Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.284
Filter
1.
Microbiology (Reading) ; 170(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847798

ABSTRACT

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Luciferases/metabolism , Luciferases/genetics , Endo-1,4-beta Xylanases/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Protein Transport , Amylases/metabolism , Glutaminase/metabolism
2.
Mol Med ; 30(1): 64, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760723

ABSTRACT

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Subject(s)
Endometriosis , Glutaminase , Glutamine , RNA Stability , RNA, Long Noncoding , RNA-Binding Proteins , Female , Humans , Glutaminase/metabolism , Glutaminase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Glutamine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation , Adult , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Protein Binding
3.
Commun Biol ; 7(1): 608, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769385

ABSTRACT

Diverse tumor metabolic phenotypes are influenced by the environment and genetic lesions. Whether these phenotypes extend to rhabdomyosarcoma (RMS) and how they might be leveraged to design new therapeutic approaches remains an open question. Thus, we utilized a Pax7Cre-ER-T2/+; NrasLSL-G12D/+; p53fl/fl (P7NP) murine model of sarcoma with mutations that most frequently occur in human embryonal RMS. To study metabolism, we infuse 13C-labeled glucose or glutamine into mice with sarcomas and show that sarcomas consume more glucose and glutamine than healthy muscle tissue. However, we reveal a marked shift from glucose consumption to glutamine metabolism after radiation therapy (RT). In addition, we show that inhibiting glutamine, either through genetic deletion of glutaminase (Gls1) or through pharmacological inhibition of glutaminase, leads to significant radiosensitization in vivo. This causes a significant increase in overall survival for mice with Gls1-deficient compared to Gls1-proficient sarcomas. Finally, Gls1-deficient sarcomas post-RT elevate levels of proteins involved in natural killer cell and interferon alpha/gamma responses, suggesting a possible role of innate immunity in the radiosensitization of Gls1-deficient sarcomas. Thus, our results indicate that glutamine contributes to radiation response in a mouse model of RMS.


Subject(s)
Glutaminase , Glutamine , Sarcoma , Animals , Glutamine/metabolism , Mice , Glutaminase/metabolism , Glutaminase/genetics , Glutaminase/antagonists & inhibitors , Sarcoma/metabolism , Sarcoma/radiotherapy , Sarcoma/genetics , Glucose/metabolism , Disease Models, Animal , Radiation Tolerance
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812238

ABSTRACT

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Subject(s)
Apoptosis , Fruit , Galactose , Glutaminase , Glutamine , Mitochondria , Signal Transduction , Triterpenes , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Signal Transduction/drug effects , Cell Line , Fruit/chemistry , Glutamine/pharmacology , Glutamine/metabolism , Glutaminase/metabolism , Glutaminase/genetics , Cellular Senescence/drug effects , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/metabolism
5.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724832

ABSTRACT

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Subject(s)
Artemisinins , Brain Neoplasms , Glioblastoma , Glutamine , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Glutamine/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Artemisinins/therapeutic use , Artemisinins/pharmacology , Reactive Oxygen Species/metabolism , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Tumor Microenvironment , Apoptosis , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Cell Movement , Benzeneacetamides/pharmacology , Benzeneacetamides/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology
6.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566121

ABSTRACT

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Subject(s)
Carcinoma , Glutaminase , Humans , Glutaminase/genetics , Multiomics , Research , Biomarkers
7.
J Agric Food Chem ; 72(18): 10477-10486, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657166

ABSTRACT

Cytotoxic enzymes often exist as zymogens containing prodomains to keep them in an inactive state. Protein-glutaminase (PG), which can enhance various functional characteristics of food proteins, is an enzyme containing pro-PG and mature-PG (mPG). However, poor activity and stability limit its application while tedious purification and activation steps limit its high-throughput engineering. Here, based on structural analysis, we replaced the linker sequence between pro-PG and mPG with the HRV3C protease recognition sequence and then coexpressed it with HRV3C protease in Escherichia coli to develop an efficient one-step purification and activation method for PG. We then used this method to obtain several mutants designed by a combination of computer-aided approach and beneficial point mutations. The specific activity (131.6 U/mg) of the best variant D1 was 4.14-fold that of the wild type, and t1/2 and T5010 increased by 13 min and 7 °C, respectively. D1 could effectively improve the solubility and emulsification of wheat proteins, more than twice the effect of the wild type. We also discussed the mechanism underlying the improved properties of D1. In summary, we not only provide a universal one-step purification and activation method to facilitate zymogen engineering but also obtain an excellent PG mutant.


Subject(s)
Glutaminase , Protein Engineering , Enzyme Stability , Escherichia coli/genetics , Glutaminase/chemistry , Glutaminase/genetics , Glutaminase/metabolism , Kinetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Solubility , Triticum/chemistry
8.
J Cancer Res Clin Oncol ; 150(4): 211, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662258

ABSTRACT

BACKGROUND: Circular ribose nucleic acids (circRNAs), an abundant type of noncoding RNAs, are widely expressed in eukaryotic cells and exert a significant impact on the initiation and progression of various disorders, including different types of cancer. However, the specific role of various circRNAs in colorectal cancer (CRC) pathology is still not fully understood. METHODS: The initial step involved the use of quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of circRNAs and messenger RNA (mRNA) in CRC cell lines and tissues. Subsequently, functional analyses of circCOL1A1 knockdown were conducted in vitro and in vivo through cell counting kit (CCK)-8, colony formation and transwell assays, as well as xenograft mouse model of tumor formation. Molecular expression and interactions were investigated using luciferase reporter assays, Western blot analysis, RNA immunoprecipitation (RIP), and immunohistochemical staining. RESULTS: The RT-qPCR results revealed elevated levels of circCOL1A1 expressions in CRC tissues and cell lines as compared to the normal counterparts. In addition, circCOL1A1 expression level was found to be correlated with TNM stage, lymph node metastases, distant metastases, and invasion. Knockdown of circCOL1A1 resulted in impaired invasion, migration, and proliferation of CRC cells, and suppressed tumor generation in the animal model. We further demonstrated that circCOL1A1 could act as a sponge for miR-214-3p, suppressing miR-214-3p activity and leading to the upregulation of GLS1 protein to promote glutamine metabolism. CONCLUSION: These findings suggest that circCOL1A1 functions as an oncogenic molecule to promote CRC progression via miR-214-3p/GLS1 axis, hinting on the potential of circCOL1A1 as a therapeutic target for CRC.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Glutaminase , Glutamine , MicroRNAs , Neoplasm Invasiveness , RNA, Circular , Up-Regulation , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , RNA, Circular/genetics , Xenograft Model Antitumor Assays
9.
Pharm Biol ; 62(1): 314-325, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38571483

ABSTRACT

CONTEXT: Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE: This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS: Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 µg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS: BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 µg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION: This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.


Subject(s)
Antineoplastic Agents , Bile Duct Neoplasms , Carcinoma, Non-Small-Cell Lung , Cholangiocarcinoma , Lung Neoplasms , Humans , Cisplatin/pharmacology , YAP-Signaling Proteins , Carcinoma, Non-Small-Cell Lung/drug therapy , Glutaminase/metabolism , Glutaminase/pharmacology , Glutaminase/therapeutic use , Lung Neoplasms/drug therapy , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Drug Resistance, Neoplasm , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
10.
Cell Metab ; 36(5): 1059-1075.e9, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38458203

ABSTRACT

Mitochondrial cristae, infoldings of the mitochondrial inner membrane, undergo aberrant changes in their architecture with age. However, the underlying molecular mechanisms and their contribution to brain aging are largely elusive. Here, we observe an age-dependent accumulation of Glu-5'tsRNA-CTC, a transfer-RNA-derived small RNA (tsRNA), derived from nuclear-encoded tRNAGlu in the mitochondria of glutaminergic neurons. Mitochondrial Glu-5'tsRNA-CTC disrupts the binding of mt-tRNALeu and leucyl-tRNA synthetase2 (LaRs2), impairing mt-tRNALeu aminoacylation and mitochondria-encoded protein translation. Mitochondrial translation defects disrupt cristae organization, leading to damaged glutaminase (GLS)-dependent glutamate formation and reduced synaptosomal glutamate levels. Moreover, reduction of Glu-5'tsRNA-CTC protects aged brains from age-related defects in mitochondrial cristae organization, glutamate metabolism, synaptic structures, and memory. Thus, beyond illustrating a physiological role for normal mitochondrial cristae ultrastructure in maintaining glutamate levels, our study defines a pathological role for tsRNAs in brain aging and age-related memory decline.


Subject(s)
Aging , Glutamic Acid , Mice, Inbred C57BL , Mitochondria , Protein Biosynthesis , Animals , Glutamic Acid/metabolism , Aging/metabolism , Mitochondria/metabolism , Mice , Male , Humans , Neurons/metabolism , Glutaminase/metabolism , Glutaminase/genetics , Mitochondrial Membranes/metabolism , Brain/metabolism
11.
Free Radic Res ; 58(3): 170-179, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511644

ABSTRACT

Non-thermal atmospheric pressure plasma (NTP), an ionized gas containing electrons, ions, radicals, and photons, has various biological effects, including wound healing and anticancer effects. Plasma-activated medium (PAM), which is prepared by irradiating medium with NTP, preferentially kills cancer cells. Large amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS) included in PAM are closely related to its anticancer effects. The precise mechanism of PAM-induced cytotoxicity is not fully understood; however, PAM exposure has been reported to reduce cellular energy metabolism. Glutamine (Gln) is an important amino acid as an energy source in cancer cells. Gln is converted to glutamate by glutaminase (GLS), and is utilized to synthesize ATP and glutathione (GSH). Expression levels of GLS have been shown to be higher in certain types of cancers. In this study, we examined the effects of GLS inhibition on PAM cytotoxicity using breast cancer MDA-MB-231 cells. Pretreatment with BPTES, a glutaminase 1 (GLS1) inhibitor, dose-dependently enhanced PAM-induced cell death. PAM-induced ROS production and γ-H2AX formation, a DNA damage marker, were increased in cells pretreated with BPTES compared with PAM alone. BPTES pretreatment enhanced a PAM-induced decrease in intracellular GSH, indicating the possibility that BPTES reduces the antioxidant capacity of MDA-MB-231 cells. In addition, BPTES pretreatment enhanced PAM-induced loss of the mitochondrial membrane potential and reduction of ATP production. Moreover, GLS1 knockdown promoted PAM-induced cell death. Taken together, the combination of GLS1 inhibitors such as BPTES is considered to be useful for enhancing the cytotoxic effects of PAM against cancer cells.


Subject(s)
Glutamine , Plasma Gases , Humans , Glutamine/metabolism , Glutamine/pharmacology , Plasma Gases/pharmacology , Reactive Oxygen Species/metabolism , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Cell Line, Tumor
12.
Nat Commun ; 15(1): 1971, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438397

ABSTRACT

The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.


Subject(s)
Glutaminase , Neoplasms , Glutamine , Cytoskeleton , Catalysis , Glutamic Acid
13.
Elife ; 122024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488852

ABSTRACT

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.


Subject(s)
Neuroblastoma , RNA Precursors , Sulfonamides , Humans , Animals , Mice , RNA Precursors/genetics , RNA Precursors/metabolism , Glutaminase/genetics , Metabolic Reprogramming , Jumonji Domain-Containing Histone Demethylases/metabolism
14.
Front Endocrinol (Lausanne) ; 15: 1344971, 2024.
Article in English | MEDLINE | ID: mdl-38501098

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Collagen Type I/metabolism , Glutaminase/metabolism , Glutamine/metabolism , Hepatic Stellate Cells/metabolism , Hypoxia/metabolism , Liver Cirrhosis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , YAP-Signaling Proteins
15.
Biomolecules ; 14(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540788

ABSTRACT

(1) Background: Valproic acid (VPA) is one of the frequently prescribed antiepileptic drugs and is generally considered well tolerated. However, VPA neurologic adverse effects in the absence of liver failure are fairly common, suggesting that in the mechanism for the development of VPA-induced encephalopathy, much more is involved than merely the exposure to hyperammonemia (HA) caused by liver insufficiency to perform detoxification. Taking into account the importance of the relationship between an impaired brain energy metabolism and elevated ammonia production, and based on the ability of VPA to interfere with neuronal oxidative pathways, the current study intended to investigate a potential regional ammoniagenic effect of VPA on rats' brains by determining activities of the enzymes responsible for ammonia production and neutralization. (2) Methods: Rats received a single intraperitoneal injection of VPA (50, 100, 250, 500 mg/kg). Plasma, the neocortex, the cerebellum, and the hippocampus were collected at 30 min after injection. The levels of ammonia, urea, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured in blood plasma. The activities of glutaminase and glutamate dehydrogenase (GDH) in mitochondria and the activities of AMP deaminase (AMPD), adenosine deaminase (ADA), and glutamine synthetase (GS) in cytosolic fractions isolated from rat brain regions were measured. Ammonia, ALT, and AST values were determined in the mitochondrial and cytosolic fractions. (3) Results: Multi-dose VPA treatment did not significantly affect the plasma levels of ammonia and urea or the ALT and AST liver enzymes. Significant dose-independent increases in the accumulation of ammonia were found only in the cytosol from the cerebellum and there was a strong correlation between the ammonia level and the ADA activity in this brain structure. A significant decrease in the AMPD and AST activities was observed, while the ALT activity was unaffected. Only the highest VPA dose (500 mg/kg) was associated with significantly less activity of GS compared to the control in all studied brain structures. In the mitochondria of all studied brain structures, VPA caused a dose-independent increases in ammonia levels, a high concentration of which was strongly and positively correlated with the increased GDH and ALT activity, while glutaminase activity remained unchanged, and AST activity significantly decreased compared to the control in all studied brain structures. (4) Conclusions: This study highlights the rat brain region-specific ammoniagenic effects of VPA, which may manifest themselves in the absence of hyperammonemia. Further research should analyze how the responsiveness of the different brain regions may vary in VPA-treated animals that exhibit compromised energy metabolism, leading to increased ammoniagenesis.


Subject(s)
Hyperammonemia , Valproic Acid , Rats , Animals , Valproic Acid/adverse effects , Glutaminase , Hyperammonemia/chemically induced , Hyperammonemia/metabolism , Ammonia/metabolism , Urea
16.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542254

ABSTRACT

Many of the biological processes of the cell, from its structure to signal transduction, involve protein-protein interactions. On this basis, our aim was to identify cellular proteins that interact with ERK5, a serine/threonine protein kinase with a key role in tumor genesis and progression and a promising therapeutic target in many tumor types. Using affinity chromatography, immunoprecipitation, and mass spectrometry techniques, we unveiled an interaction between ERK5 and the mitochondrial glutaminase GLS in pancreatic tumor cells. Subsequent co-immunoprecipitation and immunofluorescence studies supported this interaction in breast and lung tumor cells as well. Genetic approaches using RNA interference techniques and CRISPR/Cas9 technology demonstrated that the loss of ERK5 function led to increased protein levels of GLS isoforms (KGA/GAC) and a concomitant increase in their activity in tumor cells. It is well known that the tumor cell reprograms its intermediary metabolism to meet its increased metabolic needs. In this sense, mitochondrial GLS is involved in the first step of glutamine catabolism, one of the main energy sources in the context of cancer. Our data suggest that ERK5 contributes to the regulation of tumor cell energy metabolism via glutaminolysis.


Subject(s)
Glutaminase , Lung Neoplasms , Humans , Glutaminase/genetics , Glutaminase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Signal Transduction , RNA Interference , Lung Neoplasms/metabolism , Glutamine/metabolism , Cell Line, Tumor
17.
Clin Transl Med ; 14(2): e1583, 2024 02.
Article in English | MEDLINE | ID: mdl-38372449

ABSTRACT

BACKGROUND: Targeted therapy for triple-negative breast cancer (TNBC) remains a challenge. N6-methyladenosine (m6 A) is the most abundant internal mRNA modification in eukaryotes, and it regulates the homeostasis and function of modified RNA transcripts in cancer. However, the role of leucine-rich pentatricopeptide repeat containing protein (LRPPRC) as an m6 A reader in TNBC remains poorly understood. METHODS: Western blotting, reverse transcription-polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to investigate LRPPRC expression levels. Dot blotting and colorimetric enzyme linked immunosorbent assay (ELISA) were employed to detect m6 A levels. In vitro functional assays and in vivo xenograft mouse model were utilised to examine the role of LRPPRC in TNBC progression. Liquid chromatography-mass spectrometry/mass spectrometry and Seahorse assays were conducted to verify the effect of LRPPRC on glycolysis. MeRIP-sequencing, RNA-sequencing, MeRIP assays, RNA immunoprecipitation assays, RNA pull-down assays and RNA stability assays were used to identify the target genes of LRPPRC. Patient-derived xenografts and organoids were employed to substantiate the synthetic lethality induced by LRPPRC knockdown plus glutaminase inhibition. RESULTS: The expressions of LRPPRC and m6 A RNA were elevated in TNBC, and the m6 A modification site could be recognised by LRPPRC. LRPPRC promoted the proliferation, metastasis and glycolysis of TNBC cells both in vivo and in vitro. We identified lactate dehydrogenase A (LDHA) as a novel direct target of LRPPRC, which recognised the m6 A site of LDHA mRNA and enhanced the stability of LDHA mRNA to promote glycolysis. Furthermore, while LRPPRC knockdown reduced glycolysis, glutaminolysis was enhanced. Moreover, the effect of LRPPRC on WD40 repeat domain-containing protein 76 (WDR76) mRNA stability was impaired in an m6 A-dependent manner. Then, LRPPRC knockdown plus a glutaminase inhibition led to synthetic lethality. CONCLUSIONS: Our study demonstrated that LRPPRC promoted TNBC progression by regulating metabolic reprogramming via m6 A modification. These characteristics shed light on the novel combination targeted therapy strategies to combat TNBC.


Subject(s)
Glutamine , L-Lactate Dehydrogenase , Neoplasm Proteins , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Glycolysis/genetics , Leucine-Rich Repeat Proteins , Neoplasm Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synthetic Lethal Mutations , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , L-Lactate Dehydrogenase/genetics
18.
Brain Res ; 1829: 148792, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38325559

ABSTRACT

Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.


Subject(s)
Epilepsy, Reflex , Epilepsy, Temporal Lobe , Kindling, Neurologic , Rats , Animals , Glutaminase/metabolism , Hippocampus/metabolism , Epilepsy, Reflex/metabolism , Kindling, Neurologic/physiology , Epilepsy, Temporal Lobe/metabolism , Genetic Predisposition to Disease , Glutamic Acid/metabolism , Seizures/metabolism , Acoustic Stimulation
19.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38353358

ABSTRACT

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Subject(s)
Benzeneacetamides , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Glutaminase , Glycolysis , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Thiadiazoles , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glycolysis/genetics , Mice, Nude , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
20.
J Ethnopharmacol ; 326: 117884, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350502

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY: This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS: In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS: EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κß and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS: Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.


Subject(s)
Arthritis, Experimental , Opuntia , Rats , Animals , Cytokines/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Glutaminase , Piroxicam/therapeutic use , Molecular Docking Simulation , Rats, Sprague-Dawley , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ethanol/chemistry , Inflammation/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Flavonoids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...