidation), a novel mAb PTM was discovered, the esterification of glutamic acid by sorbitol. Incubation of mAb X with a 1:1 ratio of unlabeled sorbitol and isotopically labeled sorbitol (13C6) further corroborated that the modification was the consequence of the esterification of glutamic acid by sorbitol. Levels of esterification varied across glutamic acid residues and correlated with incubation time and sorbitol concentration. After 4 weeks of accelerated stability with isotopically labeled sorbitol, it was found that 16% of the total mAb possesses an esterified glutamic acid. No esterification was observed at aspartic acid sites despite the free carboxylic acid side chain. This study unveils a unique modification of mAbs, emphasizing its potential significance for formulation and drug development.


Subject(s)
Antibodies, Monoclonal , Glutamic Acid , Sorbitol , Tandem Mass Spectrometry , Sorbitol/chemistry , Esterification , Tandem Mass Spectrometry/methods , Antibodies, Monoclonal/chemistry , Glutamic Acid/chemistry , Chromatography, Liquid/methods , Protein Stability , Protein Processing, Post-Translational , Drug Stability , Liquid Chromatography-Mass Spectrometry
3.
Nat Commun ; 15(1): 4408, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782886

ABSTRACT

Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.


Subject(s)
Phase Transition , Glutamic Acid/chemistry , Chlorides/chemistry , Humans , Solutions , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , Phase Separation
4.
J Chem Inf Model ; 64(10): 4168-4179, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38745447

ABSTRACT

Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.


Subject(s)
Cysteine , Glutamic Acid , Molecular Dynamics Simulation , Quantum Theory , Cysteine/chemistry , Cysteine/metabolism , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Free Radicals/chemistry , Free Radicals/metabolism , Hydrogen Bonding
5.
Talanta ; 274: 125998, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574541

ABSTRACT

Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 µM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 µM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.


Subject(s)
Antioxidants , Glutamic Acid , Hydrogen Peroxide , Metal Nanoparticles , Platinum , Prunella , Platinum/chemistry , Metal Nanoparticles/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Prunella/chemistry , Glutamic Acid/analysis , Glutamic Acid/chemistry , Plant Extracts/chemistry
6.
Eur Biophys J ; 53(4): 193-203, 2024 May.
Article in English | MEDLINE | ID: mdl-38647543

ABSTRACT

Na+/H+ antiporters facilitate the exchange of Na+ for H+ across the cytoplasmic membrane in prokaryotic and eukaryotic cells. These transporters are crucial to maintain the homeostasis of sodium ions, consequently pH, and volume of the cells. Therefore, sodium/proton antiporters are considered promising therapeutic targets in humans. The Na+/H+ antiporter in Escherichia coli (Ec-NhaA), a prototype of cation-proton antiporter (CPA) family, transports two protons and one sodium (or Li+) in opposite direction. Previous mutagenesis experiments on Ec-NhaA have proposed Asp164, Asp163, and Asp133 amino acids with the significant implication in functional and structural integrity and create site for ion-binding. However, the mechanism and the sites for the binding of the two protons remain unknown and controversial which could be critical for pH regulation. In this study, we have explored the role of Glu78 in the regulation of pH by Ec-NhaA. Although we have created various mutants, E78C has shown a considerable effect on the stoichiometry of NhaA and presented comparable phenotypes. The ITC experiment has shown the binding of ~ 5 protons in response to the transport of one lithium ion. The phenotype analysis on selective medium showed a significant expression compared to WT Ec-NhaA. This represents the importance of Glu78 in transporting the H+ across the membrane where a single mutation with Cys amino acid alters the number of H+ significantly maintaining the activity of the protein.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Glutamic Acid , Mutagenesis, Site-Directed , Sodium-Hydrogen Exchangers , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Ion Exchange , Models, Molecular
7.
Int J Biol Macromol ; 268(Pt 1): 131696, 2024 May.
Article in English | MEDLINE | ID: mdl-38642679

ABSTRACT

Carbon­carbon (C-C) bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase (AOS), named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with ß-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.


Subject(s)
Glutamic Acid , Substrate Specificity , Glutamic Acid/chemistry , Models, Molecular , Streptomyces/enzymology , Crystallography, X-Ray , Catalytic Domain , Protein Conformation , Pyridoxal Phosphate/metabolism , Pyridoxal Phosphate/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Structure-Activity Relationship
8.
FEBS J ; 291(10): 2260-2272, 2024 May.
Article in English | MEDLINE | ID: mdl-38390750

ABSTRACT

The identification of the coproporphyrin-dependent heme biosynthetic pathway, which is used almost exclusively by monoderm bacteria in 2015 by Dailey et al. triggered studies aimed at investigating the enzymes involved in this pathway that were originally assigned to the protoporphyrin-dependent heme biosynthetic pathway. Here, we revisit the active site of coproporphyrin ferrochelatase by a biophysical and biochemical investigation using the physiological substrate coproporphyrin III, which in contrast to the previously used substrate protoporphyrin IX has four propionate substituents and no vinyl groups. In particular, we have compared the reactivity of wild-type coproporphyrin ferrochelatase from the firmicute Listeria monocytogenes with those of variants, namely, His182Ala (H182A) and Glu263Gln (E263Q), involving two key active site residues. Interestingly, both variants are active only toward the physiological substrate coproporphyrin III but inactive toward protoporphyrin IX. In addition, E263 exchange impairs the final oxidation step from ferrous coproheme to ferric coproheme. The characteristics of the active site in the context of the residues involved and the substrate binding properties are discussed here using structural and functional means, providing a further contribution to the deciphering of this enigmatic reaction mechanism.


Subject(s)
Catalytic Domain , Coproporphyrins , Ferrochelatase , Glutamic Acid , Histidine , Protoporphyrins , Ferrochelatase/metabolism , Ferrochelatase/chemistry , Ferrochelatase/genetics , Coproporphyrins/metabolism , Coproporphyrins/chemistry , Protoporphyrins/metabolism , Protoporphyrins/chemistry , Histidine/metabolism , Histidine/chemistry , Histidine/genetics , Glutamic Acid/metabolism , Glutamic Acid/chemistry , Glutamic Acid/genetics , Heme/metabolism , Heme/chemistry , Substrate Specificity , Models, Molecular , Oxidation-Reduction , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalysis
9.
Chembiochem ; 25(9): e202300872, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38376941

ABSTRACT

Dye-decolorizing peroxidases (DyPs) are recently identified microbial enzymes that have been used in several Biotechnology applications from wastewater treatment to lignin valorization. However, their properties and mechanism of action still have many open questions. Their heme-containing active site is buried by three conserved flexible loops with a putative role in modulating substrate access and enzyme catalysis. Here, we investigated the role of a conserved glutamate residue in stabilizing interactions in loop 2 of A-type DyPs. First, we did site saturation mutagenesis of this residue, replacing it with all possible amino acids in bacterial DyPs from Bacillus subtilis (BsDyP) and from Kitasatospora aureofaciens (KaDyP1), the latter being characterized here for the first time. We screened the resulting libraries of variants for activity towards ABTS and identified variants with increased catalytic efficiency. The selected variants were purified and characterized for activity and stability. We furthermore used Molecular Dynamics simulations to rationalize the increased catalytic efficiency and found that the main reason is the electron channeling becoming easier from surface-exposed tryptophans. Based on our findings, we also propose that this glutamate could work as a pH switch in the wild-type enzyme, preventing intracellular damage.


Subject(s)
Bacillus subtilis , Coloring Agents , Glutamic Acid , Peroxidases , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Coloring Agents/chemistry , Coloring Agents/metabolism , Bacillus subtilis/enzymology , Peroxidases/chemistry , Peroxidases/metabolism , Peroxidases/genetics , Molecular Dynamics Simulation , Protein Engineering , Mutagenesis, Site-Directed
10.
J Am Chem Soc ; 146(9): 5823-5833, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38174701

ABSTRACT

The biological significance of self-assembled protein filament networks and their unique mechanical properties have sparked interest in the development of synthetic filament networks that mimic these attributes. Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. Utilizing glutamate (Glu) as the primary component of copolypeptides, two targeted pathways were pursued: first, achieving a fast fibrillation rate with lower interaction potential using serine (Ser) as a comonomer, facilitating the creation of homogeneous fibril networks; and second, creating more rigid networks of fibril clusters by incorporating alanine (Ala) and valine (Val) as comonomers. The selection of amino acids played a pivotal role in steering both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.


Subject(s)
Hydrogels , Peptides , Hydrogels/chemistry , Peptides/chemistry , Amino Acids , Glutamic Acid/chemistry , Alanine/chemistry
11.
Int J Biol Macromol ; 254(Pt 2): 127903, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939751

ABSTRACT

Glutamate (GLU) is a primary excitatory neurotransmitter, and its dysregulation is associated with several neurodegenerative disorders. A major challenge in GLU estimation is the existence of other biomolecules in the brain that could directly get oxidized at the electrode. Hence, highly selective electroenzymatic biosensors that enable rapid estimation of GLU are needed. Initially, a copolymer, poly(2-dimethylaminoethyl methacrylate- styrene) was synthesized through reversible addition-fragmentation chain transfer polymerization to noncovalently functionalize reduced graphene oxide (rGO), named DS-rGO. Glutamate oxidase macromolecule immobilized DS-rGO formed enzyme nanosheets, which was drop-coated over Prussian blue electrodeposited disposable electrodes to fabricate the GLU biosensor. The interconnectivity between the enzyme nanosheets and the Prussian blue endows the biosensor with enhanced conductivity and electrochemical activity. The biosensor exhibited a linearity: 3.25-250 µM; sensitivity: 3.96 µA mM-1 cm-2, and a limit of detection: 0.96 µM for GLU in the Neurobasal Medium. The biosensor was applied to an in vitro primary rat cortical model to discriminate GLU levels in Neurobasal Medium, before and after KCl mediated depolarization, which provides new insights for elucidating neuronal functioning in the brain.


Subject(s)
Biosensing Techniques , Glutamic Acid , Animals , Rats , Glutamic Acid/chemistry , Ferrocyanides/chemistry , Enzymes, Immobilized/chemistry , Electrodes , Neurons
12.
J Mol Biol ; 436(5): 168331, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37898385

ABSTRACT

TAT rhodopsin, a microbial rhodopsin found in the marine SAR11 bacterium HIMB114, uniquely possesses a Thr-Ala-Thr (TAT) motif in the third transmembrane helix. Because of a low pKa value of the retinal Schiff base (RSB), TAT rhodopsin exhibits both a visible light-absorbing state with the protonated RSB and a UV-absorbing state with the deprotonated RSB at a neutral pH. The UV-absorbing state, in contrast to the visible light-absorbing one, converts to a long-lived photointermediate upon light absorption, implying that TAT rhodopsin functions as a pH-dependent light sensor. Despite detailed biophysical characterization and mechanistic studies on the TAT rhodopsin, it has been unknown whether other proteins with similarly unusual features exist. Here, we identified several new rhodopsin genes homologous to the TAT rhodopsin of HIMB114 (TATHIMB) from metagenomic data. Based on the absorption spectra of expressed proteins from these genes with visible and UV peaks similar to that of TATHIMB, they were classified as Twin-peaked Rhodopsin (TwR) family. TwR genes form a gene cluster with a set of 13 ORFs conserved in subclade IIIa of SAR11 bacteria. A glutamic acid in the second transmembrane helix, Glu54, is conserved in all of the TwRs. We investigated E54Q mutants of two TwRs and revealed that Glu54 plays critical roles in regulating the RSB pKa, oligomer formation, and the efficient photoreaction of the UV-absorbing state. The discovery of novel TwRs enables us to study the universality and individuality of the characteristics revealed so far in the original TATHIMB and contributes to further studies on mechanisms of unique properties of TwRs.


Subject(s)
Alphaproteobacteria , Glutamic Acid , Rhodopsins, Microbial , Glutamic Acid/chemistry , Glutamic Acid/genetics , Hydrogen-Ion Concentration , Light , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/classification , Rhodopsins, Microbial/genetics , Conserved Sequence , Phylogeny
13.
J Oleo Sci ; 72(6): 613-621, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37164690

ABSTRACT

Surfactant-mediated gelation (SMG) is a technique used to form hydrogels by solubilizing water-insoluble low-molecular-weight organogelators in surfactant micelles. In this study, we investigated the viscoelastic behavior of SMG hydrogels and the effect of micellar shape on their gel network structure using a glutamic acid-based organogelator. Stress-strain curves obtained from static viscoelasticity measurements showed that a wormlike micelle-mediated gel (W-SMG) exhibited a higher stress than a spherical micelle-mediated gel (S-SMG). From the viscosity-shear rate curve (flow curve), we inferred that the SMG gel exhibited a shear thickening behavior, particularly W-SMG. Microscopic observations revealed that W-SMG formed a denser and more uniform gel network than S-SMG when subjected to strong shearing. W-SMG showed remarkable adhesiveness and a significantly higher tensile normal stress than S-SMG. The storage modulus and loss modulus of W-SMG and the wormlike micellar solution obtained from frequency sweep measurements of the dynamic viscoelasticity were analyzed by Maxwell fitting. The wormlike micellar solution produced a good fit with the single Maxwell model, whereas W-SMG produced the best fit with the generalized Maxwell model comprising two Maxwell elements. From the relaxation time characteristics obtained from the Maxwell model, W-SMG was found to be a viscoelastic material coexisting with a structure having a short relaxation time derived from the gel network and a long relaxation time derived from the wormlike micelle. Under the oscillation strain measured by a rheometer, W-SMG showed a greater normal stress than the wormlike micellar solution, indicating a significant Weissenberg effect.


Subject(s)
Glutamic Acid , Pulmonary Surfactants , Glutamic Acid/chemistry , Surface-Active Agents/chemistry , Micelles , Hydrogels
14.
Food Chem ; 419: 136008, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37004367

ABSTRACT

The effect of eight different l-amino acids (L-AA) on type-3 resistant starch particles (rSPs) derived from short chain glucan (SCG) was investigated. The L-AA were categorized based on their charge and polarity. The results reveal that positively charged L-AA, such as lysine and arginine, decreased the nucleation and growth rate of rSPs, while non-charged L-AA have negligible effects. Negatively charged L-AA, such as glutamic acid and aspartic acid, had a significant impact on the morphology and crystallinity of the rSPs, resulting in particle size of around 3 µm and crystallinity of around 35%. This implies that charged L-AA influence the arrangement of SCG double helices in the particles. Furthermore, the complexation of SCG with charged L-AA reduced the level of RS in rSPs, indicating that L-AA could be useful in modulating the physical properties and digestibility of rSPs.


Subject(s)
Amino Acids , Resistant Starch , Amino Acids/metabolism , Resistant Starch/pharmacology , Crystallization , Glutamic Acid/chemistry , Arginine/chemistry , Glucans/pharmacology , Starch/chemistry , Digestion
15.
J Agric Food Chem ; 71(10): 4346-4357, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36880130

ABSTRACT

The Amadori compound of glucose and glycyl-l-glutamine (Gly-Gln-ARP) was prepared and characterized by UPLC-MS/MS and NMR. Gly-Gln-ARP could be thermally degraded into Gly-Gln and other secondary reaction products like glycyl-l-glutamic acid and its ARP via deamidation. The thermal processing temperature exerted a tremendous influence on the flavor formation of ARP. Furans were mainly formed at 100 °C, while an elevated temperature of 120 °C facilitated the massive accumulation of α-dicarbonyl compounds through the retro-aldolization of deoxyglucosone, and then increased the formation of pyrazines. The extra-added amino acids further promoted the formation of pyrazines at 120 °C, especially Glu, Lys, and His, further increasing the total concentration of pyrazines to 457 ± 6.26, 563 ± 65.5, and 411 ± 59.2 µg/L, respectively, exceeding the pure heated control at 140 °C (296 ± 6.67 µg/L). The total concentration of furans was enhanced to (20.7 × 103) ± 8.17 µg/L by extra-added Gln. Different increasing effects were observed on the type and flavor intensity of formed pyrazines and furans from different extra-added amino acids.


Subject(s)
Amino Acids , Pyrazines , Temperature , Furans , Chromatography, Liquid , Tandem Mass Spectrometry , Glutamic Acid/chemistry , Maillard Reaction
16.
Chem Biol Interact ; 376: 110460, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36963650

ABSTRACT

The acute effects of exposure to organophosphorus toxicants are explained by inhibition of acetylcholinesterase activity. However, the mechanisms that explain long term illness associated with organophosphorus exposure are still under investigation. We find that organophosphorus nerve agents and organophosphorus pesticides make covalent adducts not only on the serine from acetylcholinesterase, but also on tyrosine, lysine, glutamate, serine and threonine from a variety of proteins. Almost any protein can be modified by a high dose of organophosphorus toxicant. A low dose of 10 µM chlorpyrifos oxon added to the serum-free culture medium of human neuroblastoma SH-SY5Y cells resulted in tyrosine adducts on 48 proteins immunopurified from the cell lysate. We identified the adducted proteins by mass spectrometry after immunopurifying modified proteins with a rabbit anti-diethoxyphospho-tyrosine monoclonal antibody which biased this study for tyrosine adducts. In cultured cells, the primary organophosphate targets are abundant proteins. Organophosphate-modified proteins may disrupt physiological processes. In separate experiments we identified organophosphate adducts on lysine. Organophosphylation activates the lysine for protein crosslinking. The activated lysine reacts with glutamic acid or aspartic acid protein side chains to form an isopeptide bond between proteins, resulting in high molecular weight crosslinked proteins. Crosslinked proteins form insoluble aggregates that may lead to neurogenerative disease.


Subject(s)
Neuroblastoma , Pesticides , Animals , Humans , Rabbits , Acetylcholinesterase/metabolism , Lysine/chemistry , Organophosphorus Compounds/metabolism , Molecular Weight , Proteins/chemistry , Tyrosine/metabolism , Glutamic Acid/chemistry
17.
PLoS One ; 18(3): e0282741, 2023.
Article in English | MEDLINE | ID: mdl-36952491

ABSTRACT

The interaction between human Growth Hormone (hGH) and hGH Receptor (hGHR) has basic relevance to cancer and growth disorders, and hGH is the scaffold for Pegvisomant, an anti-acromegaly therapeutic. For the latter reason, hGH has been extensively engineered by early workers to improve binding and other properties. We are particularly interested in E174 which belongs to the hGH zinc-binding triad; the substitution E174A is known to significantly increase binding, but to now no explanation has been offered. We generated this and several computationally-selected single-residue substitutions at the hGHR-binding site of hGH. We find that, while many successfully slow down dissociation of the hGH-hGHR complex once bound, they also slow down the association of hGH to hGHR. The E174A substitution induces a change in the Circular Dichroism spectrum that suggests the appearance of coiled-coiling. Here we show that E174A increases affinity of hGH against hGHR because the off-rate is slowed down more than the on-rate. For E174Y (and certain mutations at other sites) the slowdown in on-rate was greater than that of the off-rate, leading to decreased affinity. The results point to a link between structure, zinc binding, and hGHR-binding affinity in hGH.


Subject(s)
Human Growth Hormone , Human Growth Hormone/chemistry , Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Humans , Amino Acid Substitution , Protein Binding/genetics , Receptors, Somatotropin/metabolism , Protein Structure, Secondary/genetics , Alanine/chemistry , Alanine/genetics , Glutamic Acid/chemistry , Glutamic Acid/genetics , Zinc/chemistry , Conserved Sequence , Amino Acid Sequence
18.
Biophys J ; 122(6): 1068-1085, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36698313

ABSTRACT

The triple glutamine (Q) mutant (QQQ) structure of a Cl-/H+ antiporter from Escherichia coli (ClC-ec1) displaying a novel backbone arrangement has been used to challenge the long-held notion that Cl-/H+ antiporters do not operate through large conformational motions. The QQQ mutant substitutes the glutamine residue for an external glutamate E148, an internal glutamate E203, and a third glutamate E113 that hydrogen-bonds with E203. However, it is unknown if QQQ represents a physiologically relevant state, as well as how the protonation of the wild-type glutamates relates to the global dynamics. We herein apply continuous constant-pH molecular dynamics to investigate the H+-coupled dynamics of ClC-ec1. Although any large-scale conformational rearrangement upon acidification would be due to the accumulation of excess charge within the protein, protonation of the glutamates significantly impacts mainly the local structure and dynamics. Despite the fact that the extracellular pore enlarges at acidic pHs, an occluded ClC-ec1 within the active pH range of 3.5-7.5 requires a protonated E148 to facilitate extracellular Cl- release. E203 is also involved in the intracellular H+ transfer as an H+ acceptor. The water wire connection of E148 with the intracellular solution is regulated by the charge states of the E113/E203 dyad with coupled proton titration. However, the dynamics extracted from our simulations are not QQQ-like, indicating that the QQQ mutant does not represent the behavior of the wild-type ClC-ec1. These findings reinforce the necessity of having a protonatable residue at the E203 position in ClC-ec1 and suggest that a higher level of complexity exists for the intracellular H+ transfer in Cl-/H+ antiporters.


Subject(s)
Antiporters , Escherichia coli Proteins , Antiporters/genetics , Antiporters/metabolism , Glutamic Acid/chemistry , Glutamine , Chlorides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Protons , Chloride Channels/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
19.
Macromol Biosci ; 23(4): e2200344, 2023 04.
Article in English | MEDLINE | ID: mdl-36377468

ABSTRACT

The secondary structure of poly(amino acids) is an excellent tool for controlling and understanding the functionality and properties of proteins. In this perspective article the secondary structures of the homopolymers of oligo- and poly-glutamic acid (Glu), aspartic acid (Asp), and α-aminoisobutyric acid (Aib) are discussed. Information on external and internal factors, such as the nature of side groups, interactions with solvents and interactions between chains is reviewed. A special focus is directed on the folding in hybrid-polymers consisting of oligo(amino acids) and synthetic polymers. Being part of the SFB TRR 102 "Polymers under multiple constraints: restricted and controlled molecular order and mobility" this overview is embedded into the cross section of protein fibrillation and supramolecular polymers. As polymer- and amino acid folding is an important step for the utilization and design of future biomolecules these principles guide to a deeper understanding of amyloid fibrillation.


Subject(s)
Amino Acids , Glutamic Acid , Amino Acids/chemistry , Glutamic Acid/chemistry , Protein Structure, Secondary , Proteins , Polymers
20.
Phys Chem Chem Phys ; 25(1): 857-869, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36512335

ABSTRACT

In the present work, 86 available high resolution X-ray structures of proteins that contain one or more guanidinium ions (Gdm+) are analyzed for the distribution and nature of noncovalent interactions between Gdm+ and amino-acid residues. A total of 1044 hydrogen-bonding interactions were identified, of which 1039 are N-H⋯O, and five are N-H⋯N. Acidic amino acids are more likely to interact with Gdm+ (46% of interactions, 26% Asp and 20% Glu), followed by Pro (19% of interactions). DFT calculations on the identified Gdm+-amino acid hydrogen-bonded pairs reveal that although Gdm+ interacts primarily with the backbone amides of nonpolar amino acids, Gdm+ does interact with the sidechains of polar and acidic amino acids. We classified the optimized Gdm+-amino acid pairs into parallel [p], bifurcated [b], single hydrogen bonded [s] and triple hydrogen bonded [t] types. The [p] and [t] type pairs possess higher average interaction strength that is stronger than that of [b] and [s] type pairs. Negatively charged aspartate and glutamate residues interact with Gdm+ ion exceptionally tightly (-76 kcal mol-1) in [p] type complexes. This work provides statistical and energetics insights to better describe the observed destabilization or denaturation process of proteins by guanidinium salts.


Subject(s)
Amino Acids , Proteins , Guanidine/chemistry , Protein Denaturation , Proteins/chemistry , Glutamic Acid/chemistry , Ions/chemistry , Amino Acids, Acidic , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL
...