Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732103

ABSTRACT

Fatty acid synthesis has been extensively investigated as a therapeutic target in cancers, including colorectal cancer (CRC). Fatty acid synthase (FASN), a key enzyme of de novo lipid synthesis, is significantly upregulated in CRC, and therapeutic approaches of targeting this enzyme are currently being tested in multiple clinical trials. However, the mechanisms behind the pro-oncogenic action of FASN are still not completely understood. Here, for the first time, we show that overexpression of FASN increases the expression of glutamine-fructose-6-phosphate transaminase 1 (GFPT1) and O-linked N-acetylglucosamine transferase (OGT), enzymes involved in hexosamine metabolism, and the level of O-GlcNAcylation in vitro and in vivo. Consistently, expression of FASN significantly correlates with expression of GFPT1 and OGT in human CRC tissues. shRNA-mediated downregulation of GFPT1 and OGT inhibits cellular proliferation and the level of protein O-GlcNAcylation in vitro, and knockdown of GFPT1 leads to a significant decrease in tumor growth and metastasis in vivo. Pharmacological inhibition of GFPT1 and OGT leads to significant inhibition of cellular proliferation and colony formation in CRC cells. In summary, our results show that overexpression of FASN increases the expression of GFPT1 and OGT as well as the level of protein O-GlcNAcylation to promote progression of CRC; targeting the hexosamine biosynthesis pathway could be a therapeutic approach for this disease.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , N-Acetylglucosaminyltransferases , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Glycosylation , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Up-Regulation , Mice, Nude , Fatty Acid Synthase, Type I
2.
Nat Chem Biol ; 20(6): 770-778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409364

ABSTRACT

Metal-binding proteins (MBPs) have various and important biological roles in all living species and many human diseases are intricately linked to dysfunctional MBPs. Here, we report a chemoproteomic method named 'metal extraction-triggered agitation logged by thermal proteome profiling' (METAL-TPP) to globally profile MBPs in proteomes. The method involves the extraction of metals from MBPs using chelators and monitoring the resulting protein stability changes through thermal proteome profiling. Applying METAL-TPP to the human proteome with a broad-spectrum chelator, EDTA, revealed a group of proteins with reduced thermal stability that contained both previously known MBPs and currently unannotated MBP candidates. Biochemical characterization of one potential target, glutamine-fructose-6-phosphate transaminase 2 (GFPT2), showed that zinc bound the protein, inhibited its enzymatic activity and modulated the hexosamine biosynthesis pathway. METAL-TPP profiling with another chelator, TPEN, uncovered additional MBPs in proteomes. Collectively, this study developed a robust tool for proteomic discovery of MBPs and provides a rich resource for functional studies of metals in cell biology.


Subject(s)
Proteome , Proteomics , Humans , Proteome/metabolism , Proteomics/methods , Chelating Agents/chemistry , Chelating Agents/pharmacology , Metals/metabolism , Metals/chemistry , Zinc/metabolism , Zinc/chemistry , Temperature , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/antagonists & inhibitors , Protein Stability
3.
Carcinogenesis ; 45(5): 324-336, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38267812

ABSTRACT

Tripartite Motif 14 (TRIM14) is an oncoprotein that belongs to the E3 ligase TRIM family, which is involved in the progression of various tumors except for non-small cell lung carcinoma (NSCLC). However, little is currently known regarding the function and related mechanisms of TRIM14 in NSCLC. Here, we found that the TRIM14 protein was downregulated in lung adenocarcinoma tissues compared with the adjacent tissues, which can suppress tumor cell proliferation and migration both in vitro and in vivo. Moreover, TRIM14 can directly bind to glutamine fructose-6-phosphate amidotransferase 1 (GFAT1), which in turn results in the degradation of GFAT1 and reduced O-glycosylation levels. GFAT1 is a key enzyme in the rate-limiting step of the hexosamine biosynthetic pathway (HBP). Replenishment of N-acetyl-d-glucosamine can successfully reverse the inhibitory effect of TRIM14 on the NSCLC cell growth and migration as expected. Collectively, our data revealed that TRIM14 suppressed NSCLC cell proliferation and migration through ubiquitination and degradation of GFAT1, providing a new regulatory role for TRIM14 on HBP.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , Hexosamines , Lung Neoplasms , Tripartite Motif Proteins , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Hexosamines/biosynthesis , Hexosamines/metabolism , Animals , Mice , Gene Expression Regulation, Neoplastic , Disease Progression , Ubiquitination , Cell Line, Tumor , Male , Mice, Nude , Female , Glycosylation , Mice, Inbred BALB C , Biosynthetic Pathways , Intracellular Signaling Peptides and Proteins
4.
J Exp Clin Cancer Res ; 42(1): 338, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093368

ABSTRACT

BACKGROUND: Oncogenic KRAS mutation, the most frequent mutation in non-small cell lung cancer (NSCLC), is an aggressiveness risk factor and leads to the metabolic reprogramming of cancer cells by promoting glucose, glutamine, and fatty acid absorption and glycolysis. Lately, sotorasib was approved by the FDA as a first-in-class KRAS-G12C inhibitor. However, sotorasib still has a derivative barrier, which is not effective for other KRAS mutation types, except for G12C. Additionally, resistance to sotorasib is likely to develop, demanding the need for alternative therapeutic strategies. METHODS: KRAS mutant, and wildtype NSCLC cells were used in vitro cell analyses. Cell viability, proliferation, and death were measured by MTT, cell counting, colony analyses, and annexin V staining for FACS. Cell tracker dyes were used to investigate cell morphology, which was examined by holotomograpy, and confocal microscopes. RNA sequencing was performed to identify key target molecule or pathway, which was confirmed by qRT-PCR, western blotting, and metabolite analyses by UHPLC-MS/MS. Zebrafish and mouse xenograft model were used for in vivo analysis. RESULTS: In this study, we found that nutlin-3a, an MDM2 antagonist, inhibited the KRAS-PI3K/Akt-mTOR pathway and disrupted the fusion of both autophagosomes and macropinosomes with lysosomes. This further elucidated non-apoptotic and catastrophic macropinocytosis associated methuosis-like cell death, which was found to be dependent on GFPT2 of the hexosamine biosynthetic pathway, specifically in KRAS mutant /p53 wild type NSCLC cells. CONCLUSION: These results indicate the potential of nutlin-3a as an alternative agent for treating KRAS mutant/p53 wild type NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tandem Mass Spectrometry , Zebrafish , Apoptosis , Proto-Oncogene Proteins c-mdm2/genetics , Cell Death , Mutation , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
5.
J Pathol Clin Res ; 9(5): 391-408, 2023 09.
Article in English | MEDLINE | ID: mdl-37395335

ABSTRACT

Glutamine fructose-6-phosphate aminotransferase 2 (GFPT2) is a rate-limiting enzyme in hexosamine biosynthesis involved in the occurrence and progress of many cancers. What role it plays in gastric cancer (GC) is still unclear. In this study, transcriptome sequencing data from the Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined with the HMU-TCGA training cohort to analyze the biological function and clinical significance of GFPT2. The correlation of GFPT2 with immune cells and stromal cells was analyzed in the GC immune microenvironment through transcriptome sequencing data and a public single-cell sequencing database. In cell lines, GC tissues, and the tissue microarray, GFPT2 protein expression was confirmed by western blotting and immunohistochemistry. The mRNA of GFPT2 was highly expressed in the tumor (p < 0.001), and GC cells and tumors expressed high levels of GFPT2 protein. Compared to low expression, high GFPT2 mRNA expression was associated with higher levels of tumor invasion, higher pathological stages, and poor prognosis (p = 0.02) in GC patients. In a drug susceptibility analysis, GFPT2 mRNA expression was associated with multiple chemotherapeutic drug sensitivity, including docetaxel, paclitaxel, and cisplatin. Gene enrichment analysis found that GFPT2 was mainly primarily involved in the extracellular matrix receptor interaction pathway. The ESTIMATE, CIBERSORT, and ssGSEA algorithms showed that GFPT2 was associated with immune cell infiltration. In addition, GFPT2 was more likely to be expressed within cancer-associated fibroblasts (CAFs), and high levels of GFPT2 expression were highly correlated with four CAFs scores (all p < 0.05). Finally, a prognostic model to assess the risk of death in GC patients was constructed based on GFPT2 protein expression and lymph node metastasis rate. In conclusion, GFPT2 plays an essential role in the function of CAFs in GC. It can be used as a biomarker to assess GC prognosis and immune infiltration.


Subject(s)
Cancer-Associated Fibroblasts , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Prognosis , Glutamine/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , RNA, Messenger/metabolism , Tumor Microenvironment
6.
Bone ; 166: 116575, 2023 01.
Article in English | MEDLINE | ID: mdl-36195245

ABSTRACT

INTRODUCTION: Dental pulp stem cells (DPSCs) have high proliferative and multilineage differentiation potential in mesenchymal stem cells. However, several studies have indicated that there are individual differences in the potential for osteogenic differentiation of DPSCs, and the factors determining these differences are unknown. OBJECTIVE: To identify the genes responsible for the individual differences in the osteogenic differentiation ability of DPSCs. METHODS: We divided DPSCs into high and low osteogenic differentiation ability groups (HG or LG) with ALP and von Kossa stain, and compared the gene expression patterns using RNA-seq. In addition, genes that may affect osteogenic differentiation were knocked down using small interfering RNA (siRNA) and their effects were investigated. RESULTS: The RNA-seq patterns revealed that VCAM1 and GFPT2 were significantly expressed at higher levels in the HG than in the LG. The results of siRNA analysis showed that VCAM1 and GFPT2 knockdown significantly reduced the expression of osteogenic markers. Furthermore, we analyzed the involvement of these two genes in cell signaling in DPSC differentiation. The results indicated that the VCAM1-mediated Ras-MEK-Erk and PI3K/Akt pathways are involved in the osteogenic differentiation of DPSCs, and that GFPT2-mediated HBP signaling influences the osteogenic differentiation of DPSCs. CONCLUSIONS: These findings indicate that DPSCs that highly express VCAM1 and GFPT2 have a high capacity for osteogenic differentiation. Evaluation of VCAM1 and GFPT2 expression in undifferentiated DPSCs may predict the outcome of bone regenerative therapy using DPSCs. Moreover, the expression levels of VCAM1 and GFPT2 in DPSCs may be useful in setting criteria for selecting donors for allogeneic cell transplantation for bone regeneration.


Subject(s)
Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , Osteogenesis , Vascular Cell Adhesion Molecule-1 , Humans , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Dental Pulp , Osteoblasts , Osteogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism , RNA, Small Interfering/metabolism , Stem Cells/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
7.
Front Cell Infect Microbiol ; 12: 976924, 2022.
Article in English | MEDLINE | ID: mdl-36211971

ABSTRACT

The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, ß-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.


Subject(s)
Sporothrix , beta-Glucans , Animals , Antifungal Agents , Benzenesulfonates , Cell Wall/metabolism , Cellulose , Chitin , Congo Red , Glutamine , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Hexosamines/analysis , Hexosamines/metabolism , Humans , Mammals/metabolism , Polymers/analysis , Sporothrix/metabolism , Sugars , Uridine Diphosphate , beta-Glucans/analysis
8.
Adv Sci (Weinh) ; 9(30): e2202993, 2022 10.
Article in English | MEDLINE | ID: mdl-36045101

ABSTRACT

A malformed tumour vascular network provokes the nutrient-deprived tumour microenvironment (TME), which conversely activates endothelial cell (EC) functions and stimulates neovascularization. Emerging evidence suggests that the flexible metabolic adaptability of tumour cells helps to establish a metabolic symbiosis among various cell subpopulations in the fluctuating TME. In this study, the authors propose a novel metabolic link between bladder cancer (BCa) cells and ECs in the nutrient-scarce TME, in which BCa-secreted glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) via small extracellular vesicles (sEVs) reprograms glucose metabolism by increasing hexosamine biosynthesis pathway flux in ECs and thus enhances O-GlcNAcylation. Moreover, seryl-tRNA synthetase (SerRS) O-GlcNAcylation at serine 101 in ECs promotes its degradation by ubiquitination and impeded importin α5-mediated nuclear translocation. Intranuclear SerRS attenuates vascular endothelial growth factor transcription by competitively binding to the GC-rich region of the proximal promotor. Additionally, GFAT1 knockout in tumour cells blocks SerRS O-GlcNAcylation in ECs and attenuates angiogenesis both in vitro and in vivo. However, administration of GFAT1-overexpressing BCa cells-derived sEVs increase the angiogenetic activity in the ECs of GFAT1-knockout mice. In summary, this study suggests that inhibiting sEV-mediated GFAT1 secretion from BCa cells and targeting SerRS O-GlcNAcylation in ECs may serve as novel strategies for BCa antiangiogenetic therapy.


Subject(s)
Extracellular Vesicles , Serine-tRNA Ligase , Urinary Bladder Neoplasms , Mice , Animals , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Serine-tRNA Ligase/metabolism , Hexosamines/metabolism , Serine/metabolism , Glucose/metabolism , Extracellular Vesicles/metabolism , Karyopherins , Tumor Microenvironment
9.
Carcinogenesis ; 43(10): 969-979, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36040914

ABSTRACT

Cervical cancer demonstrates the fourth incidence and death rate in females worldwide. Glutamine--fructose-6-phosphate transaminase 1 (GFPT1), the first rate-limited enzyme of the hexosamine biosynthesis pathway, has been reported to promote the progression of cancers. However, the prognostic value and roles of GFPT1 in cervical cancer are largely unknown. Transcription expression data for cervical cancer were downloaded from public databases. GFPT1 overexpressed and knockdown cell lines were constructed. Colony formation assays, Edu assays and 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were used to measure the proliferation capabilities of cervical cancer cells. Western blot, Immunofluorescence and co-immunoprecipitation assays were performed to verify the interaction between GFPT1and Phosphatase and tensin homolog (PTEN). Animal assays were applied to verify the results in vivo. GFPT1 expression was higher in cervical cancer cell lines. The proliferation capabilities of cervical cancer cells were suppressed in GFPT1 knockdown cells and GFPT1 inhibitor L-DON treated cells. And overexpression of GFPT1 promoted cell proliferation. PTEN was up-regulated in GFPT1 knockdown cells and downregulated in GFPT1 overexpression cells. Immunofluorescence and co-immunoprecipitation results showed that GFPT1 was co-localized and interacted with PTEN. GFPT1 promoted the ubiquitination and degradation of PTEN. Silence of PTEN offsets the growth inhibition of cervical cancer caused by GFPT1 knockdown. Animal assays showed that GFPT1 promoted the proliferation of cervical cancer in vivo. Our study revealed that GFPT1 could promote the progression of cervical cancer by regulating PTEN expression. Our study highlights the GFPT1-PTEN regulation as a potential therapy target for cervical cancer. .


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Animals , Uterine Cervical Neoplasms/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Cell Proliferation , Ubiquitination , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-akt/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
10.
J Biol Chem ; 298(10): 102437, 2022 10.
Article in English | MEDLINE | ID: mdl-36041631

ABSTRACT

Mammalian target of rapamycin (mTOR), which is part of mTOR complex 1 (mTORC1) and mTORC2, controls cellular metabolism in response to levels of nutrients and other growth signals. A hallmark of mTORC2 activation is the phosphorylation of Akt, which becomes upregulated in cancer. How mTORC2 modulates Akt phosphorylation remains poorly understood. Here, we found that the RNA-binding protein, AUF1 (ARE/poly(U)-binding/degradation factor 1), modulates mTORC2/Akt signaling. We determined that AUF1 is required for phosphorylation of Akt at Thr308, Thr450, and Ser473 and that AUF1 also mediates phosphorylation of the mTORC2-modulated metabolic enzyme glutamine fructose-6-phosphate amidotransferase 1 at Ser243. In addition, AUF1 immunoprecipitation followed by quantitative RT-PCR revealed that the mRNAs of Akt, glutamine fructose-6-phosphate amidotransferase 1, and the mTORC2 component SIN1 associate with AUF1. Furthermore, expression of the p40 and p45, but not the p37 or p42, isoforms of AUF1 specifically mediate Akt phosphorylation. In the absence of AUF1, subcellular fractionation indicated that Akt fails to localize to the membrane. However, ectopic expression of a membrane-targeted allele of Akt is sufficient to allow Akt-Ser473 phosphorylation despite AUF1 depletion. Finally, conditions that enhance mTORC2 signaling, such as acute glutamine withdrawal, augment AUF1 phosphorylation, whereas mTOR inhibition abolishes AUF1 phosphorylation. Our findings unravel a role for AUF1 in promoting membrane localization of Akt to facilitate its phosphorylation on this cellular compartment. Targeting AUF1 could have therapeutic benefit for cancers with upregulated mTORC2/Akt signaling.


Subject(s)
Heterogeneous Nuclear Ribonucleoprotein D0 , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Cell Proliferation , Glutamine/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Humans , Heterogeneous Nuclear Ribonucleoprotein D0/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism , Cell Membrane/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
11.
J Enzyme Inhib Med Chem ; 37(1): 1928-1956, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35801410

ABSTRACT

Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is known as a promising target for antimicrobial agents and antidiabetics. Several compounds of natural or synthetic origin have been identified as inhibitors of this enzyme. This set comprises highly selective l-glutamine, amino sugar phosphate or transition state intermediate cis-enolamine analogues. Relatively low antimicrobial activity of these inhibitors, poorly penetrating microbial cell membranes, has been improved using the pro-drug approach. On the other hand, a number of heterocyclic and polycyclic compounds demonstrating antimicrobial activity have been presented as putative inhibitors of the enzyme, based on the results of molecular docking to GlcN-6-P synthase matrix. The most active compounds of this group could be considered promising leads for development of novel antimicrobial drugs or antidiabetics, provided their selective toxicity is confirmed.


Subject(s)
Anti-Infective Agents , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Hypoglycemic Agents , Molecular Docking Simulation
12.
Elife ; 112022 03 01.
Article in English | MEDLINE | ID: mdl-35229715

ABSTRACT

The hexosamine biosynthetic pathway (HBP) produces the essential metabolite UDP-GlcNAc and plays a key role in metabolism, health, and aging. The HBP is controlled by its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFPT/GFAT) that is directly inhibited by UDP-GlcNAc in a feedback loop. HBP regulation by GFPT is well studied but other HBP regulators have remained obscure. Elevated UDP-GlcNAc levels counteract the glycosylation toxin tunicamycin (TM), and thus we screened for TM resistance in haploid mouse embryonic stem cells (mESCs) using random chemical mutagenesis to determine alternative HBP regulation. We identified the N-acetylglucosamine deacetylase AMDHD2 that catalyzes a reverse reaction in the HBP and its loss strongly elevated UDP-GlcNAc. To better understand AMDHD2, we solved the crystal structure and found that loss-of-function (LOF) is caused by protein destabilization or interference with its catalytic activity. Finally, we show that mESCs express AMDHD2 together with GFPT2 instead of the more common paralog GFPT1. Compared with GFPT1, GFPT2 had a much lower sensitivity to UDP-GlcNAc inhibition, explaining how AMDHD2 LOF resulted in HBP activation. This HBP configuration in which AMDHD2 serves to balance GFPT2 activity was also observed in other mESCs and, consistently, the GFPT2:GFPT1 ratio decreased with differentiation of human embryonic stem cells. Taken together, our data reveal a critical function of AMDHD2 in limiting UDP-GlcNAc production in cells that use GFPT2 for metabolite entry into the HBP.


Subject(s)
Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing) , Hexosamines , Animals , Biosynthetic Pathways , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glycosylation , Hexosamines/metabolism , Mice
13.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: mdl-35159258

ABSTRACT

The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.


Subject(s)
Drosophila melanogaster , Hexosamines , Animals , Biosynthetic Pathways/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Euchromatin , Glutamine/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
14.
Cells ; 11(1)2022 01 05.
Article in English | MEDLINE | ID: mdl-35011738

ABSTRACT

In non-small-cell lung cancer (NSCLC), concurrent mutations in the oncogene KRAS and tumor suppressor STK11 (also known as LKB1) confer an aggressive malignant phenotype, an unfavourability towards immunotherapy, and overall poor prognoses in patients. In a previous study, we showed that murine KRAS/LKB1 co-mutant tumors and human co-mutant cancer cells have an enhanced dependence on glutamine-fructose-6-phosphate transaminase 2 (GFPT2), a rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP), which could be targeted to reduce survival of KRAS/LKB1 co-mutants. Here, we found that KRAS/LKB1 co-mutant cells also exhibit an increased dependence on N-acetylglucosamine-phosphate mutase 3 (PGM3), an enzyme downstream of GFPT2. Genetic or pharmacologic suppression of PGM3 reduced KRAS/LKB1 co-mutant tumor growth in both in vitro and in vivo settings. Our results define an additional metabolic vulnerability in KRAS/LKB1 co-mutant tumors to the HBP and provide a rationale for targeting PGM3 in this aggressive subtype of NSCLC.


Subject(s)
AMP-Activated Protein Kinase Kinases/genetics , Lung Neoplasms/genetics , Molecular Targeted Therapy , Phosphoglucomutase/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Biosynthetic Pathways/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/antagonists & inhibitors , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glycosylation/drug effects , Hexosamines/biosynthesis , Humans , Lung Neoplasms/pathology , Mice , Phosphoglucomutase/antagonists & inhibitors , Phosphoglucomutase/genetics
15.
Mol Cell Proteomics ; 21(2): 100185, 2022 02.
Article in English | MEDLINE | ID: mdl-34923141

ABSTRACT

Breast cancer cells that have undergone partial epithelial-mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-ß. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/physiology , Female , Fructosephosphates , Glutamine/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Oxidative Stress , Transaminases/metabolism
16.
Elife ; 102021 12 24.
Article in English | MEDLINE | ID: mdl-34951587

ABSTRACT

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Hyaluronic Acid/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Gene Knockout Techniques , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Hexosamines/biosynthesis , Humans , Male , Mice, Inbred NOD , Mice, SCID , Transplantation, Heterologous
17.
Biochem Biophys Res Commun ; 583: 121-127, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34735873

ABSTRACT

In response to cardiac injury, increased activity of the hexosamine biosynthesis pathway (HBP) is linked with cytoprotective as well as adverse effects depending on the type and duration of injury. Glutamine-fructose amidotransferase (GFAT; gene name gfpt) is the rate-limiting enzyme that controls flux through HBP. Two protein isoforms exist in the heart called GFAT1 and GFAT2. There are conflicting data on the relative importance of GFAT1 and GFAT2 during stress-induced HBP responses in the heart. Using neonatal rat cardiac cell preparations, targeted knockdown of GFPT1 and GFPT2 were performed and HBP activity measured. Immunostaining with specific GFAT1 and GFAT2 antibodies was undertaken in neonatal rat cardiac preparations and murine cardiac tissues to characterise cell-specific expression. Publicly available human heart single cell sequencing data was interrogated to determine cell-type expression. Western blots for GFAT isoform protein expression were performed in human cardiomyocytes derived from induced pluripotent stem cells (iPSCs). GFPT1 but not GFPT2 knockdown resulted in a loss of stress-induced protein O-GlcNAcylation in neonatal cardiac cell preparations indicating reduced HBP activity. In rodent cells and tissue, immunostaining for GFAT1 identified expression in both cardiac myocytes and fibroblasts whereas immunostaining for GFAT2 was only identified in fibroblasts. Further corroboration of findings in human heart cells identified an enrichment of GFPT2 gene expression in cardiac fibroblasts but not ventricular myocytes whereas GFPT1 was expressed in both myocytes and fibroblasts. In human iPSC-derived cardiomyocytes, only GFAT1 protein was expressed with an absence of GFAT2. In conclusion, these results indicate that GFAT1 is the primary cardiomyocyte isoform and GFAT2 is only present in cardiac fibroblasts. Cell-specific isoform expression may have differing effects on cell function and should be considered when studying HBP and GFAT functions in the heart.


Subject(s)
Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Fibroblasts/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Hexosamines/biosynthesis , Hexosamines/metabolism , Induced Pluripotent Stem Cells , Mice , Myocardium/cytology , Protein Isoforms , Rats, Sprague-Dawley
18.
Molecules ; 26(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34641501

ABSTRACT

Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11ß-hydroxysteroid dehydrogenase (11ß-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from -8.1 to -7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.


Subject(s)
Abelmoschus/chemistry , Abscisic Acid/pharmacology , Diabetes Mellitus/metabolism , Hypoglycemic Agents/pharmacology , Proteins/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Abscisic Acid/chemistry , Abscisic Acid/metabolism , Abscisic Acid/pharmacokinetics , Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Computer Simulation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glucokinase/chemistry , Glucokinase/metabolism , Glutamine/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Hypoglycemic Agents/chemistry , Molecular Docking Simulation , PPAR gamma/chemistry , PPAR gamma/metabolism , Proteins/chemistry , Sirtuins/chemistry , Sirtuins/metabolism
20.
Nat Commun ; 12(1): 4173, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234137

ABSTRACT

The integration of circadian and metabolic signals is essential for maintaining robust circadian rhythms and ensuring efficient metabolism and energy use. Using Drosophila as an animal model, we show that cellular protein O-GlcNAcylation exhibits robust 24-hour rhythm and represents a key post-translational mechanism that regulates circadian physiology. We observe strong correlation between protein O-GlcNAcylation rhythms and clock-controlled feeding-fasting cycles, suggesting that O-GlcNAcylation rhythms are primarily driven by nutrient input. Interestingly, daily O-GlcNAcylation rhythms are severely dampened when we subject flies to time-restricted feeding at unnatural feeding time. This suggests the presence of clock-regulated buffering mechanisms that prevent excessive O-GlcNAcylation at non-optimal times of the day-night cycle. We show that this buffering mechanism is mediated by the expression and activity of GFAT, OGT, and OGA, which are regulated through integration of circadian and metabolic signals. Finally, we generate a mathematical model to describe the key factors that regulate daily O-GlcNAcylation rhythm.


Subject(s)
Circadian Rhythm/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Hexosamines/biosynthesis , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational/physiology , Acetylglucosamine/metabolism , Animals , Animals, Genetically Modified , Biosynthetic Pathways/genetics , Circadian Clocks/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Feeding Behavior/physiology , Female , Gene Expression Profiling , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Male , Models, Animal , N-Acetylglucosaminyltransferases/genetics , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...